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Preface

This book is designed for a short course in GAMLSS given at the University of Athens.

(©: The copyright remains with the authors and any reproduction of the material in this
booklet must have the authors permission.
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Chapter 1

Introduction

This book is designed as an introduction to the GAMLSS framework. It describes how gen-
eralized additive models for location, scale and shape (GAMLSS) can be used for statistical
modelling.

Regression analysis is one of the most popular statistical techniques for modelling the rela-
tionship between a response variable and explanatory variables. Practitioners who use standard
regression methods soon find that the classical assumptions about normality of the errors terms
and linearity of the relationship between the response variable (Y') and the explanatory vari-
ables (the X’s) very seldom hold. Generalized linear models (GLM) and generalized additive
models (GAM), widely used by practitioners today, were designed to cope with some of the
above problems but increasingly, especially with larger data sets, are found to be inadequate.
This booklet is an introduction to generalized additive models for location, scale and shape
(GAMLSS), a framework where some of the limitations of GLM and GAM can be overcome.

This book is designed for the practical statistician. The examples used here are real data
examples. Each chapter and the examples within chapters are self contained and can be read
separately.

Most of the chapters in this book follow the following format:

e a review

theoretical considerations for the problem

software availability

practical examples

bibliography
e appendices for more demanding theoretical material
e exercises

Chapter 2 is a general introduction the GAMLSS framework. Section 2.6 defines the
GAMLSS framework and contains a description of the type of regression models that the
GAMLSS framework is capable of modelling. Section 3.2 also contains an introduction to
the R implementation of the gamlss packages and a description of the available functions within
the basic gamlss package. A brief demonstration of the use of the basic gamlss package is also
given here.
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Chapter 4 is about fitting parametric distributions to data involving a single continuous
response variable (with no covariates). This chapter serves also as an introduction to all contin-
uous distributions implemented into the gamlss packages. The extensive Appendix of Chapter
4 shows methods of generating continuous distributions using available known distributions.

Regression type of models for continuous response variables are introduced in Chapter 5.
Here we are introduce modelling the relationship between the continuous response Y and ex-
planatory variables X'’s.

Chapter 6 analyzes a count response variable. It introduces the count data distributions
available in GAMLSS. Here the response variable takes values 0,1,2,...,00. It gives examples
of how to fit a parametric discrete distribution to a count data sample (with no explanatory
variables) and also simple regression situations where the response is a count variable.

Chapter 7 analyzes binomial response variables, that is when the the response variable takes
values 0,1,2,...,n for a finite n.

Chapter 8 expands the available distributions by the use of finite mixture distributions for
modelling the response variable.

Some model selection techniques are discussed in Chapter 77. The important topic of centile
estimation is given in Chapter 9.

Appendix 10 summarizes all distributions available in the gamlss packages.

1.1 Notation used in this book

Vectors in general will be represented in a lower case bold letters, e.g. x = (1,2, ...,%,) while
matrices in an upper case bold letter, for example X. Scalar random variables are represented
by upper case, for example Y. The observed value of a random variable is represented by lower
case, for example y.

Tables 1.1 and 1.2 the show notation that will be used throughout this book.
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univariate response variable

vector of observed values of the response variable, i.e. (y1,¥2,...,¥Un
total number of observations

explanatory variables

fixed effects design matrix

vector of fixed effect parameters

vector of random effects

dimension of the random effect vector

random effect design matrix

predictor for a distribution parameter

(0,1) indicator variable

power parameter for x, i.e. ¢

total number of factor levels

hat matrix

adjusted dependent variable

link function applied to model a distribution parameter
non-parametric or non-linear function (in the predictor n)

)T

matrix of weights
vector of weights
smoothing matrix
Distributions and parameters
fr() :  theoretical probability density function of the random variable Y’
fp() : the population probability function
fe() : the empirical probability density function
¢() : probability density function of a standard normal distribution
Fy(): cumulative distribution function of the random variable Y
®() : cumulative distribution function of a standard normal distribution
Qy () : inverse cumulative distribution function of the random variable Y, i.e. Fy'()
Ey(): Expectation of random variable Y
Vy() : Variance of random variable Y’
m() : prior probability density function
m :  vector of prior (or mixing) probabilities # = (7,72 ..., m) "
0 : a parameter of the model distribution, e.g. u
0 :  vector of the parameters of the distribution, e.g. 8 = (u,0,v,7)"
K : total number of distribution parameters
K : total number of mixture components
w: location parameter of the distribution
o : scale parameter of the distribution
v : shape (eg. skewness) parameter of the distribution
7 : shape (eg. kurtosis) parameter of the distribution
A :  vector of hyperparameters
o) : standard deviation of the normal random effect for parameter 6y
Z : normal random variable, NO(u, o)
z : standard normal (Gaussian) quadrature mass point

Table 1.1: Notation for the random and systematic part of a model used

11
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Likelihood and information criteria

L :  likelihood function
¢ :  log likelihood function
A : generalized likelihood ratio test statistic
i() : Fisher’s expected information matrix
I() : observed information matrix
GD : global deviance, i.e. minus twice the fitted log-likelihood
GAIC : generalized Akaike information criterion (i.e. GD + #df)
df :  total (effective) degrees of freedom used in the model
f penalty for each degree of freedom in the model

Residuals

vector of (randomised) quantile residuals

vector of normalised (randomised) quantile residuals
vector of (partial) residuals

Q statistic calculated from the residuals

z-statistic calculated from the residuals

Table 1.2: Notation for likelihood and residuals used



Chapter 2

The GAMLSS framework

2.1 Introduction

This Chapter serves as a theoretical introduction to generalized additive models for location,
scale and shape (GAMLSS). It build up the model from its predecessors, in particular, from
the linear regression models, the generalized linear models and the generalized additive models.
Section 2.2 gives an introduction to basic ideas of the linear regression models. Section 2.3 to the
generalized linear models while section Section 2.6 describes the GAMLSS statistical framework.
That is, the GAMLSS statistical model and its sub-models, the different distributions, the
different additive terms and the different algorithms used within GAMLSS.

The models we are dealing with in this book are models with response or target variable,
(the y-variable) and possibility many explanatory, input or independent variables, (the z’s).

2.2 Linear Model (LM)

A simple but effective model, (which served the statistical community well for the main part of
the last century), is the linear regression model

Yi=Po+ iz + ...+ Bppi + € (2.1)
where Y; for ¢ = 1,1,...,n are the response random variables and (z1;,...,xp) fori =1,...,n,
are observed values from n observations in the data and p is the number of explanatory variables.
The €;, for i = 1,...,n, are the errors or disturbances and are assumed to be independently

identically distributed random variables with zero means and a constant variance. Figure 2.1

gives a graphical representation of the simple linear model (that is, a regression model with

only one explanatory variable) and its distribution assumptions. At a given x-variable value z,

the response variable Y is distributed normally around the regression line Y = §y + 81z, with

a constant variance. Values of Y with common or different z/s are drawn independently.
Model (2.1) can be written more conveniently in a matrix form as

Y =XB+e (2.2)

where Y and € are n x 1 vectors, X is a known n X p matrix and 3 is p x 1 vector. The unknown
quantities in (2.2) are the parameters 8 which can be estimated minimizing the sum of squares

13
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300
|

200
|

Figure 2.1: The simple regression assumptions

of the errors:
ele=(Y-XB)(Y-XB)=) €. (2.3)
i=1
Minimizing (2.3) with respect to 8 results in the least squares estimator for 3:
B=X"X)"'XTY (2.4)

While the least squares solution in (2.4) provides estimates for the coefficients 3, it does not
provide a framework of testing the significant of those coefficients. This comes with the ad-
ditional assumption that that the errors are not only independently identically distributed
with zero means and constant variance, but also that they follow a normal distribution, i.e.
€ ~ N(0,0°L,), where I, is the n x n identity matrix. Summarizing the model is now given by:

Y =XB+¢€, where e~ N(0,0°1,). (2.5)

By taking expectations with respect to € in equation (2.5) and by noting that any linear function
of a normally distributed variable is normally distributed itself we can rewrite the model in (2.5)
as:

Y ~ N(u,0%1,), where p=Xg. (2.6)

The reason why we prefer the formulation in (2.6) rather than in (2.5) is that it easier to
generalize to non-normal distributions (which is the main subject of this book). Note also
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that in both formulations above the expectations are conditioned on the observed values of the
explanatory variables, that is, we model the response given the X’s.

The model (2.6) models the relationship between the mean of YV, E(Y) = p, and the z’s
linearly. We often refer to the assumed mathematical relationship between (any) parameter of
the distribution of Y and z’s as the systematic part of the statistical model. The assumption
related to the variation of Y is referred to as the stochastic component of the statistical model.

The likelihood function of a model is the probability of observing the sample (given the
parameters), so in the case of model (2.6) we have:

L(B,0%) = (2ﬁ02)gexp{—%i2(Y—Xﬂ)T (Y—Xﬂ)} (2.7)
with log-likelihood
1
0(8,0%) = glog (270%) = 55 (¥ - XB8)T (Y — X3) (2.8)

Note the maximising the log likelihood in (2.8) for 3 is equivalent of minimising the least squares
quantity (Y — X,@)—r (Y —X) in (2.3). So in this case the maximum likelihood estimator
(MLE) and Least Squares Estimator for 3 in (2.4) are identical. The MLE for o2 is given by

o) (o) "

The MLE for o2, 52 is a biased estimator so the unbiased version

s? = (Y _ XB)LT_SY _ XB) (2.10)

is often used instead, where p is the rank of the matrix X. Sometimes the unbiased estimator
in (2.10) is referred as the REML estimate of o2.

The corresponding estimates of 3 and o? are given by substituting the observed values
y = (Y1,%2,...,yn) " for the random variables Y = (Y1,Y5,...,Y,)" giving for example the
estimate

B=(X"X)"XTy. (2.11)
for 3.
The fitted values of the models are define as:
y = XB
- X(X'X) Xy
— Hy. (2.12)

where the matrix H =X (XTX)_1 X T is usually called the hat matriz because adds a hat to
y. The matrix H is symmetric and idempotent, so it is an orthogonal projection matrix. It
projects any n-dimensional vector into the linear subspace generated by the columns of X. The
least squares fitting is shown in figure 2.2 where y represent a n-dimensional vector which is
projected by the linear transformation H into the linear subspace generated by the the columns
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1
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Figure 2.2: The response vector y is orthogonally projected by H into ¥ which belong to the
linear subspace generated by the columns of X. The residuals & are orthogonal to ¥y

of the matrix X. X here is represented by the vectors x; and x3. The linear projection of y
into the linear subspace of X is the fitted values y.
The residuals of the least squares model are defined as:

E = y-3y (2.13)
Note also that
E = y— X,@
= y-X(X'X) "Xy
I-H)y (2.14)

So the matrix (I — H) which also idempotent (because H is idempotent project the n dimen-
sional vector y into the linear subspace generated by the ortho-compliment subspace of X, that
is, the subspace orthogonal to the columns of X. This is shown in figure 2.2 where the vector
of the residuals & is shown as orthogonal to the linear surface generated by X. Note that the
real dimensions of the ortho-compliment subspace of X is n — p something we can not present
in out 3-dimensional picture adequately. The residual vector € is an estimate of the error term
€. how are related to z-scores?

The degrees of freedom in a linear model are the number of independent beta parameters of
the model which in turn is the number of independent columns of X which is also the trace of
the the hat matrix, tr(H).

df = tr (H) = p. (2.15)
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2.2.1 Sub-models of the linear model

An important point here is that the linear model Y = X3 + € has a a lot of sub-models which
in the statistical literature have special names. An explanatory factor A (which is a categorical
variable) with p levels can be expressed as multiple explanatory variables (dummy or indicator
variables for each level of factor) and hence included in a linear model. A one way analysis of
variance (ANOVA) is a linear model where the matrix of explanatory variables X contains a
single factor A only. When we have two explanatory factors A; and As then we have a two
way analysis of variance. A combination of explanatory factors and continuous explanatory
variables is called analysis of covariance or ANACOVA.

2.2.2 Testing between models
The quantity

RSS =Y &= (v — i)’
i=1 i=1
is the residual sum of squares of the fitted model. Under the normal errors assumption is related
to the fitted (global) deviance of the model D = —2log(L) = n [log (2rRSS/n) — 1] where L is
the Likelihood which is defined as the probability of observing the sample.

The RSS can be used to test between nested models. A model My is nested to model M7 if
My is a subclass of M;. For example, the model with a linear trend [y + (1t; is nested to the
quadratic model By + f1t; + [Bat7. To test between nested normally distributed models we have
the following alternative hypothesis.

e Hjy : model M, is appropriate
e H; : model M; is appropriate
In order to decide which hypothesis to accept the following can be used:

e Fit the simple model My and obtain its RSS, RSS, and its degrees of freedom dfy. (Note
that the (degrees of freedom are the number of parameters fitted in the mode).

e Fit the complicated model M; and obtain its RSS, RSS; and its degrees of freedom df;

e It can be shown that if Hy is true (RSSy — RSS1)/0? ~ x2(dfo — df1) independently of
RSS1 /0% ~ x?(df1) so the ratio is an F distributed random variable:
RSSy—RSS,
dfo—df:
F=—F%ss— ~ Flidro—an).an)
dfy
Now the estimated value F' value can be compared with the F' value obtained from statis-
tical tables. If the probability of observing F' under the Hp is higher accept Hy, otherwise
accept Hi. How higher is determine by the level of significance which is usually set to
a = 0.05.

For non-nested models the Akaike Information Criterion (AIC) or Schwartz Bayesian Cri-
terion (SBC) [which sometimes is referred to as Bayesian Information Criterion, (BIC)] can be
used for the selection of the model. The criteria are defined as

AIC =D +2x df
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and
SBC = BIC = D + log(n) x df
respectively where df are the degrees of freedom, that is, the number of fitted parameters in the
model and D the fitted global deviance defined above. Note that both criteria penalised the
deviance by a quantity # multiplied by the number of degrees of freedom used in the model (df).
So both criteria are a special case of the Generalized Akaike Information Criterion (GAIC),
defined as
GAIC = D + ¢ x df.

With # = 2 we have the AIC and § = log(n) the SBC. Note that the penalty is lot more severe
for SBC, which means that model selection which is done using SBC will result to a much
simpler model than model selection done by AIC. By a simpler model here we mean a model
with less degrees of freedom (less parameters).

For a regression model which assumes that the response variable is normally distributed,
the following quantity can be used to to check how good the model is:

ResSS, 4
R2 — aaj
TS Sa4j

where ResSSqq; = >y (§; — ¥) is the adjusted Residual Sum of Squares, T'SSaq; = > (yi — ¥)
is the adjusted Total Sum of Squares and 7 is the sample mean of the response variable y. The
quantity B2 x 100 is the percentage of variation in y explained by the regression model.

The R? value will always increase as the number of parameters included in the model in-
creases. In order to avoid that we can penalise or adjusts for the number of parameters
included in the model.

ResSSqaj
2 _ _ n—df
Radj_ TSSadj :
n—1
2.2.3 Weighted least squares
B=(X"WX) X Wy. (2.16)
y = X(X'WX)'X"Wy
Hy. (2.17)

where the hat matrix is H = X (XTWX) ' XTW.

2.2.4 Computational considerations

The equations developed above are seldom used for computational purposes since are not very
efficient. One of the efficient ways to calculate the results is the QR decomposition. This section
explains how it works.

Any n x p matrix X can be written as:

X p nxXn nxp
= R 2.18
X Qn (0> (2.18)
TLXp p

p (2.19)
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Figure 2.3: The weighted least squares regression assumptions

where Q, is an n x n orthogonal matrix (ie. Q! Qn = Q! Qn = I,), Q is a n x p matrix
containing the first p columns of Q,, and R is an p x p upper triangular matrix. By post
multiplying the response vector with Q, we have:

ay=( 1) (2.20)

r

where f and r are p x 1 and (n — p) x 1 vectors respectively. It is easy to prove (see exercise 1)
that:

B=R =R 'Q'y (2.21)
The fitted values are given by
y = QQ'y (2.22)

while the residual sum of squares is given by
n—p
RSS = [[*=) (2.23)
i=1

R provides the function qr () for QR decomposition. Exercise 2 provides a way of familiarize
with the function.
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2.2.5 Model specification

In practice there are several problems that could arise from the specification of the linear model:

e The relationship between the response variable and the explanatory variables may not be
linear.

e The error terms and consequently the response variables may not be normally distributed.
e The error terms may not be independent of each other.

e The variance of the error term (and therefore the response variable) may not be is not
constant over the observations.

The Generalized Linear Model discussed in the next section partially addresses the first and
second problems.

2.3 Generalized Linear Model (GLM)

Equation (2.6) for the linear model allows generalization to the generalized linear models (GLM),
Nelder and Weddeburn (1972). Firstly the normal distribution for Y; is replaced by an expo-
nential family distribution (denoted EF in general), and secondly a monotonic link function
g(.) relating p; the mean of Y;, to the linear predictor 7; is introduced:

g(w) = mi=xp (2.24)
independently for ¢ = 1,2,...,n. In vector form this is represented as:
Y ~ EF(u,0)
gp) = n=X'p. (2.25)

The exponential family distribution EF(u, ¢) is defined by the probability (density) function
fv (y; i1, @) of Y having the form:

y0 —b(0)
o)

where E(Y) = = b (0) and V(Y) = ¢V (1) where the variance function V() =" [0(1)]. The
form of (2.26) includes many important distributions including the normal, Poisson, gamma,inverse
Gaussian and T'weedie (Tweedie, 1984 ) distributions having variance functions V () = 1, u, 2, p?
and pP for p < 0 or p > 1, respectively, and also binomial and negative binomial distributions
with variance functions V(u) = w and V(p) = p+ % respectively.

Frloino) = exp { Felno)} (2.26)

2.4 Generalized Additive Model (GAM
2.5 Generalized Linear Mixed model (GLMM)
2.6 GADMLSS: the statistical framework

Generalized additive models for location, scale and shape (GAMLSS) are semi-parametric re-
gression type models. They are parametric, in that they require a parametric distribution
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Figure 2.4: The Poisson regression assumptions

assumption for the response variable, and “semi” in the sense that the modelling of the parame-
ters of the distribution, as functions of explanatory variables, may involve using non-parametric
smoothing functions. GAMLSS were introduced by Rigby and Stasinopoulos (2001, 2005),
Stasinopoulos and Rigby (2007) and Akantziliotou et al. (2002) as a way of overcoming some
of the limitations associated with the popular generalized linear models (GLM) and general-
ized additive models (GAM) (Nelder and Wedderburn, 1972 and Hastie and Tibshirani, 1990,
respectively).

In GAMLSS the exponential family distribution assumption for the response variable (V")
is relaxed and replaced by a general distribution family, including highly skew and/or kurtotic
continuous and discrete distributions. The systematic part of the model is expanded to allow
modelling not only of the mean (or location) but other parameters of the distribution of Y as,
linear and/or non-linear, parametric and/or smooth non-parametric functions of explanatory
variables and/or random effects. Hence GAMLSS is especially suited to modelling a response
variable which does not follow an exponential family distribution, (eg. leptokurtic or platykurtic
and/or positively or negatively skew response variable, or overdispersed counts response vari-
able) or which exhibit heterogeneity, (eg. where the scale or shape of the distribution of the
response variable changes with explanatory variables(s)).

2.6.1 The model

A GAMLSS model assumes that, for i = 1,2,...,n, independent observations Y; have proba-
bility (density) function fy (y;|0*) conditional on 8* = (64;, 02, 034, 04:) = (s, 04, V45, 7) a vector
of four distribution parameters, each of which can be a function to the explanatory variables.
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Figure 2.5: The GAMLSS regression model assumptions

This is denoted by Yi|0i ~ D(Oi), ie. Yi|(wi,04,v5, 1) ~ D(pi, 04,14, 7;) independently for
it =1,2,...,n, where D represent the distribution of Y. We shall refer to (u;, o, v, 7;) as the
distribution parameters. The first two population distribution parameters p; and o; are usually
characterized as location and scale parameters, while the remaining parameter(s), if any, are
characterized as shape parameters, e.g., skewness and kurtosis parameters, although the model
may be applied more generally to the parameters of any population distribution, and can be
generalized to more than four distribution parameters.

Let YT = (Y1,Y2,...,Y,) be the n length vector of the response variable. Rigby and
Stasinopoulos (2005) define the original formulation of a GAMLSS model as follows. For k =
1,2, 3,4, let gi(.) be a known monotonic link function relating the distribution parameter 8 to
predictor mn;;:

Jk
96(0k) =y, = XiBy + Y ZjxY (2.27)
j=1
ie.
Ji
gi(p) =m, =X18; + Z Zj1vj
j=1
Ja2

g2(0) = my = X3, + Z Zj27 o

=1
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J3
93(v) = n3 = X383 + Z 2373
j=1
Jy
9a4(1) =My =Xufy + Z 217 ja-
j=1

where pu, o, v 7, and, for k = 1,2, 3,4, 8, and i, are vectors of length n, ,82 = (B1k, Bok, - - - ,Bj;ck)
is a parameter vector of length J;,, X is a fixed known design matrix of order n x J,, Z;j, is
a fixed known n x g;i design matrix and v;; is a g, dimensional random variable which is
assumed to be distributed as 7,5, ~ N, (O, Gj_kl), where Gj_kl is the (generalized) inverse of a
¢jk X gk symmetric matrix G = G,x(A;x) which may depend on a vector of hyperparameters
Ajk, and where if Gy is singular then ~;;, is understood to have an improper prior density

function proportional to exp (—%7}'—ij;€7].,€), while if G, is nonsingular then v;, has a g,

dimensional multivariate normal distribution with mean 0 and variance-covariance matrix Gj_kl.

The model in (2.27) allows the user to model each distribution parameter as a linear function
of explanatory variables and/or as linear functions of stochastic variables (random effects). Note
that seldom will all distribution parameters need to be modelled using explanatory variables.

There are several important sub-models of GAMLSS. For example for readers familiar with
smoothing, the following GAMLSS sub-model formulation may be more familiar. Let Z;; = I,,,
where I,, is an n x n identity matrix, and ~;;, = hjx = hjx(x;) for all combinations of j and &
in (2.27), then we have the semi-parametric additive formulation of GAMLSS given by

Jk

9k(0k) = m, = XpBy + Z k(%) (2.28)
=1

where to abbreviate the notation use 8y for k = 1,2, 3,4 to represent the distribution parameter
vectors p, o, v and 7, and where x;;, for j = 1,2,...,J; are also vectors of length n. Note
that design vector x;, may be the same or different from a design column of matrix Xj. The
function hjy, is an unknown function of the explanatory variable X;; and hj; = hji(x;) is the
vector which evaluates the function hj, at x;i. If there are no additive terms in any of the
distribution parameters we have the simple parametric linear GAMLSS model,

91(8x) = ny, = XiBy,. (2.29)

Model (2.28) can be extended to allow non-linear parametric terms to be included in the model
for u, o, v and 7, as follows, see Righy and Stasinopoulos (2006):

Jk
9k(0k) = My, = hie (X, By) + Y bk (%) (2.30)

j=1

where hy for k = 1,2,3,4 are non-linear functions and Xy is a known design matrix of order
nx J,:. We shall refer to the model in (2.30) as the non-linear semi-parametric additive GAMLSS
model. If, for £k = 1,2,3,4, Jp = 0, that is, if, for all distribution parameters, we do not have
additive terms, then model (2.30) is reduced to a non-linear parametric GAMLSS model:

9k (0x) = ny. = hy (X, By)- (2.31)
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If, in addition, hy (X, 8;) = X, By for i = 1,2,...,n and k = 1,2, 3,4 then (2.31) reduces to
the linear parametric model (2.29). Note that some of the terms in each hy(Xy,3)) may be
linear, in which case the GAMLSS model is a combination of linear and non-linear parametric
terms. We shall refer to any combination of models (2.29) or (2.31) as a parametric GAMLSS
model.

The parametric vectors 8, and the random effects parameters v, for j =1,2,..., J; and
k =1,2,3,4 are estimated within the GAMLSS framework (for fixed values of the smoothing
hyper-parameters Aj;’s) by maximising a penalized likelihood function ¢,(3, ) given by

P Ji

1
G(B7) =B = 5 > D A1k Gini (2:32)

k=1 j=1

where £(3,7) = Y1, log fy (v:]0") = Y1, log fy (yilwi, 04, vi, ;) is the log likelihood function
of the distribution parameters given the data. Note we used (3, ) as argument in the penalized
log-likelihood to emphasize what is maximized here; (3, ) represent all the 3,'s and the Yik'S,
for j =1,2,...,Jr and k = 1,2,3,4. More details about the algorithms used to maximize the
penalized log likelihood ¢, are given in Section 2.6.4. For parametric GAMLSS model (2.29)
or (2.31), £,(B,7) reduces to ¢(3), and the By for k = 1,2,3,4 are estimated by maximizing
the likelihood function ¢(3). The available distributions and the different additive terms in the
current GAMLSS implementation in R are given in Sections 2.6.2 and 2.6.3 respectively. The
R function to fit a GAMLSS model is gamlss() in the package gamlss.

2.6.2 Available distributions in GAMLSS

The form of the distribution assumed for the response variable Y, fy (y|u,o,v,7), can be very
general. The only restriction that the R implementation of GAMLSS has is that the function
log fy (y|u, o,v,7) and its first (and optionally expected second and cross) derivatives with
respect to each of the parameters of @ = (u,o,v,7) must be computable. Explicit derivatives
are preferable but numerical derivatives can be used.

Table 10.1 shows a variety of one, two, three and four parameter families of continuous
distributions implemented in our current gamlss software version. Table 10.2 shows the discrete
distributions. We shall refer to the distributions in Tables 10.1 and 10.2 as the gamlss.family
distributions, a name to coincide with the R object created by the package gamlss. Johnson et
al. (1994, 1995) are the classic reference books for continuous distributions, while Johnson et al.
(2005) is the classic reference book for discrete distributions, and cover most of the distributions
in Tables 10.1 and 10.2 respectively. The appendix of Chapter 4 describes methods of generating
most of the continuous distributions in Table 10.1. The probability (density) functions of all of
the distributions in Tables 10.1 and 10.2 are shown in Appendix 10. The BCCG distribution
in Table 10.1 is the Box-Cox transformation model used by Cole and Green (1992) (also known
as the LMS method of centile estimation). The BCPE and BCT distributions, described in
Rigby and Stasinopoulos (2004) and Rigby and Stasinopoulos (2006) respectively, generalize
the BCCG distribution to allow modelling of both skewness and kurtosis.

For some of the distributions shown in Tables 10.1 and 10.2 more that one parameterization
has been implemented in the gamlss packages. For example, two parameter Weibull distri-
bution can be parameterized as fy (y|u, o) = (oy” ' /p7) exp {—(y/p) }, denoted as WEI, or as
Fy(ylp, 0) = opy”='e", denoted as WEI2, or as fy (y|p, o) = (0/8) (y/B8)" " exp{—(y/B)"}
denoted as WEI3, for 8 = u/[I'(1/0) + 1]. Note that the second parameterization WEI2 is
suited to proportional hazard (PH) models. In the WEI3 parameterization, parameter p is
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Distributions R Name n o v T
beta BEQ) logit logit - -
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPEQ) identity log identity | log
Box-Cox t BCT() identity log identity | log
exponential EXPQO log - - -
exponential Gaussian exGAUS() | identity log log -
exponential gen. beta type 2 EGB2() identity | identity log log
gamma GAQO log log - -
generalized beta type 1 GB1QO) logit logit log log
generalized beta type 2 GB2Q) log identity log log
generalized gamma GGO log log identity -
generalized inverse Gaussian GIGO log log identity -
generalized ¢ GTQO identity log log log
Gumbel GUQO identity log - -
inverse Gaussian IGO log log - -
Johnson’s SU (u the mean) JSUQ) identity log identity | log
Johnson’s original SU JSUo () identity log identity | log
logistic LoO identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNOQO) log log fixed -
NET NET () identity log fixed fixed
normal NOO identity log - -
normal family NOF ) identity log identity -
power exponential PEQ) identity log log -
reverse Gumbel RGQ) identity log - -
skew power exponential type 1 | SEP1() identity log identity | log
skew power exponential type 2 | SEP2() identity log identity | log
skew power exponential type 3 | SEP3() identity log log log
skew power exponential type 4 | SEP4() identity log log log
sinh-arcsinh SHASHQO) identity log log log
skew ¢ type 1 ST10 identity log identity | log
skew ¢ type 2 ST20) identity log identity | log
skew ¢ type 3 ST30) identity log log log
skew ¢ type 4 ST4() identity log log log
skew ¢ type 5 ST50) identity log identity | log
¢t Family TFQ) identity log log -
Weibull WEIQ log log - -
Weibull (PH) WEI2() log log - -
Weibull (4 the mean) WEI3() log log - -

Table 2.1: Continuous distributions implemented within the gamlss packages (with default link
functions)
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Distributions R Name n o v
beta binomial BB(O) logit log -
binomial BIO logit - -
logarithmic LGQO) logit - -
Delaporte DEL(Q) log log logit
negative binomial type I NBIQ) log log -
negative binomial type II NBII() log log -
Poisson POO) log - -
Poisson inverse Gaussian PIGQO) log log -
Sichel SIO) log log | identity
Sichel (p the mean) SICHEL() log log | identity
zero altered beta binomial ZABB() logit | log logit
zero altered binomial ZABI() logit | logit -
zero altered logarithmic ZALG() logit | logit -
zero altered neg. binomial ZANBI() log log logit
zero altered poisson ZAP() log | logit -
zero inflated beta binomial ZIBB() logit log logit
zero inflated binomial ZIBIQ) logit | logit -
zero inflated neg. binomial ZINBIQ) log log logit
zero inflated poisson ZIPQ) log | logit -
zero inflated poisson (u the mean) | ZIP2() log | logit -
zero inflated poisson inv. Gaussian | ZIPIG() log log logit

Table 2.2: Discrete distributions implemented within the gamlss packages (with default link
functions)

beta inflated (at 0) BEOIQ) logit | log | logit | -
beta inflated (at 0) BEINFO() | logit | logit | log -
beta inflated (at 1) BEZI() logit | log | logit | -
beta inflated (at 1) BEINF1() | logit | logit | log -
beta inflated (at 0 and 1 ) | BEINF() logit | logit | log | log
zero adjusted GA ZAGAQ) log log | logit -
zero adjusted IG ZAIGQO) log log | logit -

Table 2.3: Mixed distributions implemented within the gamlss packages (with default link
functions)
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equal to the mean of y. The choice of parameterization depends upon the particular problem,
but some parameterizations are computationally preferable to others in the sense that maxi-
mization of the likelihood function is easier. This usually happens when the parameters u, o, v
and 7 are information orthogonal or almost orthogonal. For interpretation purposes we favour
parameterizations where the parameter p is a location parameter (mean, median or mode). The
specific parameterizations used in the gamlss.family distributions are given in Appendix 10.

For the R implementation of GAMLSS all of the distributions in Tables 10.1 and 10.2 have
d, p, q and r functions corresponding respectively to the probability density function (pdf),
the cumulative distribution function (cdf), the quantiles (i.e. inverse cdf) and random value
generating functions. For example, the gamma distribution has the functions dGA, pGA, qGA and
rGA. In addition each distribution has a fitting function which helps the fitting procedure by
providing link functions, first and (exact or approximate) expected second derivatives, starting
values etc. All fitting functions have as arguments the link functions for the distribution param-
eters. For example, the fitting function for the gamma distribution is called GA with arguments
mu.link and sigma.link. The default link functions for all gamlss.family distributions are
shown in columns 3-6 of Tables 1 and 2. The function show.link() can be used to identify
which are the available links for the distribution parameter within each of the gamlss.family.
Available link functions can be the usual glm() link functions plus logshifted, logitshifted
and own. The own option allows the user to define his/her own link function, for an example
see the help file on the function make.link.gamlss().

There are several ways to extend the gamlss.family distributions. This can be achieved by

e creating a new gamlss.family distribution
e truncating an existing gamlss.family
e using a censored version of an existing gamlss.family

e mixing different gamlss.family distributions to create a new finite mixture distribution.

New gamlss.family distributions

To create a new gamlss.family distribution is relatively simple, if the pdf function of the distri-
bution can be evaluated easily. To do that, find a file of a current gamlss.family distribution,
(having the same number of distribution parameters) and amend accordingly. For more details,
on how this can be done, see Stasinopoulos et. al. (2008) Section 4.2.

Truncating gamlss.family distributions

Truncating existing gamlss.family distributions can be achieved by using the add-on package
gamlss.tr. The function gen.trun(), within the gamlss.tr package, can take any gamlss.family
distribution and generate the d, p, q, r and fitting R functions for the specified truncated
distribution. The truncation can be left, right or in both tails of the range of the response y
variable.

Censored gamlss.family distributions

The package gamlss.cens is designed for the situation where the response variable is censored
or, more generally, it has been observed in an interval form, eg. (3, 10] an interval from 3 to 10
(including only the right end point 10). The function gen.cens () will take any gamlss.family
distribution and create a new function which can fit a response of “interval” type. Note that



28 CHAPTER 2. THE GAMLSS FRAMEWORK

for “interval” response variables the usual likelihood function for independent response variables
defined as

n

L(0) =[] f(w:l6) (2.33)

i=1
changes to

n

L(6) = [ ] [F(y2i10) — F(y1:]6)] (2.34)

i=1

where F'(y) is the cumulative distribution function and (yi,,y2;] is the observed interval.

Finite mixtures of gamlss.family distributions

Finite mixtures of gamlss.family distributions can be fitted using the package gamlss.mx. A
finite mixture of gamlss.family distributions will have the form

Frle) = D mfe(yl6r) (2.35)
k=1

where fi(y|0k) is the probability (density) function of y for component k, and 0 < 7, < 1
is the prior (or mixing) probability of component k, for k = 1,2,..., K. Also Zszl e =1
and 9 = (0,7) where 8 = (01,02,...,0;) and w = (m,72,...,7k). Any combination of
(continuous or discrete) gamlss.family distributions can be used. The model in this case
is fitted using the EM algorithm. The component probability (density) functions may have
different parameters [fitted using the function gamlssMX ()] or may have parameters in common
[fitted using the function gamlssNP()]. In the former case, the mixing probabilities may also
be modelled using explanatory variables and the finite mixture may have a zero component
(e.g. zero inflated negative binomial etc.). Both functions gamlssMX()) and gamlssNP() are in
the add on package gamlss.mx. Chapter 8 gives more details about modelling and fitting finite
mixtures models using the package gamlss.mx.

2.6.3 Available additive terms in GAMLSS

Equation (2.27) allows modelling of all the distribution parameters p, o, v and 7 as linear
parametric and/or non-linear parametric and/or non-parametric (smooth) function of the ex-
planatory variables and/or random effects terms. In the GAMLSS implementation in R, the
function gamlss() in gamlss allows formulae for all the distribution parameters. For modelling
linear functions the Wilkinson and Rogers (1973) notation as applied for model formulae in the
S language by Chambers and Hastie (1992) can be used. [It is the model formulae notation used
in R the fit of linear models, 1m(), and generalized lineal models, glm(), see for example Ven-
ables and Ripley (2002) , Section 6.2.] For fitting non-linear and/or non-parametric (smooth)
functions and/or random effects terms, appropriate additive term functions have to be included
in the distribution parameters’ formulae within the gamlss() function. Parametric non-linear
models can be also fitted using the function nlgamlss() of the add-on package gamlss.nl.
Table 2.4 shows the additive term functions implemented in the current R implementation of
GAMLSS. Note that all available additive terms names are stored in the list .gamlss.sm.1list.
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Additive terms R function names
boosting boost ()

cubic splines based cs(), scs(), ve O
decision trees tr()

fractional and power polynomials fpO, ppO)
free knot smoothing (break points) | fk()

loess 100

neural networks nn()

non-linear fit nl()

penalized Beta splines based pb O, psO, cyO, tp(), pvc )
random effects random() ra(), rc(), re()
ridge regression ri(), ridge()

Simon Wood’s gam ga()

Table 2.4: Additive terms implemented within the gamlss packages

Cubic splines

The cubic spline functions cs () and scs() are based on the smooth.spline() function of R and
can be used for univariate smoothing. Cubic splines are covered extensively in the literature,
see e.g. Reinsch (1967), Green and Silverman (1994) and Hastie and Tibshirani (1990). They
assume in model (2.28) that the functions h(t) are arbitrary twice continuously differentiable
functions and we maximize a penalized log likelihood, given by ¢ subject to penalty terms

" 2
of the form X\ [ [h (t)] dt. The solution for the maximizing functions h(t) are all natural

cubic splines, and hence can be expressed as linear combinations of their natural cubic spline
basis functions de Boor (1978). In cs() and codescs() each distinct z-value is a knot. The
two functions cs() and codescs() differ on the way they are implemented and should produce
identical results.

Varying coefficients

The function ve() and pvc() are varying coefficients functions. The varying coefficient terms
were introduced by Hastie and Tibshirani (1993) to accommodate a special type of interaction
between explanatory variables. This interaction takes the form of 5(r)z, i.e. the linear coefficient
of the explanatory variable z is changing smoothly according to another explanatory variable r.
In some applications r will be time. In general r should be a continuous variable, while z can be
either continuous or categorical. In the vc() function implementation = has to be continuous
or a two level factor with levels 0 and 1. In the pvc function, which uses penalized B-splines, x
can be a factor with more than two levels.

Penalized splines

The functions pb(), ps(), cy), tp(), pvc() are all based on penalised B-splines. Penalized
splines were introduced by Eilers and Marx (1996) . Penalized Splines (or P-splines) are piece-
wise polynomials defined by B-spline basis functions in the explanatory variable, where the
coefficients of the basis functions are penalized to guarantee sufficient smoothness, see FEilers
and Marx (1996). More precisely consider the model 6 = Z(x)~ where 6 can be any distribution
parameter in a GAMLSS model, Z(x) is n x ¢ B-spline basis design matrix for the explanatory
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variable x defined at g¢-different knots mostly within the range of x, and ~ is a ¢ x 1 vector of
coefficients which have some stochastic restrictions imposed by Dy ~ N,_,.(0, A™'T) [or equiv-
alently by v ~ N,(0,\"'K~) where K~ is a generalized inverse of K = D"D]. The matrix
D is a (¢ — r) x ¢ matrix giving rth differences of the ¢g-dimensional vector 7. So to define a
penalized spline we need: i) ¢ the number of knots in the x-axis defined by the argument inter
in pb() [and of course where to put them; pb() and its older version ps() use equal spaces in
the x-axis], ii) the degree of the piecewise polynomial used in the B-spline basis so we can define
X, defined by argument degree iii) r the order of differences in the D matrix indicating the
type of the penalty imposed on the the coefficients of the B-spline basis functions, defined by
argument order and iv) the amount of smoothing required defined either by the desired equiv-
alent degrees of freedom defined by argument df [or alternatively by the smoothing parameter
defined by argument lambda]. The older function ps() function in gamlss, which is based on
an S-PLUS function of Marx (2003), takes three degrees of freedom nor a default value if neither
the degrees of freedom or the smoothing parameter are set by the user. If in the newer function
pb ), the user has not specified the degrees of freedom nor the smoothing parameter the pb()
estimates them using one of several different local methods: i) Maximum Likelihood (ML), ii)
Generalized Cross Validation (GCV) or iii) Generalized Akaike information criterion (GAIC),
with ML as the default.

Local polynomials, loess

The function 1o() allows the user to use a loess fit in a gamlss formula. A loess fit is
a polynomial (surface) curve determined by one or more explanatory (continuous) variables,
which are fitted locally see Cleveland et al. (1993). The implementation of the 1o() function is
very similar to the function with the same name in the S-PLUS implementation of gam. However
gamlss 1o() function uses the R loess() function as its engine and this creates some minor
differences between the two 1o () even when the same model is fitted. 1o() is the only function
currently available in gamlss which allows smoothing in more than one explanatory (continuous)
variables.

Fractional polynomials

The fp() function is an implementation of the fractional polynomials introduced by Roys-
ton and Altman (1994). The functions involved in fp() and bfp() are loosely based on
the fractional polynomial function fracpoly() for S-PLUS given by Ambler (1999). The
function bfp generates the correct design matrix for fitting a power polynomial of the type
bo + b1xPr + boxP? + ... 4 bpaP+. For given powers p1,po, ..., Pk, given as the argument powers
in bfp(), the function can be used to fit power polynomials in the same way as the functions
poly() or bs() of the package splines are used to fit orthogonal or piecewise polynomials
respectively. The function £p(), [which uses bfp()] works as an additive smoother term in
gamlss. It is used to fit the best fractional polynomials among a specific set of power values. Its
argument npoly determines whether one, two or three fractional polynomials should used in the
fitting. For a fixed number npoly the algorithm looks for the best fitting fractional polynomials
in the list c(-2, -1, -0.5, 0, 0.5, 1, 2, 3). Note that npoly=3 is rather slow since it fits
all possible 3-way combinations at each backfitting iteration.
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Power polynomials

The power polynomial function pp () is an experimental function and is designed for the situation
in which the model is in the form by 4+ b;zP* + boxP?2 with powers p1, ps to be estimated non-
linearly by the data. Initial values for the non-linear parameters p;, po have to be supplied.

Non-linear terms

The function n1() exists in the add-on package gamlss.nl designed for fitting non-linear para-
metric models within GAMLSS. It provides a way of fitting non-linear terms together with linear
or smoothing terns in the same model. The function takes a non-linear object, (created by the
function nl.obs), and uses the R nlm() function within the backfitting cycle of gamlss(). The
success of this procedure depends on the starting values of the non-linear parameters (which
must be provided by the user). No starting values are required for the other, e.g., linear terms, of
the model. [An alternative method of fitting non-linear parametric models is using the function
nlgamlss () of the package gamlss.nl.]

Random effects

The function random() allows the fitted values for a factor (categorical) predictor to be shrunk
towards the overall mean, where the amount of shrinking depends either on the parameter A\, or
on the equivalent degrees of freedom (df). This function is similar to the random() function in
the gam package of Hastie (2006) documented in Chambers and Hastie (1992). . The function
ra() is similar to the function random() but its fitting procedure is based on augmented least
squares, a fact that makes ra() more general, but also slower to fit, than random(). The
random coefficient function rc() is experimental. Note that the “random effects” functions,
random(), ra() and rc() are used to estimate the random effect +’s given the hyperparameters
A’s. In order to obtain estimates for the hyperparameters, methods discussed in Rigby and
Stasinopoulos (2005) Appendix A can be used. Alternatively, for models only requiring a single
random effect in one distribution parameter only, the function gamlssNP() of the package
gamlss.mx, which uses Gaussian quadrature, can be used.

The gamlss() function uses the same type of additive backfitting algorithm implemented
in the gam() function of the R package gam Hastie (2006). Note that the function gam()
implementation in the R recommended package mgev Wood (2001) does not use backfitting.
The reason that we use backfitting here that it is easier to extend the algorithm so new additive
terms can be included.

Each new additive term in the gamlss() requires two new functions. The first one, (the
one that is seen by the user) is the one which defines the additive term and sets the additional
required design matrices for the linear part of the model. The names of the existing additive
functions are shown in the second column of Table 2.4. For example cs(x) defines a cubic
smoothing spline function for the continuous explanatory variable x. It is used during the
definition of the design matrix for the appropriate distribution parameter and it adds a linear
term for x in the design matrix. The second function is the one that actually performs the
additive backfitting algorithm. This function is called gamlss.name() where the name is one
of the names in column two of Table 2.4. For example the function gamlss.cs() performs the
backfitting for cubic splines. New additive terms can be implemented by defining those two
functions and adding the new names in the .gamlss.sm.1list list.

The general policy when backfitting is used in gamlss() is to include the linear part of an
additive term in the appropriate linear term design matrix. For example, in the cubic spline
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function cs () the explanatory variable say x is put in the linear design matrix of the appropriate
distribution parameter and the smoothing function is fitted as a deviation from this linear part.
This is equivalent of fitting a modified backfitting algorithm, see Hastie and Tibshirani (1990).
In other additive functions where the linear part is not needed (or defined) a column on zeros is
put in the design matrix. For example, this is the case when the fractional polynomials additive
term fp() is used.

If the user wishes to create a new additive term, care should be taken on how the degrees of
freedom of the model are defined. The degrees of freedom for the (smoothing) additive terms
are usually taken to be the extra degrees of freedom on top of the linear fit. For example to
fit a single smoothing cubic spline term for say = with 5 total degrees of freedom, cs(x,df=3)
should be used since already 2 degrees of freedom have been used for the fitting of the constant
and the linear part of the explanatory variable x. [This is different from the s() function of
the gam package which uses s(x,df=4), assuming that only the constant term has been fitted
separately]. After a GAMLSS model containing additive (smoothing) terms is used to fit a
specific distribution parameter the following components are (usually) saved for further use. In
the output below replace mu with sigma, nu or tau if a distribution parameter other that mu is
involved.

mu.s: a matrix, each column containing the fitted values of the smoothers used to model the
specific parameter. For example given a fitted model say mod1, then mod1$mu.s would
access the additive terms fitted for mu.

mu.var: a matrix containing the estimated variances of the smoothers.
mu.df: a vector containing the extra degrees of freedom used to fit the smoothers.
mu.lambda: a vector containing the smoothing parameters (or random effects hyperparameters).

mu.coefSmo: a list containing coefficients or other components from the additive smooth fitting.

2.6.4 The GAMLSS algorithms

There are two basic algorithms used for maximizing the penalized likelihood given in (2.32). The
first, the CG algorithm, is a generalization of the Cole and Green (2002) algorithm [and uses the
first and (expected or approximated) second and cross derivatives of the likelihood function with
respect to the distribution parameters @ = (u,o, v, 7) for a four parameter distribution]. Note
that we have dropped the subscripts here to simplify the notation. However for many population
probability (density) functions, fy (y|@), the parameters 6 are information orthogonal (since
the expected values of the cross derivatives of the likelihood function are zero), e.g., location
and scale models and dispersion family models, or approximately so. In this case the simpler
RS algorithm, which is a generalization of the algorithm used by Rigby and Stasinopoulos
(1996a) and Rigby and Stasinopoulos (1996b) for fitting mean and dispersion additive models,
(MADAM), [and does not use the cross derivatives|, is more suited. The parameters @ = (u, o)
are fully information orthogonal for distributions NBI, GA, IG, LO and NO only in Tables 10.1
and 10.2. Nevertheless, the RS algorithm has been successfully used for fitting all distributions
in Tables 10.1 and 10.2, although occasionally it can be slow to converge. Note also that the
RS algorithm is not a special case of the CG algorithm, see Appendix 2A. The two algorithms
RS and CG are demonstrated in Figure 2.6 which shows the maximum likelihood parameters
estimation based on a sample from a Weibull, WEI(y, o), distribution. The contours are equal
deviance contours (equal to twice the log likelihood).
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The object of the algorithms is to maximize the penalized likelihood function ¢, given by
(2.32), for fixed hyperparameters A. Appendix 2B show how this can be achieved. For fully
parametric models, (2.29) or (2.31), the algorithms maximize the likelihood function ¢. The
algorithms, which are fully described in Appendix 2A, are implemented in the option method
in the function gamlss() where a combination of both algorithms is also allowed (using the
mixed () function). The major advantages of the algorithms are i) the modular fitting procedure
(allowing different model diagnostics for each distribution parameter); ii) easy addition of extra
distributions; iii) easy addition of extra additive terms; and iv) easily found starting values,
requiring initial values for the @ = (u, o, v, 7) rather than for the 3 parameters. The algorithms
have generally been found to be stable and fast using very simple starting values (e.g. constants)
for the 8 parameters. Default values can be changed by the user if necessary. The function
nlgamlss() in the package gamlss.nl provides a third algorithm for fitting parametric linear or
non-linear GAMLSS models in equation (2.29) or (2.31) respectively. However the algorithm
needs starting values for all the 38 parameters, rather than @ = (u, o, v, 7), which can be difficult
for the user to choose. This method uses the n1m() R function for maximization of the likelihood,
which uses numerical derivatives (if the actual derivatives are not provided). This function is
used by the function summary.gamlss() to get more accurate standard errors for the beta
parameters of the parametric linear terms in the predictors after convergence of the GAMLSS
algorithm.

Clearly, for a specific data set and model, the (penalized) likelihood can potentially have
multiple local maxima. This is investigated using different starting values and has generally
not been found to be a problem in the data sets analyzed, possibly due to the relatively large
sample sizes used.

Singularities in the likelihood function similar to the ones reported by Crisp and Burridge
(1994) can potentially occur in specific cases within the GAMLSS framework, especially when
the sample size is small. The problem can be alleviated by appropriate restrictions on the scale
parameter (penalizing it for going close to zero).

2.6.5 Normalized (randomized) quantile residuals

For each fitted GAMLSS model, say M, the (normalized randomized quantile) residuals of
Dunn and Smyth (1996) are used to check the adequacy of M and, in particular, its distribution
component. The (normalized randomized quantile) residuals are given by #; = ®~1(4;) where
&~ is the inverse cumulative distribution function of a standard normal variate. The ;s are
defined differently for continuous and discrete response variables.

If y; is an observation from a continuous response variable then 4, = F(yz|él) where
u; = F(y;]0") is the assumed cumulative distribution function for case i. The process is de-
scribed diagrammatically in Figure 2.7. The top plot shows the probability distribution function
for a specific observation y. The middle plot shows how, using the cumulative distribution func-
tion, the observation gy is mapped into u. If the model is correctly specified u has a uniform
distribution between zero and one. In the bottom figure w is transformed into a z-score, r,
using r = ®~!(u), the inverse cumulative distribution function of a standard normal variate,
so 7 will have a standard normal distribution. Note that r; = ®~! [F(y;]0*)]. Similarly 4, is

transformed to # by # = ®~1(4) = &1 {F(y|é)} and 7 has an approximated standard normal

distribution. So the normalized quantile residual r is the z-score corresponding to observation
y based on its fitted distribution.

If y; is an observation from a discrete integer response variable then 4; is a random value
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Figure 2.6: The two gamlss algorithms

from the uniform distribution on the interval [d, ts] = [F(yl - l\y), F(y2|éz) where [ug,us] =

[F(yi - 1\0i), F(y2|92)] The process is described in Figure 2.8. For a given probability distri-
bution (top graph), the observed y value is transformed into an interval (uj,us) (the shaded
strip in middle plot). Then w is selected randomly from (u1,us) and is transformed into the
(randomized) z-score, 7, (see the bottom graph). Hence, using the fitted cumulative distri-
bution function, y is transformed to @, randomly chosen from (i1, t2), and then transformed to
P =& (a).

Randomized residuals can be also used for interval or censored response variables. For
example, for a right censored continuous response, @; is defined as a random value from a

uniform distribution on the interval {F (yi|92), 1} .
Note that, when randomization is used, several randomized sets of residuals (or a median

set from them) should be studied before a decision about the adequacy of model M is taken.
The true residuals r; have exactly a standard normal distribution if the model is correct.

2.7 Bibliographic notes for Chapter 2

Appendices 2A and 2B

The Appendix of this Chapter describes the two main algorithms, RS and CG, of GAMLSS
and show how the maximization of the penalized log-likelihood function /£, given by equation
(2.32) over the parameters 3, and terms Vi for g =1,2,...,Jp and k = 1,2, .., p leads to the
algorithms.
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Figure 2.7: A description of how a (normalized quantile) residual r is obtained for continuous
distributions. The functions plotted are the model probability density function f(y), the cu-
mulative distribution function F(y) and inverse cumulative distribution function of a standard
normal random variable ®(z), using which y is transformed to v and then from w to r. The
residual r is the z-score for the specific observation.
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Figure 2.8: A description of how a (normalized randomized quantile) residual r is obtained for
discrete distributions. The observed y is transformed to u, a random number between u; and
ug, then u is transformed to r. The residual r is the z-score for the specific observation.
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Exercises for Chapter 2

37

e Exercise 1.1 : Show that 8 = R™f is minimizing (y — XB8)T(y — X3). Note that
pre-multiplying any vector by the orthogonal matrix @, just rotate the vector without
altering their length.

e Exercise 1.2: This exercise is design to show how the function qr in R can be used to
obtained results for a linear regression model. Input the data usair. The first column
of the the data contain the response variable and the rest six contain six explanatory
variables. Details on what the data are exist in chapter 77.

— Fit a linear model to the data using m1<-1m(y~., data=usair)

the code X <- as.matrix(cbind(rep(1,41),usair[-1]))

— Decompose X using QR <- qr(X) to create the qr object QR.

qr.
.qy(qr, y) : to obtain Qy.

qr

qr.
qr.
.fitted(qr, y) : to obtain the fitted values y

qr

qr.
qr.
.R(qr) to extract R

qr

qr.

The following functions can be used in any qr object

coef(qr, y) : to obtain 3.

qty(qr, y) : to obtain Q.y.
resid(qr, y) : to obtain the residuals €

solve(qr(A), b) : to obtain A~'b for any square matrix A
Q(qr) to extract (Q)

X(qr) to reconstruct X

Use the above function to

. get the fitted coeflicients

. get the residuals

. get the fitted values

. create the f vector and verify R™*f will produce 3
. show that RSS = [r|* = 7 (y — §)2.

Compare your results with what you obtained from the 1m() fit.

Solutions to exercises from Chapter 2

e Solution to 1.1:

r

v-X0)"(y-X8) = Iy - X8 = |y - @uxsf = | (1) - (§

)o

2

Extract the response variable using Y <- usair$y and the design matrix X using

= |f — R8> —|r)?

Now r do not depends on 3 while |f — R,6'|2 will minimized if f = R proving that
B=RIf

e Solution to 1.2:
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library(gamlss)

data(usair)

# creating the X martix

X <- as.matrix(cbind(rep(1,41) ,usair[-1]))
# get y

Y <- usair$y

# QR decomposition

QR<-qgr (X)

#1

# get the betas

gr.coef (QR, Y)
qgr.solve(QR, Y)

# compare with 1m()
mi<-1m(y~., data=usair)
coef (m1)

# 2

# get the residuals
cbind(qr.resid(QR, Y), resid(ml))
# 3

# get the fitted values
cbind(qr.fitted(QR, Y), fitted(ml))
# 4

f<-qr.qty(QR, Y)[1:7]
R<-qr.R(QR)

solve(R,f)

coef (m1)

#

# get the r vector
r<-qr.qty(QR, Y) [8:41]

# RSS

sum((resid(m1))"~2)
sum(r~2)

#dim(qr.Q(QR))

THE GAMLSS FRAMEWORK



Chapter 3

The implementation of GAMLSS
in R

3.1

Introduction

This Chapter provides a basic introduction of GAMLSS in R. Section 3.2 describes the different
gamlss packages in R. Section 3.3 provides a basic introduction of the gamlss package. Section
3.4 shows the available functions in the gamlss package.

3.2 The gamlss packages

The GAMLSS framework comprise of several different packages written in the free software R,
i.e. the original gamlss package and other add-on packages, i.e.

1.
2.

- W

N o

9.
10.

the original gamlss package for fitting a GAMLSS model

the gamlss.add package for extra additive teerms.

the gamlss.boot package for bootstrapping centiles.

the gamlss.cens package for fitting censored (left, right or interval) response variables.
the gamlss.data package for data used for demostration.

the gamlss.demo package for teaching purpose demos.

the gamlss.dist package for gamlss.family distributions

the gamlss.mx package for fitting finite mixture distributions.

the gamlss.nl package for fitting non-linear models

the gamlss.tr package for fitting truncated distributions.

The R and the GAMLSS framework packages can be downloaded and installed from CRAN,
the R library at http://www.r-project.org/. Test versions may be found at the GAMLSS
web site at http://www.gamlss.com/.
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The following paragraph only applies to PC’s with Microsoft Windows software. First install
R from CRAN. If your PC is connected to the internet you can install the package by going
in the R-menu Packages/install package(s) and get the package from CRAN. If you are
not connected but you have download the zip file earlier, use Packages/install package(s)
from local drive to install the package. The package gamlss will now be in the R library and
you can load it using the menu Packages/load package.../gamlss or using the command
library(gamlss).

Help files are provided for all functions in the gamlss package in the usual way. For example
using

7gamlss

will bring you to the HTML help menu for the gamlss() function and similarly for other
functions within the package. The gamlss manual, Instructions on how to use the gamlss package
in R, (2nd edition), Stasinopoulos et al. (2008), and the help files of the package can be found
in a pdf form at the "browse directory” folder of the Help/Html help/Packages/gamlss.

3.3 An introduction to the gamlss packages

The function gamlss() of the package gamlss is similar to the gam() function in the R pack-
age gam, Hastie (2006), but can fit more distributions (not only the ones belonging to the
exponential family) and can model all the parameters of the distribution as functions of the
explanatory variables. The function gamlss() also can be used to fit models which can be fitted
using the functions glm() of R and gam() of the recommended package mgcv. For parametric
models gamlss and glm() should give identical results as far as the fitted values and the fitted
coefficients for the mean are concern (given that the same distribution from the exponential
family is fitted). For smoothing models gamlss results should be identical to the gam() results
of package gam if the gamlss additive function cs() is used and for fixed degrees of freedom.
For smoothing models where the additive gamlss function pb() is used, gamlss() and gam() of
package mgcv should produce very similar but not necessarily identical results .

This implementation of gamlss () allows modelling of up to four parameters in a distribution
family, which are conventionally called mu, sigma, nu and tau. Here we will try to give a simple
demonstration of the gamlss package.

Data summary:
R data file: abdom in package gamlss.data of dimensions 610 x 2
variables

y : abdominal circumference

x : gestational age

purpose: to demonstrate the fitting of a simple regression type model in GAMLSS

The data abdom, kindly provided by Dr. Eileen M. Wright, are used here for demonstration
purposes. Data abdom comprises 610 observations of Y = abdominal circumference in mm. and
r = gestational age in weeks. Load gamlss from the R library and then load the abdom data
set:
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> library("gamlss")
> data("abdom")
> plot(y ~ x, data = abdom, col = "blue", xlab = "age", ylab = "circumference")

circumference

50 100 150 200 250 300 350 400

15 20 25 30 35 40

age

Figure 3.1: A plot of the abdominal circumference data

The data are plotted in Figure 3.1. To fit a normal distribution to the data with the mean
of Y modelled as a cubic polynomial in z, i.e. poly(x,3), use

> abd0 <- gamlss(y ~ poly(x, 3), data = abdom, family = NO)

GAMLSS-RS iteration 1: Global Deviance
GAMLSS-RS iteration 2: Global Deviance

4939.735
4939.735

Since the normal distribution NO is also the default value we could omit the family argument.
To get a summary of the results use

> summary (abd0)

stk sk o ok ok sk sk R ok ok o sk sk sk ok sk sk sk ok ok ok sk sk sk ko sk s sk sk ko ok o sk sk sk ok ok s sk sk ok ok ok sk ok
Family: c("NO", "Normal")

Call: gamlss(formula =y ~ poly(x, 3), family = NO, data = abdom)

Fitting method: RSQ)
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Mu link function: identity
Mu Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 226.7 0.5618 403.581 0.000e+00
poly(x, 3)1 2157.7 13.8741 155.521 0.000e+00
poly(x, 3)2 -109.6 13.8748 -7.896 1.360e-14
poly(x, 3)3 -26.7 13.8748 -1.924 5.480e-02

Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>ltl)
2.63002 0.02867 91.74924 0.00000

No. of observations in the fit: 610
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 605
at cycle: 2

Global Deviance: 4939.735
AIC: 4949.735
SBC: 4971.802

>k >k >k 3K 3K 3k 5k 5k 3k 5k 5k %k >k >k >k 3k 3k 5k 5k 5k 3k 5k %k %k %k >k >k 3k 5k 3k 3k %k 5k >k %k %k K >k 5k 5k 5k 5k %k %k >k >k %k K >k >k >k 5k >k %k >k >k >k >k %k %k >k >k >k %k %k >k k

We used the R function poly() to fit orthogonal polynomials, but we could have fitted the
same model using the I () function, i.e.

> abd00 <- gamlss(y ~ x + I(x"2) + I(x"3), data = abdom, family = NO)

GAMLSS-RS iteration 1: Global Deviance
GAMLSS-RS iteration 2: Global Deviance

4939.735
4939.735

> summary (abd00)

st st ke ko o ok ok sk sk sk sk ok sk sk sk ke ook sk ok sk sk sk sk sk ok sk sk sk ok s ok sk sk sk sk sk sk sk sk sk sk sk ko sk ok sk sk sk sk sk sk sk sk sk sk sk ko ok sk ok ok
Family: c("NO", "Normal")

Call: gamlss(formula =y ~ x + I(x"2) + I(x"3), family = NO, data = abdom)

Fitting method: RS()

Mu link function: identity
Mu Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -65.340953 19.528047 -3.346 8.705e-04
X 9.577417 2.354505 4.068 5.375e-05
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I(x"2) 0.104515 0.089438 1.169 2.430e-01
I(x"3) -0.002075 0.001078 -1.924 5.479e-02

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.63 0.02863 91.86 0

No. of observations in the fit: 610
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 605
at cycle: 2

Global Deviance: 4939.735
AIC: 4949.735
SBC: 4971.802

3k >k >k 3K 3K 3K 3k 5k 5k 3k 5k 5k 5k 5k >k 3K 3k 3k 3k 5k 5k 5k 5k 5k %k K 3K 3K 5k 3k 3k 5k 5k 5k 5k %K K 3K 5K 5K 5K 3k 5k 5k 5k 5k %k %K 3K 3K 3K 5k 5k %k 5k >k >k %k Xk >k >k 3 >k >k %k k k

Note that for large data sets it is more efficient (and may be essential) to calculate the
polynomials terms in advance prior to using the gamlss() function, i.e.

x2<-x"72; x3<-x"3

and then use them within the gamlss() function since the evaluation is done then only once.
The fitted model is given by Y ~ NO(ji,5) where i = B01 + 31196 + 321352 + Bglx?’ ie. 1=
—65.34 + 9.577x + 0.104522 — 0.0020752° and log(6) = [oz = 2.63 s0 6 = exp(2.63) = 13.87
(since o has a default log link function).

function (used after convergence of the gamlss () function) has two ways of producing stan-
dard errors. The default value is type="vcov". This uses the vcov method for gamlss objects
which (starting from the fitted beta parameters values given by the gamlss() function) uses
a non-linear fitting, with only one iteration to obtain the full Hessian matrix of all the beta
parameters in the model (from all the distribution parameters), i.e. Bo1, B11, 821, 031 and Bo2
in the above model. Standard errors are obtained from the observed information matrix (the
inverse of the Hessian). The standard errors obtained this way are reliable, since they take into
account the information about the interrelationship between the distribution parameters, i.e. u
and o in the above case. On occasions, when the above procedure fails, the standard errors are
obtained from type="qr", which uses the individual fits of the distribution parameters (used
in the gamlss() algorithms) and therefore should be used with caution. what happened above
and that is why we get the warning. The standard errors produced this way do not take into
the account the correlation between the estimates of the distribution parameters u, o, v and
7, [although in the example above the estimates of the distribution parameters p and o of the
normal distribution are asymptotically uncorrelated]. Note also that when smoothing additive
terms are involved in the fitting, both methods, that is, "vcov" and "qr", produce incorrect
standard errors, since they are effectively assume that the estimated smoothing terms were
fixed at their estimated values. The functions prof.dev() and prof.term() can be used for
obtaining more reliable individual parameter confidence intervals.

Model abdo0 is a linear parametric GAMLSS model, as defined in (2.29). In order to fit a
semi-parametric model in age using a non-parametric smoothing cubic spline with 3 effective
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degrees of freedom on top of the constant and linear terms use
> abdl <- gamlss(y ~ cs(x, df = 3), data = abdom, family = NO)

GAMLSS-RS iteration 1: Global Deviance = 4937.16
GAMLSS-RS iteration 2: Global Deviance 4937.16

The effective degrees of freedom used in the fitting of the mu parameters in the above model
are 5 (one for the constant, one for the linear and 3 for smoothing). Note that the gamlss()
notation is different to the gam() notation in S-PLUS where the equivalent model is fitted using
s(x,4). [Note also that when you use gam() in S-PLUS (or R package gam) that their default
convergence criteria may need to be reduced for proper convergence in S-PLUS and comparison
with gamlss () results.]

The total degrees of freedom used for the above model abd1 is six, i.e. 5 for mu the mean,
and 1 for the constant scale parameter sigma the standard deviation of the fitted normal distri-
bution model.

Fitted values of the parameters of the object can be obtained using the fitted () function.
For example plot(x, fitted(abdl,"mu")) will plot the fitted values of mu against x. The
constant estimated scale parameter (the standard deviation of the normal in this case) can be
obtained:

> fitted(abdl, "sigma")[1]

1
13.84486

where [1] indicates the first value of the vector. The same values can be obtained using the
more general function predict():

> predict(abdl, what = "sigma", type = "response")[1]

1
13.84486

The function predict() can also be used to predict the response variable distribution pa-
rameters for both old and new data values of the explanatory variables.

To model both the mean, mu, and the scale parameter, sigma, as non-parametric smoothing
cubic spline functions of x (with a normal distribution for the response Y') use:

> abd2 <- gamlss(y ~ cs(x, 3), sigma.formula = “cs(x, 3), data = abdom,
+ family = NO)

GAMLSS-RS iteration 1: Global Deviance 4785.698
GAMLSS-RS iteration 2: Global Deviance = 4784.711
GAMLSS-RS iteration 3: Global Deviance = 4784.718
GAMLSS-RS iteration 4: Global Deviance 4784.718

The function resid(abd2) (an abbreviation of residuals()) can be used to obtain the
fitted (normalized randomized quantile) residuals of a model, subsequently just called residuals
throughout this manual. [The residuals only need to be randomized for discrete distributions,
see Dunn and Smyth (1996) and Section 2.6.5.] Residuals plots can be obtained using plot ().
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> plot(abd2)
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Summary of the Quantile Residuals

mean = 0.0005115742
variance = 1.001641
coef. of skewness = 0.2397172
coef. of kurtosis = 3.718456
Filliben correlation coefficient = 0.9962348
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Figure 3.2: Residual plot from the fitted normal model abd2 with u =~ ¢s(x,3) and 0 =~
es(z, 3)

See Figure 3.2 for the plot. Figure 3.2 shows plots of the (normalized quantile) residuals: i)
against the fitted values ii) against a index iii) a non-parametric kernel density estimate iv) a
normal Q-Q plot.

Note that the plot () function does not produce additive term plots [as it does for example
in the gam() function of the package mgev] in R. The function which does this in the gamlss
package is term.plot ()
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A worm plot of the residuals, see van Buuren and Fredriks (2001), can be obtained by using
the wp() function:

> wp(abd2)

See Figure 3.3(a) for the plot.

Deviation
Deviation

Unit normal quantile Unit normal quantile

Figure 3.3: Worm plot from the normal fitted model abd2 with u = ¢s(z,3) and
log(o) = ¢s(x,3), (a) with default deviation range, (b) with deviation range (—1.5,1.5).

To include all points in the worm plot change the Deviation axis range by increasing the
value of ylim.all:

> wp(abd2, ylim.all = 1.5)

Since there is no warning message all points have been included in the worm plot. See Figure
3.3(b) for the plot. [Clearly one point was omitted from Figure 3.3(a).]

The default worm plot above is a detrended normal Q-Q plot of the residuals, and indicates
a possible inadequacy in modelling the distribution, since some points plotted lie outside the
(dotted) confidence bands.
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In model abd2 we fitted a smoothing function for both the u and o parameter by fixing
extra the degrees of freedom for smoothing to be equal to three. This will gives 5 degrees for
freedom for both p and . The function pb() allows the smoothing parameters (and therefore
the degrees of freedoms) to be estimated automatically within the GAMLSS algorithm.

> abd3 <- gamlss(y ~ pb(x), sigma.formula = “pb(x), data = abdom,
+ family = NO)

GAMLSS-RS iteration 1: Global Deviance = 4786.698
GAMLSS-RS iteration 2: Global Deviance 4785.696
GAMLSS-RS iteration 3: Global Deviance 4785.697

> abd3$mu.df
[1] 5.679311
> abd3$sigma.df
[1] 2.000002

The estimated total degrees of freedom for smoothing are 5.679 and 2.0025 for p and o
respectively. The locally estimated degrees of freedom for p are a bit higher that fixed degrees
of freedom used for models abdl and abd2. The o degrees of freedom are almost 2 indicating
that we only need a linear model for x, that is the model with sigma.formula = ~x.

If you wish to use loess curves instead of cubic or penalised splines use:

> abd4 <- gamlss(y ~ lo(x, span = 0.4), sigma.formula = “lo(x,
+ span = 0.4), data = abdom, family = NO)

Global Deviance = 4785.719
Global Deviance = 4785.286
Global Deviance = 4785.28
Global Deviance = 4785.279

GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration

W N e

You can find all the implemented smoothers and additive terms in the gamlss package in Table
2.4.

If you wish to use a different distribution instead of the normal, use the option family of
the function gamlss. For example to fit a #distribution to the data use:

> abd5 <- gamlss(y ~ pb(x), sigma.formula = “pb(x), data = abdom,
+ family = TF)

GAMLSS-RS iteration 1: Global Deviance = 4780.235
GAMLSS-RS iteration 2: Global Deviance = 4777.494
GAMLSS-RS iteration 3: Global Deviance = 4777.519
GAMLSS-RS iteration 4: Global Deviance = 4777.52

A list of the different continuous distributions implemented in the package gamlss() is given in
Tables 10.1. The details of all the distributions currently available in gamlss() are given in
Appendix 10. Chapter 4 of the GAMLSS manual, Stasinopoulos et al., (2008), describes how
the user can set up their own distribution in gamlss().
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Different models can be compared using their global deviances, GD = —2@, (if they are
nested) or using a generalized Akaike information criterion, GAIC = —20 + (8.df), where /=
i log f(yilju, 64,04, 7;) is the fitted log-likelihood function and f§ is a required penalty, e.g.
# = 2 for the usual Akaike information criterion or § = log(n) for the Schwartz Bayesian criterion.
The function deviance () provides the global deviance of the model. Note that the GAMLSS
global deviance is different from the deviance that is provided by the functions glm() and gam()
in R. The global deviance is exactly minus twice the fitted log likelihood function, including all
constant terms in the log-likelihood. The glm() deviance is calculated as a deviation from the
saturated model and it does not include constant’ terms (which do not depend on the mean of
distribution but depend in scale parameter) in the fitted log likelihood and so cannot be used to
compare different distributions. To obtain the generalized Akaike information criterion use the
functions AIC() or GAIC(). The functions are identical. For example to compare the models
abd1, abd2 and abd3 use:

> AIC(abdl, abd2, abd3, abd4, abd5)

df AIC
abdb 8.787464 4795.095
abd3 7.679313 4801.055
abd2 9.999872 4804.718
abd4 10.667506 4806.614
abdl 6.000680 4949.162

The AIC function uses default penalty § = 2, giving the usual Akaike information criterion
(AIC). Hence the usual AIC [equivalent to GAIC(# = 2)] selects model abd5 as the best model
(since it has the smallest value of AIC). If you wish to change the penalty f use the argument
k.

> AIC(abdl, abd2, abd3, abd4, abd5, k = 3)

df AIC
abdb5 8.787464 4803.883
abd3 7.679313 4808.735
abd2 9.999872 4814.718
abd4 10.667506 4817.282
abdl 6.000680 4955.162

Hence, GAIC(f = 3) also selects model abd5 as the best model.

3.4 The different functions of the gamlss package

The main function of the gamlss package is gamlss(). This function is used to fit a GAMLSS
model and consequently to create a gamlss object in R. Section 3.3 shows the basic use of the
function while Chapter 3 of Stasinopoulos et al. (2008) provides a more detailed examination
of the function. Note that all commands in R are case sensitive.

The following functions are used for fitting or updating a model:

e gamlss() : for fitting and creating a gamlss object

e refit() : to refit a gamlss object (i.e. continue iterations) if it has not converged
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update() : to update a given gamlss model object

histDist() : to fit a parametric distribution to a single (response) variable and plot
simultaneously a histogram and the fitted distribution of this variable

Note that the histDist() is designed for fitting a parametric distribution to data where no
explanatory variables exist. The functions which extract information from the fitted model
(object) are:

AIC(Q) or GAICQ) : to extract the generalized Akaike information criterion (GAIC) from a
fitted gamlss model object

coef () : to extract the linear coefficients from a fitted gamlss model object
deviance() : to extract the global deviance of the gamlss model object
edf () and edfA11() to extract the individual effective degrees of freedom

extractAIC() : to extract the generalized Akaike information criterion from a fitted
gamlss model object

fitted() : to extract the fitted values from a fitted gamlss model object
formula() : to extract a model formula

fv() : to extract the fitted values for a distribution parameter (see also fitted() and
lpred())

logLik() : to extract the log likelihood
1p() : to extract the linear predictor for a distribution parameter (see also lpred)

lpred() : to extract the fitted values, linear predictor or specified terms (with standard
errors) for a distribution parameter.

model.frame() : to extract the model frame of a specified distribution parameter
model .matrix() : to extract the design matrix of a specified distribution parameter

predict() : to predict from new data individual distribution parameter values (see also
lpred)

predictAl1l() : to predict from new data all the distribution parameter values
print() : to print a gamlss object

residuals() : to extract the normalized (randomized) quantile residuals from a fitted
gamlss model object. See Dunn and Smyth (1996) or Section 2.6.5 for a definition of the
normalized (randomized) quantile residuals.

summary () : to summarize the fit in a gamlss object
terms () : to extract terms from a gamlss object

veov() : to extract the variance-covariance matrix of the beta estimates (for all distri-
bution parameter models).
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Note that some of the functions above are distribution parameter dependent. That is, these
functions have an extra argument what, which can be used to specify which of the distribution

parameters values are required i.e.

"mu", "sigma", "nu" or tau. For example fitted(mi,

what="sigma") would give the fitted values for the o parameter from model m1.
Functions which can be used for selecting a model are:

add1() : to add a single term, from those supplied, to a fitted gamlss model

addterm() : to add a single term, from those supplied, to a fitted gamlss model object
(used by stepGAIC() below).

dropl : dropping a single term at a time from a fitted gamlss models. It provides
chi=square tests for the contribution of each term given the rest of the terms are in the
model.

dropterm() : to fit all models that differ from the current fitted gamlss model object by
(used by stepGAIC() below).

find.hyper() : to find the hyperparameters (e.g. degrees of freedom for smoothing
terms and/or non-linear parameters) by minimizing the profile Generalized Akaike Infor-
mation Criterion (GAIC) based on the global deviance, see Appendix A2.1 of Rigby and
Stasinopoulos (2005) .

gamlss.scope() : to define the scope for stepGAIC()
stepGAIC() : to select explanatory terms using GAIC

stepGAIC.CH(Q) : to select (additive) terms using the method of Chambers and Hastie
(1992).

StepGAIC.VR() : to select (parametric) terms using the method of Venables and Ripley
(2002).

stepGAICA11() : an experimental function for selecting terms for all the parameters of
the distribution.

stepVGD() : an experimental function for selecting terms in one distribution parameter
using the validation set estimated global deviance.

VGD() : to calculate the global deviance of the model using the validation set data set,
(where the training part of the data is used for fitting and the validation for calculating
the global deviance).

VGD1() : identical to VGD() but the output is a list rather than values as in VGD().

VGD2() : identical to VGD1() but it takes as argument the new data, (newdata), rather
than a factor which splits the combined data in two as in functions VGD() or VGD1().

TGD() : to calculate the global deviance for a new (test) data set, given a fitted gamlss
model.

Functions for plotting or diagnostics:
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plot() : a plot of four graphs for the normalized (randomized) quantile residuals of a
gamlss object. The residual plots are: (i) against an x-variable (ii) against the fitted
values, (iii) a density plot and (iv) a QQ-plot. Note that residuals are randomized only
for discrete response variables, see Dunn and Smyth (1996) or Section 2.6.5.

par.plot() : for plotting parallel profile plots for individual participants in repeated
measurement analysis

pdf.plot () : for plotting the pdf functions for a given fitted gamlss object or a given
gamlss.family distribution

prof.dev() : for plotting the profile global deviance of one of the distribution parameters
[, O,V Or T.

prof.term() : for plotting the profile global deviance of one of the model (beta) param-
eters. It can be also used to study the GAIC(}) information profile of a hyperparameter
for a given penalty § for the GAIC.

Q.stats() : for printing the Q statistics of Royston and Wright (2000).

rqres.plot () : for plotting QQ-plots of different realizations of normalized randomized
quantile residuals for a model with a discrete gamlss.family distribution.

show.link() : for showing available link functions for distribution parameters in any
gamlss.family distribution

term.plot() : for plotting additive (smoothing) terms in any distribution parameter
model

wp() : worm plot of the residuals from a fitted gamlss object. See van Buuren and
Fredriks (2001) for the definition of a worm plot.

Functions created specially for centile estimation which can be applied if only one explana-
tory variable is involved are:

centiles() : to plot centile curves against an x-variable.

centiles.com(): to compare centiles curves for more than one object.
centiles.split(): as for centiles(), but splits the plot at specified values of x.
centiles.pred(): to predict and plot centile curves for new x-values.

fitted.plot() : to plot fitted values for all the parameters against an x-variable

The following two functions are used in the definition of a new gamlss.family distribution
so the casual user does not need them:

make.link.gamlss() : defines the available link functions in gamlss package

checklink(): used to define the link function for each of the distribution parameters.

Some functions like gamlss(), print.gamlss(), summary.gamlss(), fitted.gamlss(),
predict.gamlss(), plot.gamlss(), wp(), AIC and GAIC are introduced in the next sections.

The function gamlss() is considered in more detail in Chapter 3 of Stasinopoulos et al.
(2008).

Appendix 10 contains a summary of the distributions available in gamlss packages.
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3.5 Bibliographic notes for Chapter 3

Exercises for Chapter 3

Practical 1: Introduction to gamlss packages

e Q1 To familiarise yourself with the GAMLSS package repeat the commands given in
Section 2.3.

e Q2 The gamlss.dist packages (which is downloaded automatically when (gamlss) is
downloaded) contain several distributions. Typing

7gamlss.family

in R will show all the available distributions in the two gamlss packages.

You can explore the shape and other properties of the distributions. For example the
following R script will produce the probability density function (pdf), cumulative distri-
bution function (cdf), inverse c.d.f., and a histogram of a random sample obtained from
a Gamma distribution:

PPP <- par(mfrow=c(2,2))

plot(function(y) dGA(y, mu=10 ,sigma=0.3),0.1, 25) # pdf
plot(function(y) pGA(y, mu=10 ,sigma=0.3), 0.1, 25) #cdf
plot(function(y) qGA(y, mu=10 ,sigma=0.3), 0, 1) # inverse cdf
hist (rGA(100,mu=10,sigma=.3)) # randomly generated values

par (PPP)

Note that the same type of plots produced say by
plot(function(y) dGA(y, mu=10 ,sigma=0.3), 0, 25) # pdf
can also be produced by using the function curve() as in

curve (dGA (x=x, mu=10, sigma=.3),0, 25)

To explore discrete distributions use:

PPP <- par(mfrow=c(2,2))

plot(function(y) dNBI(y, mu = 10, sigma =0.5 ), from=0, to=40, n=40+1, type="h",
main="pdf", ylab="pdf(x)")

cdf <- stepfun(0:39, c(0, pNBI(0:39, mu=10, sigma=0.5 )), f = 0)

plot(cdf,main="cdf", ylab="cdf(x)", do.points=FALSE )

invcdf <-stepfun(seq(0.01,.99,length=39), gqNBI(seq(0.01,.99,length=40),
mu=10, sigma=0.5 ), f = 0)

plot(invcdf, main="inverse cdf",ylab="inv-cdf(x)", do.points=FALSE )

tN <- table(Ni <- rNBI(1000,mu=5, sigma=0.5))

r <- barplot(tN, col='lightblue')

par (PPP)
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Note that to find moments or to check if a distribution integrates or sums to one, the
functions integrate() or sum can be used. For example

integrate(function(y) dGA(y, mu=10, sigma=.1),0, Inf)
will check that the distribution integrates to one, and
integrate(function(y) y*dGA(y, mu=10, sigma=.1),0, Inf)

will give the mean of the specific gamma distribution.

The density function of a GAMLSS family distribution can be plotted also using the
pdf.plot() of the GAMLSS package. Use for example

pdf.plot(family=GA, mu=10, sigma=c(.1,.5,1,2),
min=0.01,max=20, step=.5)

Try plotting other continuous distributions, e.g. IG (inverse Gaussian), PE (power ex-
ponential) and BCT (Box-Cox t) and discrete distributions, e.g. NBI (negative binomial
type I), and PIG (Poisson inverse Gaussian).
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Chapter 4

Continuous response: fitting
distributions

4.1 Introduction

The great advantage of GAMLSS is its ability to fit a variety of different distributions to a
response variable so that an appropriate distribution can be chosen among different alternatives.
This chapter focuses on how the gamlss package can be used to fit continuous distributions to
a simple random sample of observations of a response variable Y. We shall also take the
opportunity to introduce the different continuous distributions available in the package. We are
assuming that the “continuous” response variable Y comes from a population distribution which
can be modelled by a theoretical probability density function fy (y|@), where the parameter
vector @ can be up to four dimensions, i.e. 8" = (u,0,v,7), i.e. Y|(0) ~ fy(y|(8). Our task
is to find the appropriate distribution fy (y|@) and estimate the parameters . The case where
the distribution of Y depends on an explanatory variable X, i.e. Y|[(0,X = z) ~ fy(y|(0, ) is
examined in the Chapter 5.

4.1.1 Types of distribution in GAMLSS

In the GAMLSS model in Section (2.6), the population probability (density) function fy (y|0),
where 8 = (u, o, v, T), is deliberately left general with no explicit conditional distribution spec-
ified for the response variable Y. The only restriction that the R implementation of GAMLSS,
Stasinopoulos et al. (2008), has for specifying the distribution of Y is that the function fy-(y|0)
and its first (and optionally expected second and cross) derivatives with respect to each of
the parameters of & must be computable. Explicit derivatives are preferable, but numerical
derivatives can be used (resulting in reduced computational speed).

Fitting a parametric distribution within the GAMLSS family can be achieved using the com-
mand gamlss(y ~ 1, family ="" ) where the argument family can take any gamlss.family
distribution. The type of distribution of course depends on the type of response variable. There
are three distinct types of distribution in GAMLSS:

1. continuous distributions,

2. discrete distributions,

95
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Table 4.1: Continuous GAMLSS family distributions defined on (—oo, +00)

Distributions family no parameters skewness kurtosis
Exponential Gaussian exGAUS 3 positive -
Exponential Generalized beta type 2 EGB2 4 both lepto
Generalized ¢ GT 4 (symmetric) | lepto
Gumbel GU 2 (negative) -
Johnson’s SU JSU 4 both lepto
Johnson’s original SU JSUo 4 both lepto
Logistic LO 2 (symmetric) | (lepto)
Normal-Exponetial-t NET 2 4+ (2 fixed) | (symmetric) lepto
Normal NO-NO2 2 (symmetric)

Normal Family NOF 3 (symmetric) | (meso)
Power Exponential PE-PE2 3 (symmetric) both
Reverse Gumbel RG 2 positive -
Sinh Arcsinh SHASH 4 both both
Skew Exponential Power (type 1 to 4) | SEP1-SEP4 4 both both
Skew t (type 1 to 5) ST1-ST5 4 both lepto
t Family TF 3 (symmetric) | lepto

3. mixed distributions.

Continuous distributions, fy(y|@), are usually defined on (—oo,+00), (0,+00) or (0,1),
but can take other support ranges. Discrete distributions P(Y = y|@) are usually defined on
y=0,1,2,...,n, where n is a known finite value or n is infinite, i.e. usually discrete (count)
values.

Mixed distributions are a special case of finite mixture distributions described in Chapter 8
and are mixtures of continuous and discrete distributions, i.e. continuous distributions where
the range of Y has been expanded to include some discrete values with non-zero probabilities.

In this Chapter we will look at the continuous distributions. In Chapter 6 we will discuss
the discrete distributions. Chapter 8 will deal with the general case of finite mixtures.

4.1.2 Types of continuous distributions

Continuous distributions can be symmetric, negatively or positively skewed, and also mesokur-
tic, leptokurtic or platykurtic. Figure 4.1 shows i) a negatively skew, ii) a positively skew, iii)
a platykurtic and iv) a leptokurtic distribution. Note that leptokurtic and platykurtic distribu-
tions are judged by comparison to the normal distribution which is mesokurtic. A leptokurtic
distribution has thicker (fatter) tails than the normal distribution while a platykurtic distri-
bution has thinner (or shorter) tails than the normal.

Table 4.1 provides a list of the continuous gamlss.family distributions defined on support
range (—oo,+00) available in the current version of GAMLSS software, while Tables 4.2 and
4.3 provide a list of distributions defined on (0, 4+00) and (0, 1) respectively. Note that "both’ in
the skewness column of Tables 4.1, 4.2 and 4.3 indicates that the distribution can be negative
or positive skew, while 'both’ in the kurtosis column indicates that the distribution can be
platykurtic or leptokurtic. A brackets indicates that the skewness or kurtosis cannot be modelled
independently of the location and scale parameters.
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Figure 4.1: Showing different types of continuous distributions

Table 4.2: Continuous GAMLSS family distributions defined on (0, 400)

Distributions family no parameters | skewness | kurtosis
Box-Cox Cole and Green BCCG 3 both -
Box-Cox Power Exponential | BCPE 4 both both
Box-Cox-t BCT 4 both lepto
Exponential EXP 1 (positive) -
Gamma GA 2 (positive) -
Generalized Beta type 2 GB2 4 both both
Generalized Gamma GG-GG2 3 positive -
Generalized Inverse Gaussian | GIG 3 positive -
Inverse Gaussian IG 2 (positive) -
Log Normal LOGNO 2 (positive) -
Log Normal family LNO 2 4+ (1 fixed) positive

Reverse Generalized Extreme | RGE 3 positive -
Weibull WEI-WEI3 2 (positive) -

o7
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Table 4.3: Continuous GAMLSS family distributions defined on (0, 1)

Distributions family | no parameters | skewness | kurtosis
Beta BE 2 (both) -
Beta original BEo 2 (both) -
Generalized beta type 1 | GB1 4 (both) (both)

Many of the distributions of Tables 4.1, 4.2 and 4.3 can be generated by one (or more) of
the methods described in Section 4.8.

4.2 Summary of methods generating distributions

Here we give a summary of the methods on how many of the distributions in Tables 4.1, 4.2 and
4.3 for the random variable Y can be generated. Distribution families for Y can be generated
by one (or more) of the following methods:

1. univariate transformation from a single random variable
2. transformation from two or more random variables

3. truncation distributions

4. a (continuous or finite) mixture of distributions

5. Azzalini type methods

6. splicing distributions

7. stopped sums

8. systems of distributions

These methods are discussed in detail in the Appendix of this chapter.
Here we look briefly at three of the methods and give examples.

4.2.1 Distributions generated by univariate transformation

Many three and four parameter families of continuous distribution for Y can be defined by
assuming that a transformed variable Z, obtained from Y, has a simple well known distri-
bution. The parameters of the distribution of Y may come from parameters of the univariate
transformation or from parameters of the distribution of Z or both.

A simple example of a distribution obtained by transformation is a lognormal distribution,
LOGNO(u, o). Let Y = exp(Z) where Z ~NO(, 0), then Y ~NLOGNO(y, o).

An example where the univariate transform introduces an extra parameter is a generalized
gamma, distribution, GG(u, o, v). Let Y = puZY" where Z ~GA(1,0v), then Y ~GG(p, 0, v).

Table 4.5 (in the Appendix) gives distributions generated by univariate transformation avail-
able in GAMLSS and shows how they can be generated.
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4.2.2 Azzalini type methods

Azzalini type methods have been used to introduce skewness into symmetric distribution family.
Let fz, () be a probability density function symmetric about z equals zero and let Fyz,(z) be
an absolutely continuous cumulative distribution function such that dFyz,(z)/dz is symmetric
about zero. Then if w(z) is any odd function of z, fy (y) is a proper probability density function
given by: Hence

Fr () = 2 12,20 P ()] (11)

where z = (y — p)/o, Azzalini and Capitanio (2003) Proposition 1.

Table 4.6 (in the Appendix) gives distributions generated by Azzalini type methods.

For example the skew exponential power type 1 family for —oo < Y < oo, Azzalini (1986),
denoted by SEP1(p,0,v,7), is defined by assuming Z; and Zs have power exponential type
2, PE2(O,7’1/T,T)7 distributions in (4.18). Figure 4.2 shows symmetric SEP1 distributions
(equivalent to power exponential distributions) obtained by setting v = 0. Figure 4.2 plots the
SEP1(u, o, v, ) distribution for mu =0, 0 = 1, v = 0 and 7 = .5,1,2,5,10,1000. Figure 4.3
shows skew SEP1(u, o, v, 7) distributions where mu = 0 and ¢ = 1. Figure 4.3(a) and (b) plot
the SEP1 distribution for v = 0,1,3,100 and 7 = .5 and 7 = 2 respectively. Note the when
7 = 2 the SEP1 becomes the skew normal type 1 distribution. Figure 4.3(c) and (d) plot the
SEP1 distribution for v =0, —.2, —.4, —.6, —.8, —1 and 7 = 10 and 7 = 1000 respectively.

4.2.3 Splicing distributions

Splicing has been used to introduce skewness into symmetric distribution family. Let Y; and
Y5 have probability density functions that are symmetric about u. A spliced distribution for Y’
may be defined by

2

Iy(y) = an Iy < p) +kfy, (W) Iy > p)}- (4.2)

where k = fy, (1)/ fv, (1) and I() is an indicator variable taking value 1 of the condition is true
and 0 otherwise.
Table 4.7 (in the Appendix) gives distributions generated by splicing two distributions.

4.3 Comparison of properties of continuous distributions

The choice of model distribution for a particular response variable Y is usually based on how
well it fits the data as judged by the fitted global deviance GDEV = —2log [, i.e. minus twice
the fitted log likelihood function, and tests and information criteria (e.g. AIC or SBC) based
on GDEV.

Where more than one distribution fits the data adequately the choice of distribution may be
made on other criteria, e.g. properties of the particular distribution. For example an explicit
formula for the mean, median or mode of Y may be desirable in a particular application.

The term explicit indicates that the particular function or measure can be obtained us-
ing standard functions (available in R), i.e. not requiring numerical integration or numerical
solution.

The following are properties of the distribution that may be relevant in choosing the model
distribution:
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1. Explicit probability density function, cumulative distribution function and inverse cumu-
lative distribution function

2. Explicit centiles and centile based measures of location, scale, skewness and kurtosis (e.g.
median and semi-interquartile range)

3. Explicit moment based measures of location, scale, skewness and kurtosis (e.g. mean,
standard deviation, skewness v/B; and kurtosis 32)

4. Explicit mode(s)

5. Continuity of the probability density function fy (y|u,o,v,7) and its derivatives with
respect to y

6. Continuity of the derivatives of the probability density function fy (y|u,o,v, ) with re-
spect to u, o, v and T

7. Flexibility in modelling skewness and kurtosis

Distributions generated by univariate transformation often satisfy all the desirable properties
above, except perhaps the flexibility in modelling skewness and kurtosis.

An important disadvantage of distributions generated by Azzalini type methods are that
their cumulative distribution function (cdf) is not explicitly available, but requires numerical
integration. Their inverse cdf requires a numerical search and many integrations. Consequently
both functions can be slow, particularly for large data sets. Centiles and centile based measures
(e.g. the median) are not explicitly available. Moment based measures are usually complicated,
if available. However they can be flexible in modelling skewness and kurtosis.

An important disadvantage of distributions generated by splicing is often a lack of continuity
of the first and/or second derivatives of the probability density function with respect to y and
w1 at the splicing point. However they can be flexible in modelling skewness and kurtosis.

4.4 Theoretical considerations for fitting parametric distri-
bution

The standard method of fitting a parametric family to a random sample of values of a single
response variable Y is the method of maximum likelihood. That is, maximizing the likelihood

of observing the sample of independent observations y = (y1, %2, -+, Yn),
L(0) = HfY(yi|0) (4.3)
i=1

with respect to the parameter(s) 6. This is the exact probability of observing the data y given
the parameters 8, provided the distribution of Y is discrete. If however the distribution of Y is
continuous, then in practice value y; is observed to a certain level of accuracy, say y; + A;. [For
example, if y; is rounded to the nearest first decimal palace then A; = 0.05 and, for example,
an observed value y; = 5.7 corresponds to 5.65 < y < 5.75.] Hence the true likelihood can be
defined as:

n

L(6) = [ [Fy (vi + Ail6) — Fy (y; — Ai]6)] (4.4)

i=1
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where Fy () is the cumulative distribution function of Y. The likelihood in (4.4) is bounded
above by one and so cannot go to infinity. Assume the A;’s are sufficiently small then

) ~ HfY(yi|0)A = HfY(yi|9)] (4.5)
i=1 i=1

Hence the log likelihood £(0) is given approximately by:

n

[

i=1

= log fy (4il6) + > log A, (4.6)
=1 =1

Clearly the second summation does not depend on 6 and hence when maximizing £(0) over 0
only the first term needs to be maximized. Occasionally this creates problems, (especially in
flexible models such as GAMLSS) where the fact that we ignored the accuracy with which the
response variable is measured can occasionally lead to the likelihood shooting up to infinity.
To demonstrate the point consider a single observation y from a normal distribution, i.e. Y ~
NO(u, o). The likelihood is maximized as p — y and o — 0 and the likelihood goes to co. The
problem is avoided by taking account of the measurement accuracy by using (4.4) instead of
(4.5).

Within GAMLSS we have adopted the definition of the likelihood given in (4.3). Models
can be maximized using (4.4) with the help of the package gamlss.cens which is designed for
censored or interval response variables. In this case one can think of the response variable
having the form

e (—00,y;2) if the response is left censored
o (y;1,+00) if the response is right censored
e (Yi1,yi2) if the response lies within an interval

In all three cases the likelihood takes the form

)= 117 (v210) = Fy (4 0)] (4.7)

In practice it is more convenient to work with the log likelihood log L(0) = £(0), or —2¢(0) a
quantity we call the Global Deviance (or GD) for abbreviation. Assuming that the population
distribution of Y is fy (y|@) for some value of 8, then provided regularity conditions hold, using
well known asymptotic results, we have that the expected value of the maximum likelihood
estimator  is @ and it asymptotic variance is Var(8) = Ip() where I(0) is the (Fisher’ s)
expected information I5(8) = E[d?(/067], evaluated at the maximum likelihood estimator 6.
The expected information can be substituted with the observed information matrix I() =
H _1(9) where H is the Hessian matrix, that is, the second derivative of the log likelihood,
H = d?0/d06” , evaluated at the maximum likelihood estimator 0.

In order to test whether a specific predictor parameter is different from zero, a (generalized
likelihood ratio) Chi-squared test is used, comparing the deviance change A when the parameter
is set to zero with a X%,o.os critical value. Confidence intervals for individual parameters 6 can
be constructed in several ways:
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e the usual symmetric way using the standard errors obtained from the observed or expected
information matrix.

e using the profile likelihood.

e using bootstrap

An alternative more flexible way of estimating the probability density function of a con-
tinuous response variable Y (particularly in the absence of explanatory variables) is using non
parametric density function estimation, as described for example in Silverman (1986) or Wand
and Jones (1995), This is a well established technique and in certain cases could be a preferable
method of density function estimation. Nonparametric density function estimation has its own
problems, notably the need to estimate the smoothing parameter and the inability to cope with
discrete data. Here we concentrate on fitting parametric distributions to the data. Our ap-
proach is to fit different parametric distributions and choose between them using a generalized
Akaike information criterion, (GAIC). For continuous data, nonparametric density estimation
could be useful tool in helping us with this choice of the parametric distribution.

4.5 How to fit distributions in R

4.5.1 The function distHist()

The specifically designed function histDist () will fit a gamlss.family distribution and auto-
matically produce a graphical representation of the data and the fitted distribution. Section 4.6
shows how to use histDist () to fit a distribution to a continuous variable. Section 6.3 shows
the same for discrete variables.

To fit a particular distribution to a random sample y from a random variable Y, and plot the
fitted distribution, use the function histDist(). The function histDist () has the following
arguments:

e i) y: the vector containing the values of the Y variable
e ii) family: appropriate GAMLSS family distribution

e iii) freq: the observed frequencies corresponding to the values in y (usually appropriate
for a discrete response variable)

e iv) xmin and xmax : for minimum and maximum values in the x-axis
e v) g.control: for passing gamlss.control parameters into the fitting of the distribution

e vi) density: whether to plot a nonparametric density plot, together with the parametric
fitted distribution (only for continuous distributions).

In the next subsections we will use examples to demonstrate the use of the function histDist ().
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4.6 Examples of fitting continuous distributions to data

4.6.1 The Parzen data

Data summary:

R data file: parzen in package gamlss.data of dimensions 63 x 1
source: Hand et al. (1994)

variables

snowfall : the annual snowfall in Buffalo, NY (inches) for the 63 years, from 1910 to
1972 inclusive.

purpose: to demonstrate the fitting of continuous distribution to a single variable.

conclusion: normal assumption seems adequate

Fitting and display the model

The first data set is the snowfall data used by Parzen (1979) and also contained in Hand et
al. (1994), data set 278. The data give the annual snowfall (inches) in Buffalo, NY for the 63
years, from 1910 to 1972 inclusive.

sokkkkkkkkk  GAMLSS Version 1.9-0 sskskokskskokkskx
For more on GAMLSS look at http://www.gamlss.com/
Type gamlssNews() to see new features/changes/bug fixes.

> data(parzen)
> names (parzen)

[1] "snowfall"

Here we fit the data to a normal (NO), gamma (GA), power exponential (PE) and a Box-Cox
power exponential (BCPE) distribution. A comparison of normal with gamma explores whether
there is positive skewness in the data. A comparison of normal with power exponential explores
the possibility of kurtosis, while the BCPE will show whether both skewness and kurtosis are
exhibited in the data. The GAIC will help us with the choice between the different distributions.

ymax = 0.017)

mBCPE <- histDist(parzen$snowfall, "BCPE", density = TRUE, main = "(d)",
ymax = 0.017)

par (op)

> op <- par(mfrow = c(2, 2))

> mNO <- histDist(parzen$snowfall, "NO", density = TRUE, main = "(a)",
+ ymax = 0.017)

> mGA <- histDist(parzen$snowfall, "GA", density = TRUE, main = "(b)",
+ ymax = 0.017)

> mPE <- histDist(parzen$snowfall, "PE", density = TRUE, main = "(c)",
+

>

+

>
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Figure 4.4: Parzen’s snowfall data with a kernel density estimate (blue) and fitted (a) normal,
(b) gamma, (c) power exponential, and (d) BCPE distributions respectively (red).
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Note that the option density=TRUE requests a non-parametric kernel density estimate to be
included in the plot.

> GAIC(mNO, mGA, mPE, mBCPE)

df AIC
mNO 2 580.7331
mPE 3 581.3780
mBCPE 4 583.2114
mGA 2 583.8153

The default penalty for the GAIC() function is k=2 the Akaike information criterion. (Note
that we could have used the equivalent function AIC()). The AIC criterion shows that the
normal distribution fits the data adequately. Figure 4.4 shows the four different distributions
fitted.

Checking the model

Testing the adequacy of the normal model (or any other model) using the Kolmogorov-Smirnov
goodness of fit test, as provided by the R function ks.test (), is not advisable here since we
have to estimate the distributional parameters p and o so the test is invalid. A check of the
(normalized quantile) residuals would provide a way of investigating the adequacy of the fit.
The true (normalized quantile) residuals are defined as r; = ®~!(u;) where ®~! is the inverse
cumulative distribution function of a standard normal variate and w; = Fy (y;|ui, 04, vi, 7). The
true (normalized quantile) residuals are independent standard normal variables. We expect
the fitted (normalized quantile) residuals #; to behave approximately as normally distributed
variables (even though the original observations Y; are not necessarily normal), so a normal
Q-Q plot of the residuals is appropriate here. The gamlss package provides the functions i)
plot () and ii) wp() for plotting QQ-plots. Figure 4.5 shows the results of using plot (mNO)
while Figure 4.6 shows the result of using wp(mNO). Both the QQ-plot, (in the right bottom
corner of Figure 4.5 and the worm plot in Figure 4.6 indicate that there is no reason to worry
about the inadequacy of the fit. Note that a worm plot is a detrended Q-Q plot (i.e. where the
line in a Q-Q plot has been transformed horizontally). Note also that not all the plots in Figure
4.5 are useful as they will be in a regression type situation.

The function Q.stats() calculates and prints Q statistics which are useful to test the nor-
mality of the (normalized quantile) residuals usually in a situation where a explanatory variable
exits, Royston and Wright (2000).

Testing hypotheses from the fitted model

There are several methods to check the reliability of the fitted parameters of the distribution.
Standard errors for the fitted parameters are provided by two functions: i) the summary () and ii)
by the vcov () function. In general the two values should be identical, since by default summary
is the standard errors obtained by vcov. The standard errors obtained by vcov() are the ones
obtained by inverting the full observed information matrix and they do take into account the
correlations between the distribution parameter estimates. Note that the vcov() function refits
the final model one more time in order to obtain the Hessian matrix. Occasionally this could fail
in which case summary () will use an alternative method called qr. This alternative method uses
the QR decomposition of the individual distribution parameter estimation fits. The standard
errors given by the gr method of summary () are not very reliable since they are the (conditional)
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standard errors obtained by assuming that the other distribution parameters are fixed at their
maximum (penalized) likelihood estimates. We refit the chosen final model so we can use the
vcov () function.

> modNO <- gamlss(snowfall ~ 1, data = parzen)

GAMLSS-RS iteration 1: Global Deviance
GAMLSS-RS iteration 2: Global Deviance

576.7331
576.7331

> summary (modNO)

stk sk sk o ok ok sk sk R ok ok o sk sk sk ko ok s sk sk ok ok o sk sk sk ko sk sk sk o ko sk sk sk ok sk sk sk ok ok ok sk ok
Family: c("NO", "Normal")

Call: gamlss(formula = snowfall ~ 1, data = parzen)

Fitting method: RSQ

Mu link function: identity

Mu Coefficients:
Estimate Std. Error t value Pr(>ltl|)
8.030e+01 2.965e+00 2.709e+01 1.052e-35

Sigma link function: 1log
Sigma Coefficients:

Estimate Std. Error t value Pr(>[tl)
3.158e+00  8.922e-02  3.540e+01  2.24be-42

No. of observations in the fit: 63
Degrees of Freedom for the fit: 2
Residual Deg. of Freedom: 61

at cycle: 2

Global Deviance: 576.7331
AIC: 580.7331
SBC: 585.0194

KKK KoK KKK oK Kok KK oK K ok oK oK oK ok K ok oK oK oK ok oK ok oK oK o ok K ok ok oK oK ok oK ok ok oK ok Kok ok ok
> vcov(modNO, type = "se")

(Intercept) (Intercept)
2.9645994  0.0892178

The fitted model is given by Y; ~ NO(ji, &) where i = Bor = 80.3 and log(6) = Boz = 3.158,
so & = 23.52. Note that i and ¢ are maximum likelihood estimates of p and o.

The standard errors obtained are 2.965 for i and 0.08922 for log(6) = 302 respectively, using
either the summary () or vcov() functions. Note that since the normal fitting function NO(Q) uses
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the identity link for p and the log link for ¢ the standard errors given are those for i and for
log(5) = Bos. For example, an approximate 95% confidence interval (CT) for log(c) = Boe, using
the vecov() results, will be [3.158 — (1.96 % 0.08922), 3.158 + (1.96 = 0.08922)] = (2.983, 3.333).
Hence an approximate 95% CI confidence interval for o is given by [exp(2.983), exp(3.333)] =
(19.75,28.02). This can be compared with a profile deviance interval (19.96, 28.32) obtained us-
ing the prof.dev(modNO, "sigma", min=19, max=28.5, step=.1, type="1" ) function in
Figure 4.8 or to a bootstrap CI given by [exp(3.021), exp(3.33)] = (20.51,27.93) obtained using
the following R script.

Profile Global Deviance

579 580 581 582 583
| | | | |

578
|

577
|

T T — T —
20 22 24 26 28

Grid of the sigma parameter

Figure 4.7: The profile deviance for the ¢ parameter for model modNO

Note that the function boot is given in Venables and Ripley (2000) page 173.

> library(boot)

> set.seed(1453)

> modNO <- gamlss(snowfall ~ 1, data = parzen, control = gamlss.control(trace = F))
> funB <- function(data, i) {

+ d <- data.frame(snowfall = datali, ])

+ coef (update (modNO, data = d), "sigma")

+ }

> (modNO.boot <- boot(parzen, funB, R = 199))
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ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = parzen, statistic = funB, R = 199)

Bootstrap Statistics :
original bias std. error
t1* 3.158309 -0.01715738 0.07906377

> plot(modNO.boot)
> boot.ci(modNO.boot, type = c("norm", "basic"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 199 bootstrap replicates

CALL :
boot.ci(boot.out = modNO.boot, type = c("norm", "basic"))

Intervals :

Level Normal Basic

95% ( 3.021, 3.330) ( 3.011, 3.332)
Calculations and Intervals on Original Scale
Some basic intervals may be unstable

4.6.2 The strengths of glass fibres data

Data summary:
R data file: glass in package gamlss.dist of dimensions 63 x 1
sourse: Smith and Naylor (1987)
variables
strength : the strength of glass fibres (the unit of measurement is not given).
purpose: to demonstrate the fitting of a parametric distribution to the data.

conclusion a SEP4 distribution fits adequately

The following data show the strength of glass fibres, measured at the National Physical
Laboratory, England, see Smith and Naylor (1987), (the unit of measurement was not given in
the paper). Here we fit different distribution to the data and we select the "best” model using
first the Akaike information criterion, then the Schwartz Bayesian criterion.

Note the use of the gen.trun() function in the package gamlss.tr designed to create a
truncated distribution from an existing gamlss.family distribution. Here we generated a posi-
tive ¢ distribution called TFtr and we fit it to the data together with the rest of the distributions.
To obtain a positive ¢ distribution we use the command gen.trun() with par=0 to truncate it
at zero with left truncation by default:
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> data(glass)

> library(gamlss.dist)

> library(gamlss.tr)

> gen.trun(par = 0, family = TF)

A truncated family of distributions from TF has been generated
and saved under the names:

dTFtr pTFtr qTFtr rTFtr TFtr
The type of truncation is left and the truncation parameter is 0

Next we fit the normal, truncated t, Box-Cox t (BCT), Box-Cox power exponential (BCPE),
Box-Cox Cole and Green (BCCG), generalized gamma (GG), Skew exponential power type
1,2,3.4 (SEP1 to SEP4), skew ¢ type 1,2,3,4,5 (ST1 to ST5) and Jonhson’s SU (JSU) distribu-
tions to the data:

mno <- gamlss(strength ~ 1, data = glass, trace = FALSE)

mtftr <- gamlss(strength ~ 1, family = TFtr, data = glass, trace = FALSE)

mbct <- gamlss(strength ~ 1, family = BCT, data = glass, trace = FALSE)

mbcpe <- gamlss(strength ~ 1, family = BCPE, data = glass, trace = FALSE)

mbccg <- gamlss(strength ~ 1, family = BCCG, data = glass, trace = FALSE)

mGG <- gamlss(strength ~ 1, family = GG, data = glass, trace = FALSE)

msepl <- gamlss(strength ~ 1, family = SEP1, data = glass, trace = FALSE)

msep2 <- gamlss(strength ~ 1, family = SEP2, data = glass, trace = FALSE)

msep3 <- gamlss(strength ~ 1, family = SEP3, data = glass, trace = FALSE,
method = mixed(10, 40))

msep4 <- gamlss(strength ~ 1, family
method = mixed (20, 50))

mstl <- gamlss(strength ~ 1, family = ST1, data = glass, trace = FALSE)

mst2 <- gamlss(strength ~ 1, family = ST2, data = glass, trace = FALSE,
method = mixed(10, 40))

mst3 <- gamlss(strength ~ 1, family
method = mixed (10, 40))

mst4 <- gamlss(strength ~ 1, family

mst5 <- gamlss(strength ~ 1, family

mjsu <- gamlss(strength ~ 1, family

SEP4, data = glass, trace = FALSE,

ST3, data = glass, trace = FALSE,

ST4, data = glass, trace = FALSE)
ST5, data = glass, trace = FALSE)
JSU, data = glass, trace = FALSE)

VVV+V+VV+V +VVVIVYVIVYVVVYV

Now we compare the distribution models using the Akaike information criterio, AIC, (given
by the default penalty argument k¥ = 3 in the generalized AIC function GAIC()).

> GAIC(mno, mtftr, mbct, mbcpe, mbccg, mGG, msepl, msep2, msep3,

+ msep4, mstl, mst2, mst3, mst4, mst5, mjsu)
df AIC

msep4 4 27.81106

msep3 4 28.05412

msep2 4 28.85255

msepl 4 28.87961

mjsu 4 30.41705

mbcpe 4 31.17762

mst2 4 31.40287
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mbct 4 31.47897
mst3 4 31.58503
mstl 4 31.86362
msts 4 31.86512
mbccg 3 33.07760
mst4 4 33.69735
mtftr 3 35.22183
mno 2 39.82364
mGG 3 50.60666

Next we compate the distribution models the Schwatz Baysian criterion (given by penalty
k =log(n) where n = 63 in the GAIC() function).

> GAIC(mno, mtftr, mbct, mbcpe, mbccg, mGG, msepl, msep2, msep3,

+ msep4, mstl, mst2, mst3, mst4, mst5, mjsu, k = log(63))
daf AIC
msep4 4 36.38360
msep3 4 36.62665
msep2 4 37.42509
msepl 4 37.45215
mjsu 4 38.98959
mbccg 3 39.50701
mbcpe 4 39.75016
mst2 4 39.97541
mbct 4 40.05151
mst3 4 40.15757
mstl 4 40.43616
mst5 4 40.43766
mtftr 3 41.65123
mst4 4 42.26989
mno 2 44.10991
mGG 3 57.03607

The best model for the glass fibre strength according to both the Akaike and Schwartz
Bayesian information criteria is the SEP4 distribution. Our truncated ¢ distribution, TFtr, did
not fit well to this particular data set. The fitted SEP4 distribution together with the data is
shown in Figure 4.9 obtained using the command:

> histDist (glass$strength, SEP4, nbins = 13, main = "SEP4 distribution",
+ method = mixed(20, 50), trace = FALSE)

Family: c("SEP4", "skew exponential power type 4")
Fitting method: mixed(20, 50)

Call: gamlss(formula =y ~ 1, family = FA, method = ..1, trace = FALSE)
Mu Coefficients:

(Intercept)
1.5681
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Sigma Coefficients:
(Intercept)
-1.437
Nu Coefficients:
(Intercept)
-0.1280
Tau Coefficients:
(Intercept)
0.3183

Degrees of Freedom for the fit: 4 Residual Deg. of Freedom 59
Global Deviance: 19.8111

AIC: 27.8111

SBC: 36.3836

> histDist(glass$strength, SEP4, nbins = 13, main = "SEP4 distribution"”,
+ method = mixed (20, 50))

SEPA4 distribution

f0

00 05 10 15 20 25

0.5 1.0 15 2.0 2.5

glass$strength

Figure 4.9: The strengths of glass fibres data and the fitted SEP4 distribution model

The fitted distribution has a spike at its mode. Distributions which involve the power
exponential distribution, (eg. all the SEP’s), with values of the kurtosis parameter(s) less or equal
to 1 often have discontinuity in the gradient, leading to a spike at the mode. This often results
in a multimodal likelihood function (with respect to u, and leads to inferential problem. In the
SEP4 distribution the parameters v and 7 adjust the kurtosis at the left and right side of the
distribution respectively. The estimates of those two parameters are 7 = exp(—0.1280) = 0.880
and 7 = exp(0.3183) = 1.375 respectively, indicating possible problems with the inferential
procedures since v < 1. [Note we can extract the fitted coefficients using either of the functions
coef () and fitted(), e.g. coef (msep5, "nu") and fitted(msep4, "nu")[1]].)
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> summary (msep4)

KKK A KKK KK KKK KKK KKK K K KK SR KK KKK Kok o KKK kK KKKk K ok K
Family: c("SEP4", "skew exponential power type 4")

Call:
gamlss(formula
50), trace

strength ~ 1, family = SEP4, data = glass, method = mixed(20,
FALSE)

Fitting method: mixed(20, 50)

Mu link function: identity
Mu Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) 1.581 0.01818 86.97 1.656e-66

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|tl])
(Intercept) -1.437 0.1371  -10.48 2.323e-15

Nu link function: Ilog
Nu Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) -0.1280 0.1078 -1.187 0.2396

Tau link function: log
Tau Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 0.3183 0.1422 2.239 0.02876

No. of observations in the fit: 63
Degrees of Freedom for the fit: 4
Residual Deg. of Freedom: 59

at cycle: 20

Global Deviance: 19.81106
AIC: 27.81106
SBC: 36.3836

>k 3k 3k 5k >k >k >k 5k 5k 5k >k >k 5k 3k 5k 5k >k >k >k 5k >k 5k >k >k >k >k 5k 5k 3k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k > >k %k >k >k >k %k

Using the function summary() we are getting the warning “vcov has failed, option qr
is used instead”. This is because the function vcov which is the default option for obtaining
standard errors in summary() has failed, probably because of the peculiarity of the likelihood



4.6. EXAMPLES OF FITTING CONTINUOUS DISTRIBUTIONS TO DATA 7

function at the point of the (possibly local) maximum, a consequence of a kurtotic parameters
being less than one. The standard errors given, obtained from the individual fits by assuming
that he rest of the parameters are fixed at their point of maximum, should be treated with
caution.

A worm plot of the residuals of the fitted model in Figure 4.10 shows that all the points are
close to the horizontal line indicating that the SEP4 distribution provides an appropriate fit to
the data.

> wp (msep4)

Deviation

Unit normal quantile

Figure 4.10: A worm plot of the resisuals for the model using the SEP4 distribution fitted to
the strengths of glass fibres data.

4.6.3 The tensile strength data: response on (0, 1)

Data summary:
R data file: tensile in package gamlss.data of dimensions 30 x 1
source: Hand et al. (1994)
variables
str : the strength of polyester fibres (the unit of measurement are not given).
purpose: to demonstrate the fitting of a parametric distribution to the data.

conclusion a truncated lognormal distribution fit best

These data come from Quesenberry and Hales (1980) and were also reproduced in Hand et al.
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(1994), data set 180, page 140. They contain measurements of tensile strength of polyester fibres
and the authors were trying to check if they were consistent with the lognormal distribution.
According to Hand et al. (1994) "these data follow from a preliminary transformation. If the
lognormal hypothesis is correct, these data should have been uniformly distributed”. Here we
are use them as an example of data from a variable restricted to the range (0,1) and try to fit
appropriate distributions. Note that apart from the beta (BE), a two parameter distribution, and
the generalized beta type 1, (GB1), a four parameter distribution, there are no other distributions
in the current version of GAMLSS software which are restricted to the range 0 to 1. So we create
some using the gen.trun() function of the gamlss.tr package. The distributions we create
are lognormal and Gamma distributions right truncated at one, and a t distribution truncated
outside the range 0 to 1. First we fit the distributions and then we select the "best” using an
Akaike information criterion.

> data(tensile)
> gen.trun(par = 1, family = "GA", type = "right")

A truncated family of distributions from GA has been generated
and saved under the names:

dGAtr pGAtr qGAtr rGAtr GAtr

The type of truncation is right and the truncation parameter is 1

> gen.trun(par = 1, "LOGNO", type = "right")

A truncated family of distributions from LOGNO has been generated
and saved under the names:

dLOGNOtr pLOGNOtr qLOGNOtr rLOGNOtr LOGNOtr

The type of truncation is right and the truncation parameter is 1

> gen.trun(par = c(0, 1), "TF", type = "both")

A truncated family of distributions from TF has been generated
and saved under the names:

dTFtr pTFtr qTFtr rTFtr TFtr

The type of truncation is both and the truncation parameter is 0 1

> mbe <- gamlss(str ~ 1, data = temnsile, family = BE, trace = FALSE)

> mgbl <- gamlss(str ~ 1, data = tensile, family = GB1, method = mixed(10,

+ 100), trace = FALSE)

> mgatr <- gamlss(str ~ 1, data = tensile, family = GAtr, trace = FALSE)

> mlnotr <- gamlss(str ~ 1, data = tensile, family = LOGNOtr, trace = FALSE)
> mtftr <- gamlss(str ~ 1, data = tensile, family = TFtr, trace = FALSE)

> GAIC(mbe, mgbl, mgatr, mlnotr, mtftr)

df AIC
mlnotr 2 -3.6714336
mgatr 2 -2.9742870
mbe 2 -2.6101273
mtftr 3 -0.6384319

mgbl 4 0.2258434

The truncated lognormal distribution gives the best fit according to the Akaike information
criterion although the beta and the truncate gamma fit almost as well. Figure 4.11 shows the
fitted distributions. The plots in the figure were created using the histDist () function i.e.
histDist(tensile$str, "LOGNOtr" , nbins=10, xlim=c(0,1), main="(a) LOGNOtr").
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Figure 4.11: Tensile strength data with fitted (a) truncated lognormal , (b) beta, (¢) truncated
gamma and (d) truncated t (e) generalized beta type 1) distributions.
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4.7 Bibliography

4.8 Appendix of Chapter 4: Methods of generating dis-
tributions

Here we examine how many of the distributions in Tables 4.1, 4.2 and 4.3 for the random
variable Y can be generated. Distribution families for Y can be generated by one (or more) of
the following methods:

1. univariate transformation from a single random variable
transformation from two or more random variables
truncation distributions

a (continuous or finite) mixture of distributions
Azzalini type methods

splicing distributions

N o e N

stopped sums
8. systems of distributions

There methods are discussed next in Sections 4.8.1 to 4.8.8 respectively.

4.8.1 Distributions generated by univariate transformation

Many three and four parameter families of continuous distribution for Y can be defined by as-
suming that a transformed variable Z, obtained from Y, has a simple well known distribution.
The parameters of the distribution of Y may come from parameters of the univariate transfor-
mation or from parameters of the distribution of Z or both. Below we consider distributions
available in GAMLSS which can be obtained by a univariate transformation.

Box-Cox, Cole and Green (BCCGQG)

The Box-Cox Cole and Green family for Y > 0 used by Cole and Green (1992), denoted by
BCCG(u, o, v), assumes that Z has a standard normal distribution, NO(0, 1), with mean 0 and
standard deviation 1, where

T
%log(%), it v=0.

(4.8)

Cole and Green (1992) were the first to model all three parameters of a distribution as nonpara-
metric smooth functions of a single explanatory variable. Note that the parameterization above
is different from and more orthogonal than the one used originally by Box and Cox (1964).
Rigby and Stasinopoulos (2000) and Stasinopoulos et al. (2000) used the original parameteriza-
tion, Z = (Y" —1)/v (if v # 0) + log (V) (if v = 0) where Z ~ NO(, ), to model the mean
and the variance o2 of Z as functions of explanatory variables for a constant v. They obtained
the maximum likelihood estimate of the power parameter v from its profile likelihood. This
model for Y > 0 is denoted by LNO{u, o, v} where v is fixed by the user in the GAMLSS
software.
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Distributions of Y | Random variable Z | Transformation to Z | References

BCCG NO(0,1) (4.8) Cole and Green (1992)

BCPE PE(0,1,7) (4.8) Rigby and Stasinopoulos (2004)
BCT TF(0,1,7) (4.8) Rigby and Stasinopoulos (2006)
EGB2 F(2v,27) (4.9) Johnson et al. (1995) p.142
GB1 BE(u,0) (4.10) McDonald and Xu (1995)

GB2 F(2v,27) (t/v) (Y/u)” McDonald and Xu (1995)

GG GA(1,0v) (Y/u)» Lopatatazidis and Green (2000)
JSUo NO(0,1) (10.15) Johnson (1949)

JSU NO(0,1) (10.15) Rigby and Stasinopoulos (2006)
PE GA(1,v1/?) v YC;” ' Nelson (1991)

SHASH NO(0,1) (4.13) Jones (2005)

ST3 BEo(«, ) (4.14) Jones and Faddy (2003)

Table 4.4: Showing distributions generated by univariate transformation

Box-Cox Power Exponential (BCPE)

The Boz-Coz power exponential family for Y > 0, denoted by BCPE(u, o, v, 7), is defined by as-
suming Z given by (4.8) has a (truncated) standard Power Exponential distribution, PE(0, 1, 7),
see Rigby and Stasinopoulos (2004). This distribution is useful for modelling (positive or neg-
ative) skewness combined with (lepto or platy) kurtosis in continuous data.

Box-Cox t (BCT)

The Boz-Coz t family for Y > 0, denoted by BCT(u, o, v, 7), is defined by assuming Z given by
(4.8) has a (truncated) standard ¢ distribution with 7 degrees of freedom, i.e. TF(0,1,7), see
Rigby and Stasinopoulos (2006).

Exponential generalized beta type 2 (EGB2)

The exponential generalized beta type 2 family for —co < Y < oo, denoted by EGB2(u, o, v, 7),
assumes that exp(Y’) has a generalized beta type 2 distribution. This distribution was called
the exponential generalized beta of the second kind by McDonald (1991) and was investigated
by McDonald and Xu (1995). The distribution may also be defined by assuming the Z has an
F distribution with degrees of freedom 2v and 27, i.e. Z ~ Fy, 2., where

Z=(r/v)exp[(Y = p)/o],

Johnson et al. (1995) p142. The distribution has also been called a generalized logistic distri-
bution type IV, see Johnson et al. (1995) p 142, who report its long history from Perks (1932).
Note also that R = exp [(Y — p)/0] has a beta distribution of the second kind BE2(v, 7), John-
son et al. (1995) p248 and p325 and B = R/(1+ R) has an original beta BEo(v, 7) distribution.

(4.9)

Generalized Beta type 1 (GB1)

The generalized beta type 1 family for 0 < Y < 1, denoted by GB1(y, o, v, 7), is defined by
assuming Z has a beta, BE(u, o), distribution where
YT

Z=—"—
v+(1—-v)Y"

(4.10)
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where 0 < u < 1,0< o0 <1, v >0and 7 > 0. Note that GB1 always has range 0 < y < 1
and so is different from the generalized beta of the first kind, McDonald and Xu (1995), whose
range depends on the parameters.

Note that for 0 < v < 1 only, GB1(u,0,v,7) is a reparameterization of the submodel
with range 0 < Y < 1 of the five parameter generalized beta, GB(a, b, ¢, p,q) distribution of
McDonald and Xu (1995) given by

GB1(u,0,v,7) = GB (T,lll/T, 1—v,p (072 — 1) ,(1—p) (072 - 1)) )

Note also that 7 = 1 in GB1(y, o, v, T7) gives a reparametrization of the generalized 3 param-
eter beta distribution, G3B(ay, az, A), distribution, Pham-Gia and Duong (1989) and Johnson

et al. (1995) p251, given by G3B(a, a2, A) = GB1 (Ocl/ (a1 +a2), (o1 + g — 1)71/2 S/, 1).
Hence G3B(aq, e, A) is a reparameterized submodel of GB1(y, o, v, 7).

Generalized Beta type 2 (GB2)

The generalized beta type 2 family for Y > 0, McDonald (1996), denoted by GB2(u, o, v, 1), is
defined by assuming Z has an F' distribution with degrees of freedom 2v and 27, i.e. Z ~ Fy, o7,
where Z = (1/v) (Y/pn)?.

The distribution is also called the generalized beta distribution of the second kind. Note also
that R = (Y/u)? has a beta distribution of the second kind, BE2(v, 7), Johnson et al. (1995)
p248 and p325 and B = R/(1 + R) has an original beta, BEo(v, 7), distribution.

Generalized Gamma (GG, GG2)

The generalized gamma family for Y > 0, parameterized by Lopatatzidis and Green (2000),
denoted by GG(u, 0, ), assumes that Z has a gamma GA(1, ov) distribution with mean 1 and
variance o2v?, where Z = (Y/p)”. A reparametrization of GG(u,0,v), Johnson et al. (1995)

pd01, given by setting y = apad/™, o = (04%03)_1/2 and v = a1, is denoted GG2(ay, az, a3).

Johnson Su (JSUo, JSU)

The original Johnson Su family for —oco <Y < 0o, denoted by JSUo(u, o, v, 7), Johnson (1949),
is defined by assuming

Z =v+4rsinh (Y — p)/o] (4.11)

has a standard normal distribution. The reparameterized Johnson Su family, for —co <Y < oo,
denoted by JSU(u, o, v, 7), has exact mean p and standard deviation o for all values of v and
T, see Appendix 10.3.3 for details.

Power Exponential (PE, PE2)

The power exponential family for —oo < Y < oo, denoted by PE(u, o,v) is defined by

v

MO = s exp{—’y;“‘y} (4.12)

where ¢ = [F(l/u)/F(3/1/)]1/2, and —oo < < 00,0 >0 and v > 0.
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This parameterization, used by Nelson (1991), ensures that pu and o are the mean and
Y—np v

co
has a gamma GA(1,'/?) distribution. A reparametrization of PE(u, o, v) used by Nandi and
Méampel (1995), denoted by PE2(«, ag, as), is given by setting p = a1, 0 = ag/c and v = as.

The Subbotin distribution, Subbotin (1923) and Johnson et al. (1995), p195, which uses
as parameters (0, ¢,0) is also a reparametrization of PE2(«ay, as, a3) given by setting oy = 6,
ay = ¢2%/2 and a3 = 2/§. Box and Tiao (1973) p 157 equations (3.2.3) and (2.2.5) are
respectively reparameterizations of the Subbotin parameterization and (4.12) in which § = 1403
and v = 2/(1 + ). The distribution is also called the exponential power distribution or the
Box-Tiao distribution.

standard deviation of Y respectively for all v > 0. This distribution assumes that Z = v

Sinh-Arcsinh (SHASH)

The sinh-arcsinh family for —oo < Y < oo, Jones (2005) , denoted by SHASH(u,o,v, 1), is
defined by assuming that Z has a standard normal distribution NO(0, 1), where

Z = % {exp [rsinh ™" (R)] — exp [~vsinh " (R)] } (4.13)
where R= (Y — p)/o.

Skew t type 5 (ST5)

The skew t type 5 family for —oo <Y < oo, Jones and Faddy (2003), denoted by ST5(u, o, v, 7),
assumes that Z has a beta BEo(«, 3) distribution with fz(2) = 21 (1 — z)ﬁf1 /B(a, 3) where

7= % {1+R/(a+ﬂ+R2)1/ﬂ (4.14)

where R= (Y — p)/o, a =77 [1 +v(21 + 1/2)’1/2] and B =771 [1-v(2r + 1/2)71/2].

4.8.2 Distributions generated by transformation from two or more
random variables

Distributions can be generated from a function of two (or more) random variables.

Student ¢ family (TF)

The Student t family for —co < Y < oo (e.g. Lange et al., 1989), denoted by TF(u,o,v),
is defined by assuming that Y = p + o7 where T ~ t, has a standard ¢ distribution with v
degrees of freedom, defined itself by T = Z(W/v)~'/? where Z ~ NO(0,1) and W ~ x2 =
GA(v, [2/ 1/]1/ 2)7 a Chi-square distribution with v degrees of freedom treated as a continuous
parameter, and where Z and W are independent random variables.

Skew t type 2 (ST2)

The skew ¢ type 2 family for —oco <Y < 0o, Azzalini and Capitanio (2003), denoted ST2(u, o, v, 7),
is defined by assuming that Y = p + o7 where T' = Z (W/T)71/2 and Z ~ SN(0,1,v) has a
skew normal type 1 distribution (see Section 4.8.5) and W ~ x2 = GA(r, [2/7]"/?) has a Chi-
square distribution with 7 > 0 degrees of freedom, and where Z and W are independent random
variables. Note that —oo < u < 00, 0 >0, —co < v < oo and 7 > 0.
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The distribution ST2(u, o, v, 7) is the one dimensional special case of the multivariate skew
t used in R package Sn, Azzalini (2006).

An important special case of a function of two independent random variables is their sum,
i.e. Y = Z; + Z5. The probability density function of Y is obtained by convolution, i.e.

Fe) = [ @ inly - 2z (4.15)

The following are two examples.

Exponential Gaussian (exGAUS)

If Zy ~ NO(u,0) and Z3 ~ EXP(v) in (4.15), then Y has an exponential Gaussian distribution,
denoted by exGAUS(u, 0,v), for —oco < Y < co. The distribution has been also called a lagged
normal distribution, Johnson et al. (1994), p 172.

Generalized Erlangian

As pointed out by Johnson et al. (1994), p 172, the convolution of two or more exponential
probability density functions with different mean parameters gives the generalized Erlangian
distribution, while the convolution of a normal, NO(u, o), with a generalized Erlangian prob-
ability density function gives a generalized lagged normal distribution, see Davis and Kutner
(1976).

4.8.3 Distributions generated by truncation

4.8.4 Distributions generated by a mixture of distributions

A distribution for Y can be generated by assuming that a parameter v of a distribution for Y
itself comes from a distribution.

Assume that, given v, Y has conditional probability (density) function f(y|y) and marginally
~ has probability (density) function f(). Then the marginal of YV is given by

J Fylv) f(v)d, if ~ is continuous,
frly) = (4.16)
> fylv)p(y =), if ~ is discrete.

The marginal distribution of Y is called a continuous mixture distribution if v is continuous
and a discrete (or finite) mixture distribution is v is discrete.

Discrete (or finite) mixture distributions are considered in detail in Chapter 8. Continuous
mixture density functions may be explicitly defined if the integral in (4.16) is tractable. This is
dealt with in this section. However the integral in (4.16) is often intractable (and so the density
functions is not explicitly defined), but may be approximated, e.g. using Gaussian quadrature
points. This is dealt with in Section 7?7, where the model is viewed as a random effect model at
the observational level.

Explicitly defined continuous mixture distributions

The marginal distribution of Y will, in general, be continuous if the conditional distribution of
Y is continuous.
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Distributions of Y | Distribution of Y|y | Distribution of ~y References

TF(, 0, v) NO(s1,7) GG(a,[2v] /%, ~2 | Box and Tiao (1973)
GT (u,0,v,7) PE2(p, 7, T) GG2(—1,0v'/7,v) | McDonald(1991)
GB2(u,o,v,71) GG2(o,v,v) GG2(—o, u, 1) McDonald (1996)

EGB2(u,0,v,T) EGG2(1/0,7,v) GG2(-1/o,e*, 1) McDonald (1996)

Table 4.5: Showing distributions generated by continuous mixtures

Student ¢t family (TF)

The Student t family for —oo <Y < oo, denoted TF(u, o, v), may be generated from a continu-
ous mixture by assuming Y|y ~ NO(u,v) and v ~ \/vox, ! = GG(o, [21/]71/2 ,—2) has a scale
inverted Chi distribution (which is a special case of the generalized gamma distribution), Box

and Tiao (1973).

Generalized ¢ (GT)

The generalized t family for —oo <Y < oo, denoted GT(p, o, v, 7), may be generated by assum-
ing Y|y ~ PE2(y,v, 7) has a power exponential type 2 distribution and vy ~ GG2(—, ov"/7, v)
has a generalized gamma type 2 distribution, McDonald (1991).

Generalized Beta type 2 (GB2)
The generalized beta type 2 family for Y > 0, denoted GB2(u,o,v,7), may be generated by
assuming Y|y ~ GG2(0,~,v) and v ~ GG2(—0, i, 7), McDonald (1996).

Exponential Generalized Beta type 2 (EGB2)

The exponential generalized beta type 2 family for —co <Y < 0o, denoted EGB2(u, o, v, 7) may
be generated by assuming Y|y ~ EGG2(1/0,7,v) has an exponential generalized gamma type
2 distribution and v ~ GG2(—1/0,e*, ), McDonald (1996). [Note that the exponential gener-
alized gamma type 2 distribution is defined by: if Z ~ EGG2(u, o, v) then e? ~ GG2(u,0,v).]

4.8.5 Distributions generated by Azzalini’s method

Lemma 1 of Azzalini (1985) proposed the following method of introducing skewness into a
symmetric probability density function. Let fz, (z) be a probability density function symmetric
about z equals zero and let Fz,(z) be an absolutely continuous cumulative distribution function
such that dFy,(z)/dz is symmetric about zero. Then, for any real v, fz(z) is a proper probability
density function where

fz(2> = 2fZ1 (Z)FZ2(VZ)' (417)
Let Y = pu+ oZ then
frlv) = 2 f2, (2) Fz, (v2) (118)

where z = (y — u)/o.
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Distributions of Y | Distribution of Z; | Distribution of Z5 | w(z)
SN1(p,0,v) NO(0,1) NO(0,1) vz
SEP1(p,0,v,T) PE2(0,7Y/7,7) PE2(0,7Y7,7) | vz
SEP2(y, 0, v, 7) PE2(0,71/7,7) NO(0,1) v (2/7)Y? sign(z)|2|7/?
ST1(p, 0,v,7T) TF(0,1,7) TF(0,1,7) vz
ST2(u, 0, v, 7) TF(0,1,7) TF0,1,7+1) | vAY/?z

Table 4.6: Showing distributions generated by Azzalini type methods using equation (4.20)

Skew Normal type 1 (SN1)

The skew normal type 1 family for —co < Y < oo, Azzalini (1985), denoted by SN1(u, o,v), is
defined by assuming Z; and Z5 have standard normal, NO(0, 1), distributions in (4.18).

Skew exponential power type 1 (SEP1)

The skew exponential power type 1 family for —co < Y < oo, Azzalini (1986), denoted by

SEP1(u,0,v,T), is defined by assuming Z; and Z» have power exponential type 2, PE2(0,71/7,7),
distributions in (4.18). Azzalini (1986) called this distribution type I. The skew normal type 1,

SN1(u,o,v), is a special case of SEP1(u, 0, v, 7) obtained by setting 7 = 2.

Skew t type 1 (ST1)

The skew t type 1 family for —co < Y < oo, Azzalini (1986), denoted by ST1(u,o,v,7), is
defined by assuming Z; and Z5 have Student ¢ distributions with 7 > 0 degrees of freedom, i.e.,
TF(0,1,7), in (4.18).

Equation (4.17) was generalized, in Azzalini and Capitanio (2003) Proposition 1, to

f2(2) = 2f7,(2) Fz, [w(2)] (4.19)
where w(z) is any odd function of z. Hence
fy() = 2,2 Fz, [w(2)] (4.20)

where z = (y — u)/o. This allows a wider generation of family of distributions.

Skew exponential power type 2 (SEP2)

The skew exponential power type 2 family, denoted by SEP2(u,o,v,7), Azzalini (1986) and
DiCiccio and Monti (2004) is expressed in the form (4.20) by letting Z; ~ PE2(0,7Y/7,7), Zo ~
NO(0,1) and w(z) = v(2/7)"?sign(z)|z|7/?. Azzalini (1986) developed a reparametrization of
this distribution given by setting v = sign(\)|A|7/? and called it type II. The skew normal type
1, SN1(u, o,v), distribution is a special case of SEP2(u, 0, v, T) obtained by setting 7 = 2.

Skew t type 2 (ST2)

The skew t type 2 family, denoted by ST2(u, o, v, 7) and discussed in Section 4.8.2, is expressed
in the form (4.20) by letting Z; ~ TF(0,1,7), Zo ~ TF(0,1,7 + 1) and w(z) = vAY?2z where
A= (r+1)/ (7 +2?), Azzalini and Capitanio (2003).
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4.8.6 Distributions generated by splicing
Splicing using two components

Splicing has been used to introduce skewness into symmetric distribution family. Let Y7 and
Y5 have probability density functions that are symmetric about u. A spliced distribution for Y
may be defined by

fy () =mifv, Iy < i) + 72 fy, (W) I(y > ). (4.21)

where I() is an indicator variable taking value 1 of the condition is true and 0 otherwise.
Ensuring that fy (y) is a proper probability density function requires (71 +m3)/2 = 1. Ensuring
continuity at y = p requires 1 fy, (1) = mafy, (1). Hence my = 2/(1 + k) and mp = 2k/(1 + k)
where k = fy, (1)/ fv.(p) and

2

fy(y) = a+th (W I(y < p) +Efv,(y)I(y > p)}- (4.22)

Splicing using two components with different scale parameters

A “scale-spliced” distribution for Y may be defined by assuming that probability density function
fz(2z) is symmetric about 0 and that Y1 = p+ 0Z/v and Ys = p+ ovZ in (4.22). Hence

) = o {2 <+ e ) 12 ) (4.29

for z = (y — p)/o and where k = fy, (1) / fv, (1) = v2. Hence

2v
= I I(y > . 4.24
fy () o019 {fz(w2) Iy <p)+ fz(2/v)I(y > p)} (4.24)
The formulation (4.24) was used by Fernandez, Osiewalski and Steel (1995) and Fernandez and
Steel (1998).

Skew normal (SN2)

A skew normal type 2 distribution (or two-piece normal distribution) for —co < Y < oo, denoted
by SN2(u, 0, v), is defined by assuming Z ~ NO(0, 1) in (4.24) or equivalently Y7 ~ NO(u,0/v)
and Y3 ~ NO(y, ov) in (4.22), giving

z

2v ) {exp [—; (yz)Q] I(y < p) + exp [—; ()2] I(y > M)} (4.25)

B 270 (1 + v? v

Ty (y)

where z = (y — u)/o . References to this distribution are given in Johnson at al. (1994) p 173
and Jones and Faddy (2003). The earliest reference appears to be Gibbons and Mylroie (1973).

Skew exponential power type 3 (SEP3)

A skew exponential power type 8 distribution for —oco < Y < oo, Fernandez, Osiewalski and
Steel (1995), denoted by SEP3(u, o, v, 7), is defined by assuming Z ~ PE2(0,2'/7, 1) in (4.24) or
equivalently, Y ~ PE2(u, 02"/ /v, 7) and Yo ~ PE2(u, ov2Y/7,7) in (4.22). Note that the skew
normal type 2 distribution, SN2(u, o, v), is a special case of SEP3(u,0,v,7) given by setting
T=2.
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Distributions of Y
SN2(u, 0, v)
SEP3(u,0,v,T)
SEP4(u, o, v, T)
ST3(u,o,v,7)
ST4(p, o,v,7)

Distribution of Y}
NO(u,0/v)
PEQ(;L, a2'7 [v, T)
PE2(u,o,v)
TF(u,0/v,7)
TF(u,0,v)

Distribution of Y5
NO(u, ov)
PE2 (,u, o247, 7')
PE2(u,0,7)
TF(u,ov, 1)
TF(u,0,T)

References

Gibbons and Mylroie (1973)
Fernandez, Osiewolski and Steel (1995)
Jones (2005)

Fernandez and Steel (1998)

Table 4.7: Showing distributions generated by splicing

Skew t type 3 (ST3)

A skew type 3 distribution for —co < Y < oo, Fernandez and Steel (1998), denoted by
ST3(p,0,v,7) is defined by assuming Z ~ TF(0,1,7) = ¢, in (4.24), or equivalently Y; ~
TF(p,0/v,7) and Y2 ~ TF(u,ov, 7) in (4.22). A reparametrization of ST3, in which u and o
are the mean and the standard deviation of Y is given by Hansen (1994). Theodossiou (1998)
extended the Hansen reparametrization to a five parameter skew generalized t distribution.

Splicing using two components with different shape parameters

A “shape-spliced” distribution for ¥ may be defined by assuming Y; and Y5 in (4.22) have
different shape parameters.

Skew exponential power type 4 (SEP4)

A skew exponential power type 4 family for —oo < Y < oo, Jones (2005), denoted by SEP4(u, o, v, 7),
is defined by assuming Y; ~ PE2 (u,0,v) and Yo ~ PE2 (u,0,7) in (4.22). Note that p is the

mode of Y.

A similar distribution was used by Nandi and M#ampel (1995) who set Y71 ~ PE2(u, o,v) and
Yo ~ PE2(u,0/q,7) in (4.22), where ¢ =T'[1 4+ (1/7)] /T'[1 + (1/v)]. However this distribution
constrains both the median and mode of Y to be p, which is perhaps rather restrictive.

Skew t type 4 (ST4)

A skew t type 4 family for —oo < Y < oo, denoted by ST4(u, o, v, 7), is defined by assuming
Y1 ~ TF(u, 0,v) and Yo ~ TF(p, 0,7) in (4.22).

Splicing using three components

Splicing has also been used to introduce robustness into the normal distribution, as in the NET

distribution below.

Normal-exponential-t (NET)

The normal-ezponential-t family for —oo < Y < oo, denoted by NET(u, o, v, 7), Rigby and
Stasinopoulos (1994), is defined by Y = p + oZ, where Z has a standard normal density
function for |Z| < v, an exponential density function for v < |Z] < 7, and a Student ¢ density

function for |z| > 7,

f2(2) = mifz, () (2] <v) +mofz, () (v < |2 < 7) + m3fz,(2)I(|2] > 7)

given by

(4.26)
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where Z; ~ NO(0,1), Zy ~ EXP(v), Z3 ~ TF(0,1,v7 — 1) = t,,—1 and 7, 7y and 73 are
defined to ensure fz(z) is a proper density function and to ensure continuity of fz(z) at v
and 7. In gamlss() parameters v and 7 are constants which are either chosen by the user or
estimated using the function prof.dev (). For fixed v and 7, the NET distribution has bounded
influence functions for both p and o, Rigby and Stasinopoulos (1994), and hence provides a
robust method of estimating u and ¢ for contaminated normal data.

4.8.7 Distributions generated by stopped sums
4.8.8 Systems of distributions

Pearson system

The Pearson system of probability density functions fy (y|@), where 0" = (61,02,03,04), is
defined by solutions of the equation:

01 +y

- 4.2
0y + O3y + 943/2 ( 7)

d

@f v (y[0) =
The solutions of (4.27) fall into one of seven families of distributions called Type I to Type
VII. Type I, IV, and VI cover disjoint regions of the skewness-kurtosis (\/E , ﬁg) space, while
the other four types are boundary types, see Johnson et al. (1994), Figure 12.2. Type I is
a shifted and scaled beta BE(u, o) distribution, with the resulting arbitrary range defined by
two extra parameters. Type II is a symmetrical form of type I. Type III is a shifted gamma
distribution. Types IV and V are not well known distribution (probably because the constants
of integration are intractable). Type VI is a generalization of the F' distribution. Type VII is
a scaled t distribution, i.e. TF(0,0,v).

Stable distribution system

Stable distributions are defined through their characteristic function, given by Johnson et al.
(1994) p57. In general their probability density function cannot be obtained explicitly (except
using complicated infinite summations). McDonald (1996) and Lambert and Lindsey (1999)
discuss the application of stable distributions to modelling stock returns.

Exponential Family

The Exponential Family for Y with mean u and variance ¢u” (where ¢ = o2 and o is a
scale parameter) , McCullagh and Nelder (1989), does not transform to a simple well known
distribution. This is also called the Tweedie family.

The probability (density) function exists only for v < 0 or v > 1 and suffers from being
intractable (except using complicated series approximations) except for specific values v =
0,2,3. Furthermore, in general for 1 < v < 2, the distribution is a combination of a mass
probability at Y = 0 together with a continuous distribution for ¥ > 0, (which cannot be
modelled independently), which is inappropriate for a continuous dependent variable Y, see
Gilchrist (2000). This distribution is not currently available in GAMLSS.

Generalized inverse Gaussian family

This family was developed by Jorgensen (1982).
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4.9 Exercises for Chapter 4

e Q1 The Turkish stock exchange index, I; was recorded daily from 1/1/1988 to 31/12/1998.
The daily returns, ret = log,(I;+1/1;), were obtained for ¢ = 1,2, ..., 2868.

(a)

Input the data into data.frame tse from file TSE.r, e.g. by
tse<-read.table("C:/gamlss/data/utrecht/TSE.r" ,header=TRUE)
and plot the data sequentially using

with(tse, plot(ret,type="1"))
Fit each of the following distributions for ret using the command histDist() (and
using different model names for later comparison):

— two parameter: normal NO(u, o), i.e. mNO<-histDist (tse$ret,"NO")

— three parameter: t family TF(u,0,v) and power exponential PE(u, o, v)

— four parameter: Johnson Su JSU(u,0,v,7), skew exponential power type 1 to
4 ie. SEP1(u,0,v,7), skew t type 1 to 5 i.e. ST1(p,0,v,7) and sinh-arc-sinh
SHASH (p,0,v,7).

[Note that to ensure convergence you may need to increase the number of GAMLSS
iterations using for example n.cyc=100 or switch the algorithm from RS() to CG()
after few iterations using the argument method i.e.

method=mixed (10,100),

for both gamlss() and histDist() functions.

Also if you are using histDist () increase the default value of the argument nbins
to 30 i.e.

histDist(tse$ret, family=SEP4, nbins=30,n.cyc=100).]

Use the AIC command with each of the penalties k = 2, 3.8 and 7.96=log(2868),
[corresponding to criteria AIC, X%o.05 and SBC respectively], in order to select a

distribution model. Output the parameter estimates for your chosen model using
the function summary.



Chapter 5

Continuous response: regression
analysis

5.1 Algorithms for fitting parametric regression models

A typical parametric regression model within the GAMLSS framework assumes that the re-
sponse variable Y; ~ D(y;, |ui, 04, v, 7i), independently for ¢« = 1,...,n, where the n length
vectors of the distributional parameters can be modelled as a function of explanatory variables
as

ap) = m=Xip
p2(0) = n,=X20, (5.1)
93(’/) = n3=X30;
ga(T) = my=XuBy.

where the X matrices contain the explanatory variable values, the 1’s are the (linear) predictors,
the ¢g() are known link functions (usually there to guarantee that the distributional parameters
have the correct range) and the 3’s are the parameters to be estimated.

The likelihood to be maximized in this case with respect to the B parameters will be

n

L(By, B, B3, 84) = Hf(yi‘lal’ﬁ2w637ﬂ4)' (5.2)

i=1

As it turns out the likelihood in (5.2) can be maximized using an iterative algorithm, (described
below) which repeatedly uses simple weighted linear regressions. The quantities needed for the
RS algorithm are:

e the score function: u; = %, for k=1,2,3,4.
k

e the adjusted dependent variables: z; = n,, + [Wkk.]_l uy, for k =1,2,3,4 and

e the diagonal matrices of iterative weights: Wy which can have one of the following forms
0%

on,.on,”’

mation or product score function, depending respectively on whether a Newton-Raphson,

2
-F {%} or diag { {%} } i.e. the observed information, expected infor-

91
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Fisher scoring or quasi Newton-Raphson algorithm is used, (see Lange, 1999, Chapter 11
for a definition of the techniques),

Below we describe a simplified version of the RS algorithm (the default method in the gamlss ()
function) used for fitting model (5.1). Let r be the outer cycle iteration index, k the parameter
index and ¢ the inner cycle iteration index. Essentially the RS algorithm has an outer cycle
which checks the maximization of the overall likelihood with respect to the B’s and an inner
cycle for fitting a model for each distributional parameter in turn, for £ = 1,2,3,4, where
the other distribution parameters are fixed at their current values. Note at each calculation
in the algorithm the most current updated values of all quantities are used. Note that 0" =
(61,02,03,04) = (p,0,v,7). The RS algorithm can be described as follows:

Algorithm RS (simple)

A simple version of the RS algorithm

e Start: Initialize fitted values 0,(;’1) for kK = 1,2, 3,4 for distributional parameter
vectors of length n, u, o, v and 7 respectively. Evaluate the initial linear

predictors ng’l) =gk [9,&1’1)}, for k=1,2,3,4.

¢ START OUTER CYCLE r = 1,2,... UNTIL CONVERGENCE.
FOR k = 1,2,3,4

— START INNER CYCLE ¢ =1,2,... UNTIL CONVERGENCE .

* Evaluate the current u,(:’i), W,(czi) and z](:’i)
* Regress the current z,(:’i) against design matrix Xy, using the iterative
weights W,(Crk’z) to obtain the updated parameter estimates ﬂ,(:’l).
— END INNER CYCLE on convergence of ,65:") and set ,6;:“’1) = Bg"),
ngﬂ’l) = fr)g") and 05;“’1) = 0;:"), otherwise update ¢ and continue
inner cycle.

UPDATE value of k

e END OUTER CYCLE: if the change in the (penalized) likelihood is suffi-
ciently small, otherwise update r and continue outer cycle.
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5.2 Examples of fitting regression models to continuous
distributions

5.2.1 The CD4 count data

Data summary:

R data file: CD4 in package gamlss.data of dimensions 609 x 2
source: Wade and Ades (1994)
variables

cd4 : CD4 counts from uninfected children born to HIV-1 mothers
age : age in years of the child.

purpose: to demonstrate regression fitting of different functional forms of the explanatory
variable age and different distributions.

conclusion: models for both p and o are needed with a 4-parameter distribution for the
response variable

The above data are given by Wade and Ades (1994) and they refer to cd4 counts from
uninfected children born to HIV-1 mothers and the age in years of the child. Here we input
and plot the data in Figure 5.1. This is a simple regression example with only one explanatory
variable, the age, which is a continuous variable. The response while, strictly speaking is a
count, is sufficiently large for us to treat it at this stage as a continuous response variable.

> data("CD4")
> plot(cd4 ~ age, data = CD4)

There are several striking features in this specific set of data in Figure 5.1. The first has
to do with the relationship between the mean of cd4 and age. It is hard to see from the
plot whether this relationship is linear or not. The second has to do with the heterogeneity of
variance in the response variable cd4. It appears that the variation in cd4 is decreasing with
age. The final problem has to do with the distribution of cd4 given the age. Is this distribution
normal? It is hard to tell from the figure but probably we will need a more flexible distribution.
Traditionally, problems of this kind were dealt with by a transformation in the response variable
or a transformation in both the response and the explanatory variable(s). One could hope that
this would possibly correct some or all of the above problems simultaneously. Figure 5.2 shows
plots where several transformations for cd4 and age were tried. A few of the plots in figure 5.2
appear to improve the situation but none of the plots satisfy linearity, homogeneity of variance
and a normal error distribution.

op <- par(mfrow = c(3, 4), mar = par("mar") + c(0, 1, 0, 0),
pch = "+", cex = 0.45, cex.lab = 1.8, cex.axis = 1.6)
page <- c("age™-0.5", "log(age)", "age~.5", "age")
pcd4 <- c("cd4°-0.5", "log(cd4+1)", "cd4~.5")
for (i in 1:3) {
yy <- with(CD4, eval(parse(text = pcd4[i])))
for (j in 1:4) {

+ + VvV VvV + vV
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1500

cd4

500

Figure 5.1: The plot of the CD4 data

xx <- with(CD4, eval(parse(text = pageljl)))
plot(yy ~ xx, xlab = pageljl, ylab = pcd4[i])
}

}
par (op)

vV o+ + + +

Within the GAMLSS framework we can deal with these problems one at the time. First we
start with the relationship between the mean of cd4 and age. We will fit orthogonal polynomials
of different orders to the data and choose the best using a GAIC criterion. For now we fit a
constant variance and a default normal distribution.

con <- gamlss.control(trace = FALSE)

ml <- gamlss(cd4 ~ age, sigma.fo = ~1, data = CD4, control = con)

m2 <- gamlss(cd4 ~ poly(age, 2), sigma.fo = "1, data = CD4, control = con)
m3 <- gamlss(cd4 ~ poly(age, 3), sigma.fo = "1, data = CD4, control = con)
m4 <- gamlss(cd4 ~ poly(age, 4), sigma.fo = "1, data = CD4, control = con)
m5 <- gamlss(cd4 ~ poly(age, 5), sigma.fo = "1, data = CD4, control = con)
m6 <- gamlss(cd4 ~ poly(age, 6), sigma.fo = "1, data = CD4, control = con)
m7 <- gamlss(cd4 ~ poly(age, 7), sigma.fo = "1, data = CD4, control = con)
m8 <- gamlss(cd4 ~ poly(age, 8), sigma.fo = "1, data = CD4, control = con)

VVVVVVVVYV

First we compare the model using the Akaike Information criterion (AIC) which has penalty
k = 2 for each parameter in the model, (the default value in the function GAIC()):

> GAIC(m1, m2, m3, m4, m5, m7, m8)

df AIC
m7 9 8963.263
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Figure 5.2: The CD4 data with various transformations for CD4 and age
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Next we compare the models using Schwartz Bayesian Criterion (SBC) which uses penalty
k = log(n):

> GAIC(m1, m2, m3, m4, m5, m7, m8, k = log(length(CD4%age)))

m7
m8
mb5
m2
m4
m3
ml

df

9 9002.
10 9007.
9008.
9013.
9014.
.410
9057.

9015

W oo N

AIC
969
992
266
284
576

380

> plot(cd4 ~ age, data = CD4)
> lines(CD4$age[order (CD4$age)], fitted(m7) [order (CD4$age)], col = "red")

cd4

1500

500

Figure 5.3: The CD4 data and the fitted values using polynomial of degree 7 in age

Remarkably with both AIC and SBC select model m7, with a polynomial of degree 7, as the
best model. Unfortunately the fitted values for the mean of cd4 shown together with the data
in Figure 5.3 look rather unconvincing. The line is too wobbly at the ends of the range of age,
trying to be very close to the data. This is a typical behavior of polynomial fitting.
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Now we will try alternatives methods, two parametric, using fractional polynomials and
piecewise polynomials, and one non-parametric smoothing method using cubic smoothing splines.
We start first with the fractional polynomials. Fractional polynomials were introduced by
Royston and Altmam (1994). The function £fp() which we are going to use to fit them works in
gamlss () as an additive smoother. It can be used to fit the best (fractional) polynomial within
a specific set of possible power values. Its argument npoly determines whether one, two or three
terms in the fractional polynomial will be used in the fitting. For example with npoly=3 the
following polynomial functions are fitted to the data 3y + B12P* + B22P? + F32P* where each p;,
for j = 1,2,3 can take any value within the set (-2, —1,-0.5,0,0.5,1,2, 3). If two powers, p;’s,
happen to be identical then the two terms (3;2P/ and (277 log(x) are fitted instead. Similarly
if three powers p;’s are identical the terms fitted are fy;a7, B2 log(x) and [B3;xPs [log(x)]2.
Here we fit fractional polynomials with one, two and three terms respectively and we choose
the best using GAIC:

> mlf <- gamlss(cd4 ~ fp(age, 1), sigma.fo = "1, data = CD4, control = con)
> m2f <- gamlss(cd4 ~ fp(age, 2), sigma.fo = "1, data = CD4, control = con)
> m3f <- gamlss(cd4 ~ fp(age, 3), sigma.fo ~1, data = CD4, control = con)
> GAIC(m1f, m2f, m3f)

df AIC
m3f 8 8966.375
m2f 6 8978.469
mlf 4 9015.321

> GAIC(m1f, m2f, m3f, k = log(length(CD4$age)))

df AIC
m3f 8 9001.669
m2f 6 9004.940
mlf 4 9032.968

> m3f

Family: c("NO", "Normal")
Fitting method: RSQ

Call: gamlss(formula = cd4 ~ fp(age, 3), sigma.formula = ~1, data = CD4,
control = con)

Mu Coefficients:
(Intercept)  fp(age, 3)
557.5 NA
Sigma Coefficients:
(Intercept)
5.93

Degrees of Freedom for the fit: 8 Residual Deg. of Freedom 601
Global Deviance: 8950.37

AIC: 8966.37

SBC: 9001.67
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> m3f$mu.coefSmo

[[11]
[[1]1]$coef
one
-599.2970 1116.7924 1776.1937 698.6097

[[1]1]1$power
[1] -2 -2 -2

[[1]]$varcoeff
[1] 2016.238 4316.743 22835.146 7521.417

> plot(cd4 ~ age, data = CD4)

> lines(CD4$age [order (CD4$age)], fitted(mif) [order(CD4$age)], col = "blue")
> lines(CD4$age [order (CD4$age)], fitted(m2f) [order (CD4$age)], col = "green")
> lines(CD4$age[order (CD4$age)], fitted(m3f) [order (CD4$age)], col = "red")

Both AIC and BSC favour the model m3f with a fractional polynomial with three terms. Note
that by printing m3f the model for p gives a value of 557.5 for the "Intercept” and NULL for
the coefficient for fp(age, 3). This is because within the backfitting the constant is fitted first
and then the fractional polynomial is fitted to the partial residuals of the constant model. As a
consequence the constant is fitted twice. The coefficients and the power transformations of the
fractional polynomials can be obtained using the mu.coefSmo component of the gamlss fitted
object. For the CD4 data all powers happens to be —2 indicating that the following terms are
fitted in the model, age™2, age=2log(age) and age ™2 [log(age)]Q. Hence the fitted model m3f is
given by cd4 ~ NO(ji,5), where fi = 557.5 — 599.3 + 1116.8 age=2 + 17776.2 age~2 log(age) +
698.6 age~? [log(age)?] and 6 = exp(5.93) = 376.2. Figure 5.4 shows the best fitted models
using one, two or three fractional polynomial terms. The situation remains unconvincing. None
of the models seem to fit particular well.

Next we will fit piecewise polynomials using the R function bs. We try different degrees of
freedom (effectively different number of knots) and we choose the best model using AIC and
SBC:

> m2b <- gamlss(cd4 ~ bs(age), data = CD4, trace = FALSE)
> m3b <- gamlss(cd4 ~ bs(age, df = 3), data = CD4, trace = FALSE)
> m4b <- gamlss(cd4 ~ bs(age, df = 4), data = CD4, trace = FALSE)
> mbb <- gamlss(cd4 ~ bs(age, df = 5), data = CD4, trace = FALSE)
> m6b <- gamlss(cd4 ~ bs(age, df = 6), data = CD4, trace = FALSE)
> m7b <- gamlss(cd4 ~ bs(age, df = 7), data = CD4, trace = FALSE)
> m8b <- gamlss(cd4 ~ bs(age, df = 8), data = CD4, trace = FALSE)
> GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b)

df AIC
m7b 9 8959.519
m6b 8 8960.353
m8b 10 8961.073
mbb 7 8964.022
mdb 6 8977.475
m2b 5 8993.351
m3b 5 8993.351
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Figure 5.4: The CD4 data and the best fitting fractional polynomials in age with one (solid
line), two (dashed line) and three (dotted line) terms respectively

> GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b, k = log(length(CD4$age)))

df AIC
mbb 7 8994.904
méb 8 8995.648
m7b 9 8999.225
m4b 6 9003.946
m8b 10 9005.191
m2b 5 9015.410
m3b 5 9015.410

The best model with AIC uses 7 degrees of freedom while SBC uses 5. Figure 5.5 shows the
fitted models using 5, 6 and 7 degrees of freedom for the piecewise polynomial in age.

We will proceed by fitting cubic smoothing splines to the data. We first use the function
cs () of the package gamlss introduced in section 2.6.3. The problem with using the smoothing
splines function cs () is that it does not allow an automatic selection of the smoothing parameter
A. We shall use later the function pb() which solves this problem. The smoothing parameter
is a function of the (effective) degrees of freedom, so we will use the following procedure using
cs(): we will use the optim() function in R to find the model with the optimal (effective)
degrees of freedom according to a GAIC. Again we do not commit ourselves to what penalty
we should use in the GAIC but we will try both AIC and SBC, with penalties k = 2 and log(n)
respectively, in the GAIC() function:

> fn <- function(p) AIC(gamlss(cd4 ~ cs(age, df = p[1]), data = CD4,
+ trace = FALSE), k = 2)
> opAIC <- optim(par = c(3), fn, method = "L-BFGS-B", lower = c(1),
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Figure 5.5: The CD4 data and the best fitting piecewise polynomials in age with 5 (__), 6,
(= ——)and 7 (...), degrees of freedom respectively

+ upper = c(15))

> fn <- function(p) AIC(gamlss(cd4 ~ cs(age, df = p[1]), data = CD4,
+ trace = FALSE), k = log(length(CD4$age)))

> opSBC <- optim(par = c(3), fn, method = "L-BFGS-B", lower = c(1),
+ upper = c(15))

> opAIC$par

[1] 10.85157
> opSBC$par
[1] 1.854689

10.85), data = CD4, trace = FALSE)
1.85), data = CD4, trace = FALSE)

> maic <- gamlss(cd4 ~ cs(age, df
> msbc <- gamlss(cd4 ~ cs(age, df

According to AIC the best model is the one with smoothing degrees of freedom 10.85 =~ 11.
This model seems to overfit the data as can been seen in Figure 5.6, (green continuous line).
This is typical behaviour of AIC when it is used in this context. Note that 11 degrees of freedom
in the fit refers to the extra degrees of freedom after the constant and the linear part is fitted to
the model, so the overall degrees of freedom are 13. The best model using SBC has 1.854 ~ 2
degrees of freedom for smoothing (i.e. 4 overall) and is shown in Figure 5.6 (blue dashed line).
It fits well for most of the observations but not at small values of age. It appears that we need
a model with smoothing degrees of freedom for the cubic spline with a value between 2 and 11
(i.e. 4 and 13 overall).

We now use the function pb(). The function pb() is a penalized B-spline function as
described in section 2.6.3. The pb() function automatically selects the smoothing parameter A
and hence the effective degrees of freedom:



5.2. EXAMPLES OF FITTING REGRESSION MODELS TO CONTINUOUS DISTRIBUTIONS101

1500

cd4

500

age

Figure 5.6: The CD4 data and two different cubic spline fits in age, with four (__), and thirteen
(= — —) total effective degrees of freedom in the fit

> mpbl <- gamlss(cd4 ~ pb(age), data = CD4, trace = FALSE)
> mpbl$mu.df

[1] 8.606468

The degrees of freedom for p selected automatically from the function pb(), using a local
maximum likelihood procedure, are 8.606 (including the 2 for constant and linear term). This
is between the values suggested by AIC and SBC above.

We will now use the function pb() to find suitable models for both p and logo (since the
default link function for o for the normal NO distribution is a log link):

> mpb2 <- gamlss(cd4 ~ pb(age), sigma.fo = “pb(age), data = CD4,
+ gd.tol = 10, trace = FALSE)
> mpb2$mu.df

[1] 6.200118
> mpb2$sigma.df
[1] 3.803651

Note that we had to increase the global deviance tolerance level to 10 (the default is 5) in order
to allow the model to continue until convergence. The overall degrees of freedom are now 6.2
and 3.8 for p and o respectively. The degrees of freedom for p are lower than expected from
the previous analysis. It appears that, by picking a suitable model for o, the model for pu is
less complicated. So by accounting for heterogeneity in the variance we have decreased the
complexity of the p model. Figure 5.7 shows the fitted values for p for both mpbl and mpb2
models.
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Figure 5.7: The CD4 data and the fitted penalized P-splines in age for model mpbl (dashed
green line) and mpb2 (continuous blue line).

Let us consider now what would have happened if we had used the cs() function and tried
to estimated the degrees of freedom using GAIC.

mi<-gamlss(cd4”~cs(age,df=10), sigma.fo="cs(age,df=2), data=CD4, trace=FALSE)

fn <- function(p) AIC(gamlss(cd4~cs(age,df=p[1]), sigma.fo="cs(age,pl[2]),
data=CD4, trace=FALSE, start.from=ml1),k=2)

opAIC <- optim(par=c(8,3), fn, method="L-BFGS-B", lower=c(1,1), upper=c(15,15))

opAIC$par

[1] 3.717336 1.808830

The resulting total effective degrees of freedom for 1 and o are 5.72 and 3.81 respectively
(including constant and linear) very similar to 6.2 and 3.8 achieved using the pb() function.
Rerunning the code for SBC results in estimated total effective degrees of freedom (4.55,2.93).
Note that the lower argument in optim had to change to lower=c(0.1,0.1) allowing the
smoothing degrees of freedom to be lower that 1. We now fit the AIC chosen model:

> m42 <- gamlss(cd4 ~ cs(age, df = 3.72), sigma.fo = “cs(age, df = 1.81),
+ data = CD4, trace = FALSE)

Figure 5.8 shows the fitted values for the models m42 and mpb2 chosen using AIC and pb()
respectively. The plot is obtained using the command fitted.plot(m42,mpb2, x=CD4$age,
line.type=TRUE). The function fitted.plot () is appropriate when only one explanatory vari-
able is fitted to the data. The models are for any practical purpose identical.

The validation generalized deviance function VGD() provides an alternative way of tuning
the degrees of freedom in a smoothing situation. It is suitable for large sets of data where we
can afford to use part of the data for fitting the model (training) and part for validation. Here
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Figure 5.8: A plot of the fitted p and o values against age for models m42 (continuous green )
and mpb2 (dashed blue).
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we demonstrate how it can be used. First the data are split into training and validation subsets
with approximately 60% and 40% of the cases respectively. Then we use the function optim to
search for the optimum smoothing degrees for p and o (which results in a fitted model to the
training data which minimizes the validation global deviance).

set.seed(1234)

rSample6040 <- sample(2, length(CD4$cd4),replace=T, prob=c(0.6, 0.4))

fn <- function(p) VGD(cd4~cs(age,df=p[1]), sigma.fo="cs(age,df=p[2]),
data=CD4, rand=rSample6040)

op<-optim(par=c(3,1), fn, method="L-BFGS-B", lower=c(1,1), upper=c(10,10))

op$par

[1] 4.779947 1.376534

The resulting total effective degrees of freedom for u and o are 6.78 and 3.38 respectively, in
this instance not very different from the ones we obtained earlier from using the pb() function.

Given : xvar
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Figure 5.9: A worm plot of the residuals from models m42.

Figure 5.9 shows a worm plots from the residuals of model mpb2. The worm plot in Fig-
ure 5.9 shows four detrended normal Q-Q plots of the (normalized quantile) residuals in four
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non-overlapping ranges of the explanatory variable age. It was produced using the command
wp (mpb2, xvar=CD4$age, ylim.worm=1.5). The four ranges are shown above the worm plot.
Worm plots were introduced by vanBuuren and Fredriks (2001). The important point here is
that quadratic and cubic shapes in a worm plot indicate the presence of skewness and kurtosis
respectively in the residuals (within the corresponding range of the explanatory variable, i.e.
CD4$age). That is, the normal distribution fitted so far to the data is not appropriate. The U
shape in the worm plots indicates positive skewness in the residuals (which cannot be modelled
by a normal distribution). Also there are zeros in the response so unless we shift them to the
right by a small amount, we must model it with distributions accepting zeros. There are a vari-
ety of distributions to select from in gamlss including: i) ¢ (TF) ii) power exponential (PE) iii)
sinh-arcsinh (SHASH), iv) Jonhson’s (JSU) v) five different skew ¢’s (ST1,...,ST5) and vi) four
different Skew Power exponential (SEP1,...,SEP4.) distributions. Fitting all these distributions
using pb () for the predictor model for both p and o is a slow process. Table 5.1 presents a AIC
table of the different fits. The SEP2 distribution appears to provide the best fit to the data.

distributions df AIC
SEP2 8.86 8685.69
SEP1 8.77 8688.08
SEP3 11.24 8693.68
ST2 9.31 8693.91
ST1 9.31 8693.91
ST3 11.33 8694.21
JSU 13.28 8701.05
SHASH 12.75 8705.26
ST5 8.99 8724.25
ST4 12.54 8749.01
TF 11.48 8785.20

PE 11.17 8790.16

Table 5.1: Fitting different distributions to the CD4 data using pb() for the predictor models
for both y and o

5.3 Bibliography

5.4 Exercises for Chapter 5

5.4.1 Exercise 1

Continue the analysis of the abdominal data by fitting different distributions and choosing the
"best” model (as judged by criterion GAIC).

e a) Load the abdominal data and print the variable names:

data(abdom)
names (abdom)

¢ b) Fit the normal distribution model using pb() [to fit P-spline smoothers for the predictors
for mu and sigma with automatic selection of smoothing parameters|:
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mNO<- gamlss(y~pb(x),sigma.fo="pb(x),data=abdom,family=N0)

e ¢) Try fitting alternative distributions instead of the normal,

— two parameter distributions: GA, IG, GU, RG, LO
— three parameter distributions: PE, TF, BCCG
— four parameter distributions: BCT, BCPE

MAKE SURE TO USE DIFFERENT MODEL NAMES (instead of mNO)

e d) Compare the fitted models using GAIC with each of the penalties k=2, k=3 and
k=log(length(abdom$y)), e.g.

GAIC(mNO,mGA,mIG,mGU,mRG,mL0,mPE,mTF,mBCCG,mBCT ,mBCPE,mPE2,mTF2,mBCCG2,
mBCT2,mBCPE2,k=2)

e ¢) For your chosen model look at the total effective degrees of freedom, plot the fitted
parameters and plot the data and fitted mu against x:

mLO$mu . df
mLO0$sigma.df
fitted.plot(mLO,x=abdom$x)
plot(y~x,data=abdom)
lines(fitted(mL0) “x,data=abdom, col="red")

e g) For your chosen model look at the centile curves:

centiles(mL0,abdom$x,cent=c(0.4,2,10,25,50,75,90,98,99.6))

5.4.2 Exercise 2
For the CD4 count data fit the SEP2 model in the course notes and check it:

e a) Load the CD4 data and print the variable names:

data(CD4)
names (CD4)

e b) Fit the SEP2 model in the course notes, by first fitting a PE (Power Exponential) model
and using its fitted values as starting values for fitting the SEP2 (Skew Exponential Power
type 2) model:

mPE<-gamlss(cd4 " pb(age) ,sigma.fo="pb(age) ,data=CD4,family=PE)
mSEP2<-gamlss(cd4"pb(age) ,sigma.fo="pb(age) ,data=CD4,family=SEP2,
start.from=mPE,n.cyc=100)

e ¢) For the SEP2 model, print the total effective degrees of freedom and plot the fitted
parameters against age.

e d) For the SEP2 model look at the residual and worm plots and Q statistics.

e ¢) For the SEP2 model look at the centile curves.
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5.4.3 Exercise 3

Visual analog scale (VAS) data: The Visual analog scale is used to measure pain and
quality of life. For example patients are required to indicate in a scale from 0 to 100 the
amount of discomfort they have. This can be easily translated to a value from 0 to 1 and
consequently analyzed using the beta distribution. Unfortunately if 0’s or 100’s are recorded
the beta distribution is not appropriate since the values 0 and 1 are not allowed in the definition
of the beta distribution. Here we use the inflated beta distribution allowing values at 0 and 1.
This is a mixed distribution (continuous and discrete) having four parameters, v for modelling
the probability at zero p(Y = 0) relative to p(0 < Y < 1), 7 for modelling the probability at one
p(Y = 1) relative to p(0 <Y < 1), and g and o for modelling the between values, 0 <Y < 1,
using a beta distributed variable BE(u, o) with mean p and variance ou(1 — p).

In the original data 368 patients, measured at 18 times after treatment with one of 7 drug
treatments (including placebo), plus a baseline measure (time=0) and one or more pre-baseline
measures (time=-1). Here for illustration we will ignore the repeated measure nature of the data
and we shall use data from time 5 only (364 observations). The VAS scale response variable,
Y, is assumed to be distributed as Y ~ BEINF(u,o,v,7) where any of the distributional
parameters p, o, v and 7 are modelled as a constant or as a function of the treatment, (treat).

(a) Fit all 16 possible combinations of models i.e.

vasb <- dget("C:/gamlss/data/palermo/vas-5")

mod01 <- gamlss(vas/100 ~ 1, data = vasb, family = BEINF)

modll <- gamlss(vas/100 ~ treat, data = vas5, family = BEINF)

mod12 <- gamlss(vas/100 ~ 1, sigma.fo = “treat, data = vasb,
family = BEINF)

mod13 <- gamlss(vas/100 ~ 1, nu.fo = “treat, data = vasb,
family = BEINF)

mod14 <- gamlss(vas/100 ~ 1, tau.fo = “treat, data = vasb5,
family = BEINF)

mod21 <- gamlss(vas/100 ~ treat, sigma.fo = “treat, data = vasb,
family = BEINF)
mod22 <- gamlss(vas/100 ~ treat, nu.fo = “treat, data = vasb,

family = BEINF)
mod23 <- gamlss(vas/100 ~ treat, tau.fo = “treat, data = vas5,
family = BEINF)
mod24 <- gamlss(vas/100 ~ 1, sigma.fo = “treat, nu.fo = “treat,
data = vasb, family= BEINF)
mod25 <- gamlss(vas/100 ~ 1, sigma.fo
data = vasb5, family = BEINF)
mod26 <- gamlss(vas/100 ~ 1, nu.fo = “treat, tau.fo = “treat,
data = vasb, family = BEINF)

“treat, tau.fo = “treat,

mod31 <- gamlss(vas/100 ~ treat, sigma.fo = “treat, nu.fo = “treat,
data = vasb, family = BEINF)
mod32 <- gamlss(vas/100 ~ treat, sigma.fo = “treat, tau.fo = “treat,

data = vasb, family = BEINF)

mod33 <- gamlss(vas/100 ~ treat, nu.fo = “treat, tau.fo = “treat,
data = vasb, family = BEINF)

mod34 <- gamlss(vas/100 ~ 1, sigma.fo = “treat, nu.fo = “treat,
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tau.fo = “treat, data = vas5, family = BEINF)
mod41 <- gamlss(vas/100 ~ treat, sigma.fo = “treat, nu.fo = “treat,
tau.fo = “treat, data = vasb, family = BEINF)

Use the AIC function with each of the penalties k = 2, 3.8 and 7.96=log(2868), [corre-
sponding to criteria AIC, X%,o.05 and SBC respectively], in order to select the best model.

For you best model plot the seven different fitted distributions (one for each treatment.
The following R commands can be used:

> mod22 <- gamlss(vas/100 ~ treat, nu.fo = “treat, data = vasb,
+ family = BEINF)

> op <- par(mfrow = c(4, 2))

> lev <- c(1, 2, 3, 4, 5, 6, 7)

> ind <- ¢(3, 2, 9, 12, 1, 7, 4)

>j <0

> for (i in ind) {

+ j=1+3

+ xlab <- paste("treatment = ", eval(substitute(lev[jl)))
+ ylab <- paste("p(y)")

+ plotBEINF (mu = fitted(mod22) [i],

+ sigma = fitted(mod22, "sigma")[i],

+ nu = fitted(mod22, "nu")[i],

+ tau = fitted(mod22, "tau")[i],

+ from = 0, to = 1, n = 101, xlab = xlab, ylab = ylab)

+ }
> term.plot(mod22, se = T)
> par(op)



Chapter 6

Discrete response: count data

6.1 Introduction

By count data we mean data where the theoretical distribution of the response variable can
take values at 0,1,2,...,00. The classical approach to model this type of data especially if the
counts are relatively small is using the Poisson distribution. The problem is that very often count
data which are modelled using a Poisson distribution exhibit overdispersion. Overdispersion is
defined as the extra variation occurred in modelling count data which is not explained by the
Poisson distribution alone.

Overdispersion has been recognized for a long time as a potential problem within the liter-
ature of generalized linear models, (Nelder and Wedderburn, 1972) which originally modelled
only the mean of the distribution of the response. Over the years several solutions to the prob-
lem of overdispersion have been suggested, see e.g. Consul (1989)and Dossou-Gbété and Mizere
(2006). Here we consider three major categories:

(i) Ad-hoc solutions
(ii) Discretized continuous distributions
(iii) Random effect at the observation level solutions.

We refer here to ad-hoc solutions as those that have been implemented in the past, mainly for
their computational convenience (and some also for good asymptotic properties for the estima-
tion of the mean regression function), but which do not assume an explicit proper distribution for
the response variable. The quasi-likelihood function approach proposed by Wedderburn (1974),
for example, requires assumptions on the first two moments of the response variable. The
quasi-likelihood approach is incapable of modelling the second moment parameter, the disper-
sion, as a function of explanatory variables, therefore the extended quasi-likelihood (EQL) was
proposed by Nelder and Pregibon (1987). Alternatively approaches are the pseudo-likelihood
(PL) method introduced by Carroll and Ruppert (1982) and Efron’s double exponential (EDE)
family, Efron (1986). The PL method effectively approximates the probability function by a
normal distribution with a chosen variance-mean relationship, but does not properly maximize
the resulting likelihood. See Davidian and Carroll (1988) and Nelder and Lee (1992) for a
comparison of the EQL and the PL. The problem with all these methods is that, while they
work well with moderate overdispersion, they have difficultly modelling long tails in the distri-
bution of the response variable. They also suffer from the fact, that, for a given set of data,
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the adequacy of the fit of those methods cannot be compared using a properly maximized log
likelihood function ¢ and criteria based on /, e.g. the (generalized) Akaike information criterion
AIC = —20+ g.df, where f is the penalty and df denotes the total (effective) degrees of freedom
used in the model. The problem is that they do not properly fit a discrete distribution. For the
EQL and EDE methods the distribution probabilities do not add up to one, see for example
Stasinopoulos (2006). Note that with increasing computer power the constant of summation,
missing from the EQL and EDE methods, can be calculated so that they represent proper dis-
tributions resulting in a true likelihood function that can be maximized. However these models
are still computational slow to fit to large data sets, the true probability function cannot be
expressed explicitly (except by including an infinite sum for the constant of summation) and
their flexibility is limited by usually having at most two parameters. See Lindsey (1999) for a
similar criticism of the ad-hoc methods.

By discretized continuous distributions, category (ii) solutions, we refer to methods which use
continuous distributions to create a discrete one. For example, let Fyy (w) to be the cumulative
distribution function of a continuous random variable W defined in ™ then fy (y) = Fy (y+1)—
Fw (y) is a discrete distribution defined on y = 0,1,2,...,00. Alternatively let fy(0) = Fy (.5)
and fy(y) = Fw(y + 0.5) — Fyw(y — 0.5) for y = 1,2,...,00. Distributions of this kind can
be fitted easily using the gamlss.cens package. One potential criticism of the above methods
of generating discrete distributions is the fact that if the parameter puy, is the mean of the
continuous random variable W, then the mean of the discrete random variable Y will not in
general be exactly pw . Another example of a discretized continuous distribution is the gamma
count distribution described in Winkelmann (1997) pp. 47-51. The distribution is derived from
a random process where Y is modelled as the total number of events occurring within a fixed
time interval, where the intervals between events have a gamma distribution, see Lindsey (1999)
pp 30-31.

Note that both methods (i) and (ii) described above can cope with underdispersion as well
as overdispersion in count data. Category (iii) solutions described below can only deal with
overdispersion.

The random effect at the observation level, category (iii), solutions account for the overdis-
persion by including an extra random effect variable. They generally assume that, given a
random effect variable -y, the response variable Y has a discrete conditional probability function
f(y|vy) and marginally v has probability (density) function f, (). Then the marginal probability
function of Y is given by fy (y) = [ f(ylv)fy(7)dy. Within the random effect at the observation
level models, category (iii) above, we distinguish three different types:

(a) when an an explicit continuous mixture distribution, fy (y), exists.

(b) when a continuous mixture distribution, fy (y), is not explicit but is approximated by
integrating out the random effect using approximations, e.g. Gaussian quadrature or
Laplace approximation.

(c¢) when a 'non-parametric’ mixture (effectively a finite mixture) is assumed for the response
variable.

In this chapter we shall mainly concentrate on models of type (a). Assume that the conditional
distribution of Y given v is Poisson, i.e. f(y|ly) = PO(uy). Table 6.1 shows a variety of
(marginal) overdispersed Poisson count data distributions, fy (y) used in applied statistics and
their corresponding mixing distribution f,(y). The last two distribution of Table 6.1 are not
explicitly implemented yet in the gamlss packages. Note that zero inflated mixing distribution
lead to zero inflated marginal distribution (as shown in Table 6.1 for the gamma distribution).
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Table 6.1: Discrete gamlss family distributions for count data (derived from Poisson mixtures)

Distributions R Name mixing distribution for
Poisson PO(u) -

Negative binomial type I NBI(u,0) GA(1,02)

Negative binomial type II | NBII(u,o0) GA(1,02 /p)
Poisson-inverse Gaussian PIG(u,0) IG(1,02)

Sichel SICHEL(y,0,v) | GIG(1,02,v)
Delaporte DEL(, o, v) SG(1, o V)

Zero inflated Poisson ZIP(u,0) BI(1,1 — o)

Zero inflated Poisson 2 ZIP2(p,0) (1-0)"'BI(1,1-0)
Zero inflated neg. binomial | - zero inflated gamma
Poisson-Tweedie - Tweedie family

Note also that the probability function for the Poisson-Tweedie is given by Hougaarrd et al.
(1997).

Hinde (1982) was the first to apply the Gaussian quadrature approach of type (b) to approx-
imate a Poisson-normal mixture. Lee and Nelder (1996, 2006) use the Laplace approximation
approach in their hierarchical and double hierarchical models. However their conditional distri-
bution f(y|vy) is, in general, not a proper distribution and consequently their marginal likelihood
function is not a proper likelihood function, so we do not consider these methods further here.

Aitkin (1996, 1999) is an advocate of the "non-parametric” mixture approach of type (c)
where the Poisson distribution is mixed with a non-parametric distribution. The non-parametric
distribution involves unknown mass points and probabilities which have to be estimated from
the data. This approach is referred to as “non-parametric maximum likelihood”.

All the types of observation level random effect models in category (iii) above can be fitted
using gamlss packages. The software also generalizes type (b) and (¢) models above by allowing
more general conditional distributions f(y|vy) to be used rather that Poisson, e.g. a negative
binomial distribution (resulting in a negative binomial-normal mixture model and a negative
binomial non-parametric mixture model for ¥ respectively).

The next section discusses the explicit continuous mixture distributions in more detail.

6.2 Explicit continuous mixture distributions

Suppose, given a random variable v, that Y has a Poisson distribution with mean puvy, i.e.
Y|y ~ PO(uy), where o > 0, and suppose that v has probability density function f, () defined
on N1, then the (marginal) distribution of Y is a mixed Poisson distribution. Provided + has
mean 1, then Y has mean p. The model can be considered as a multiplicative Poisson random
effect model, provided the distribution of v does not depend on pu.

Many parameterizations of mixed Poisson distributions [e.g. the Sichel and Delaporte distri-
butions, see Johnson, Kotz and Kemp (2005) and Wimmer and Altmann (1999)] for a discrete
count random variable Y have been defined such that none of the parameters of the distribution
is the mean of Y, and indeed the mean of Y is often a complex function of the distribution
parameters, making the distribution difficult to use for regression models.
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Table 6.2: Discrete gamlss family distributions for count data

Distributions R Name params mean variance
Poisson PO(u) 1 L I
Negative binomial NBI(u,o0) 2 m w4 ou?
type I
Negative binomial NBII(u,0) 2 1 Wt op
type 11
Poisson- PIG(u,0) 2 m A+ op?
inverse Gaussian
Sichel SICHEL(u, o, v) 3 i w+ h(o,v)u?
Delaporte DEL(p, o, v) 3 u p+o(l—v)u?
Zero inflated ZIP(p,0) 2 Q-0 | 1-0)pu+o(l—o)u?
Poisson
Zero inflated ZIP2(u,0) 2 1 W+ ﬁ;ﬂ
Poisson type 2

Here we consider several mixed Poisson distribution defined so that the mean p is a parameter
of the distribution. This allows easier interpretation of models for p and generally provides a
more orthogonal parameterization.

Specifically the following distributions with mean exactly equal to p are considered: Poisson,
negative binomial type I and type II, Poisson-inverse Gaussian, Sichel and Delaporte distribu-
tions. The distributions are continuous mixtures of Poisson distributions.

Table 6.2 shows the distributions for count data currently available in gamlss packages,
together with their R name within gamlss, their number of parameters, mean, variance. Table
6.1 shows the mixing distribution for 7. The probability functions for all the distributions in
Tables 6.2 and 6.1 are given in the Appendix 10, (except for SG distribution defined later in
this section).

In Table 6.2 4 > 0 and ¢ > 0 for all distributions, while —oco < v < oo for the Sichel
distribution and 0 < v < 1 for the Delaporte distribution.

The Poisson-inverse Gaussian (PIG) is a special case of the Sichel where v = —0.5. The
Poisson is a limiting case of the other distributions as ¢ — 0.

6.2.1 Negative binomial distribution

The negative binomial type I distribution (denoted NBI in gamlss package is a mixed Poisson
distribution obtained as the marginal distribution of Y when Y|y ~ PO(uvy) and v ~ GA(1, U%),
i.e. v has a gamma distribution with mean 1 and scale parameter o2 (and hence has dispersion
o). Figure 6.1 plots the negative binomial type I distribution, NBI(u, o), for p = 5 and o =
(0.01,0.5,1,2). [The plot was created using the command pdf.plot(family="NBI", mu=5,
sigma=c(0.01, 0.5, 1, 2),min=0,max=20,step=1).] Note that plot for ¢ = 0.01 is close
to a Poisson, PO(5), distribution which corresponds to 4 = 5 and ¢ — 0 in the NBI(y, o)
distribution.

The negative binomial type II distribution (denoted NBII in gamlss) is a mixed Poisson distri-
bution obtained as the marginal distribution of ¥ when Y|y ~ PO(uy) and v ~ GA(1, (/1) ?).
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Figure 6.1: NBI distribution for 4 = 5 and o = (0.01,0.5,1,2)
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Figure 6.2: PIG distribution for 4 = 5 and o = (0.01,0.5,1,2)
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This is a reparameterization of the NBI distribution obtained by replacing o by o/p.

The NBI and NBII models differ when there are explanatory variables for p and/or o. The
negative binomial distribution can be highly positively skewed, unlike the Poisson distribution,
which is close to symmetric for moderate p and even closer as p increases. The extra o parameter
allows the variance to change for a fixed mean, unlike the Poisson distribution for which the
variance is fixed equal to the mean. Hence the negative binomial allows modelling of the variance
as well as of the mean.

6.2.2 Poisson-inverse Gaussian

The Poisson-inverse Gaussian distribution (denoted PIG in gamlss) is a mixed Poisson distri-
bution obtained as the marginal distribution of ¥ when Y|y ~ PO(uy) and v ~ IG(LO'%),
an inverse Gaussian mixing distribution. This allows for even higher skewness, i.e. longer
upper tail, than the negative binomial distribution. Figure 6.2 plots the Poisson-inverse Gaus-
sian distribution, PIG(u, o), for 4 = 5 and ¢ = (0.01,0.5,1,2). Note that plot for o =
0.01 is close to a Poisson, PO(5), distribution. [The plot was created using the command
pdf.plot (family="NBI", mu=5, sigma=c(0.01, 0.5, 1, 2),min=0,max=20,step=1]

6.2.3 Sichel distribution

The Sichel distribution has been found to provide a useful three parameter model for over-
dispersed Poisson count data exhibiting high positive skewness, e.g. Sichel (1992). In the
parametrization below p is the mean of the Sichel distribution, while the two remaining param-
eters o and v jointly define the scale and shape of the Sichel distribution. In particular the three
parameters of the Sichel allow different shapes (in particular the level of positive skewness)
of the distribution for a fixed mean and variance, unlike the Poisson, negative binomial and
Poisson-inverse Gaussian distributions. The Sichel distribution therefore allows modelling of
the mean, variance and skewness.

The Sichel distribution (denoted SICHEL in gamlss) is a mixed Poisson distribution obtained
as the marginal distribution of ¥ when Y|y ~ PO(uy) and v ~ GIG(l,J%,l/), a generalized
inverse Gaussian mixing distribution with probability density function given by

fy(v) = ;;ZU(_;) exp {—210 (cv + ;)} (6.1)

for v > 0, where ¢ > 0 and —oc0 < v < 0.

This parameterization of the GIG ensures that E[y] = 1. The mean and variance of Y,
are given by E[Y] = p and V(Y) = p+ p? [20(v +1)/c+ 1/c* — 1] respectively. For the
Sichel distribution h(o,v) = [20(v+1)/c+1/c* —1] in Table 6.2 where ¢ = R,(1/0) and
Ry(t) = Kxy1(t)/Kx(t) and K (t) = %fooo L exp[—3t(z + #71)]dx is the modified Bessel
function of the third kind.

6.2.4 Delaporte distribution

The Delaporte distribution (denoted DEL in gamlss) is a mixed Poisson distribution obtained
as the marginal distribution of ¥ when Y|y ~ PO(uy) and v ~ SG(1,02,v), a shifted gamma
mixing distribution with probability density function given by
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for v > v, where 0 > 0 and 0 < v < 1. This parameterization ensures that E [y] = 1.
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Figure 6.3: ZIP distribution for gy =5 and ¢ = (0.01,0.1,0.4,0.7)

6.2.5 Zero inflated Poisson

The zero inflated Poisson distribution (denoted ZIP in gamlss) is a discrete mixture of two
components: value 0 with probability ¢ and a Poisson distribution with mean p with probability
1—-o0.

This can be viewed as a discrete mixed Poisson distribution defined by the marginal distri-
bution of Y where Y|y ~ PO(uy) and v ~ BI(1,1 — o), i.e. v = 0 with probability ¢ and
~v = 1 with probability 1 — . Note however that + has mean 1 — ¢ in this formulation and Y
has mean p/(1 — o).

An alternative parametrization, the zero inflated Poisson type 2 distribution (denoted in
gamlss as ZIP2) is the marginal distribution for ¥ where Y|y ~ PO(uy) and v ~ (1 —
0)71BI(1,1 — o). Hence v has mean 1 and Y has mean .
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Figure 6.3 plots the zero inflated Poisson distribution, ZIP(u, o), for p = 5 and o =
(0.01,0.1,.4,0.7). Note that plot for o = 0.01 is close to a Poisson, PO(5), distribution. [The
plot was created using the command pdf.plot(family="ZIP", mu=5, sigma=c(0.01, 0.1,
0.4, 0.7),min=0,max=12,step=1).]

6.2.6 Comparison of the marginal distributions

Marginal distributions for Y can be compared using a (ratio moment) diagram of their skewness
and kurtosis, given in the Appendix to this chapter and obtained from Appendix B of Rigby
et al. (2008). Figure 6.4 displays the skewness-kurtosis combinations for different marginal
distributions of Y, where Y has fixed mean 1 and fixed variance 2.

The zero-inflated Poisson (ZIP), negative binomial (NB) and Poissson-inverse Gaussian
(PIG) distributions each have two parameters, so fixing the mean and variance of Y results
in a single combination of skewness-kurtosis, displayed as a circle.

The Sichel, Poisson-Tweedie and Delaporte distributions each have three parameters, so
their possible skewness-kurtosis combinations are represented by curves. The three curves meet
at the skewness-kurtosis point of the negative binomial which is a limiting case of the Sichel, an
internal special case of the the Poisson-Tweedie and a boundary special case of the Delaporte.
The Poisson-Tweedie curve alone continues (as its power parameter decreases from two to one)
and stops at the circle between ZIP and NB. [Note also that the PIG is a special case of both
the Sichel and the Poisson-Tweedie distributions.]

The zero-inflated negative binomial distribution (ZINB) skewness-kurtosis curve (shown in
Figure 6.4 but not labeled) is the line from the skewness-kurtosis of the ZIP to that of the NB.
The zero-inflated Poisson reciprocal Gamma (ZIPRG) curve has the highest kurtosis for a given
skewness.

The Poisson-shifted generalized inverse Gaussian (PSGIG) is a four parameter distribution
and has skewness-kurtosis combinations covering the region between the Sichel and Delaporte
curves, while the zero-inflated Sichel (ZISichel) covers the region between the ZIPRG and Sichel
curves. Similar figures were obtained for other combinations of fixed mean and variance of Y.

6.2.7 Families modelling the variance-mean relationship

The multiplicative Poisson random effect model defined in Section 6.2 leads to a variance-mean
relationship for Y given by V [Y] = p + p?V [y] where in general V [y] = v(o, v, 7) is a function
of the parameters o, v and 7 of the mixing distribution f, (). Hence in particular the negative
binomial type I, the Poisson-inverse Gaussian, Sichel, Delaporte and PSGIG distributions all
have this quadratic variance-mean relationship. Alternative variance-mean relationships can be
obtained by reparametrization. [Note, however that Theorem 1 in the Appendix A of Rigby et
al. (2008) will no longer hold, since the resulting f.(y) depends on fx.]

For example consider the negative binomial type I distribution with probability function
given by

ply) = mwmy(lwm@“/” (6.3)

for y = 0,1,2... where g > 0 and ¢ > 0 with mean y and variance V [Y] = pu + op?. If o is
reparameterized to o1 /p then V' [Y] = (14 01)p giving a negative binomial type II distribution.
If o is reparameterized to o1p then V [Y] = p + oyp®. Note that modelling o as function of
explanatory variables models the excess variance on top of the variance-mean relationship.
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Figure 6.4: Skewness-kurtosis combinations for different distributions for Y (for fixed mean 1
and variance 2 for Y)
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More generally a family of reparameterizations of the negative binomial type I distribution
can be obtained by reparameterizing o to oyu” 2 giving V(Y) = pu + o1p”. This gives a three
parameter model with parameters p, 07 and v. The model can be fitted by maximum likelihood
estimation. Note that a family of reparameterizations can be applied to any multiplicative Pois-
son random effect model as defined in Section 6.2. In particular the Poisson-inverse Gaussian,
Sichel, Delaporte and PSGIG, can all be extended to reparameterization families using an extra
parameter.

6.3 Examples: fitting a distribution

6.3.1 The computer failure data

Data summary:
R data file: computer in package gamlss.dist of dimensions 128 x 1
source: Hand et al. (1994)
variables
failure : the number of computers that broke down.
purpose: to demonstrate the fitting of a parametric discrete distribution to the data.

conclusion a PIG distribution fits best

The following data relate to DEC-20 computers which operated at the Open University in the
1980. They give the number of computers that broke down in each of the 128 consecutive weeks
of operation, starting in late 1983, see Hand et al. (1994) page 109 data set 141. Here we use
four different count data distributions and choose between them using the Akaike information
criterion (AIC):

> graphics.off ()

library(gamlss.dist)
data(computer)
op <- par(mfrow = c(2, 2))
mP0 <- histDist (computer$failure, "P0O", main = "PO", trace = FALSE)
mNBI <- histDist(computer$failure, "NBI", main = "NBI", trace = FALSE)
mPIG <- histDist(computer$failure, "PIG", main = "PIG", trace = FALSE)
mSI <- histDist(computer$failure, "SICHEL", main = "SICHEL",

trace = FALSE)
AIC(mPO, mNBI, mPIG, mSI)

V + VVVVVVYV

df AIC
mPIG 2 636.4159
mNBI 2 636.8405
mSI 3 638.0551
mPO 1 771.9487

> par (op)
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Figure 6.5: The computer failure data fit with (a) Poisson , (b) negative binomial (c) Poisson
inverse gaussian and (d) Sichel distributions respectively
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From the GAIC table above we conclude that the PIG model is the appropriate model. Now
we refit the model and display a summary of the final model.

> modl <- gamlss(failure ~ 1, data = computer, family = PIG, trace = FALSE)
> summary (mod1)

sk sk sk sk sk sk sk sk sk sk ok o o o ok ok sk sk sk sk sk sk sk sk sk sk o o ok ok ok ok sk sk sk sk sk sk sk sk sk sk o o sk sk ok sk sk sk sk sk sk sk sk sk sk s ok ok sk ok ok sk sk ok
Family: c("PIG", "Poisson.Inverse.Gaussian")

Call: gamlss(formula = failure ~ 1, family = PIG, data = computer,
trace = FALSE)

Fitting method: RSQ)

Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) 1.390 0.08355 16.64 1.058e-33

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.3489 0.2387 -1.461 0.1464

No. of observations in the fit: 128
Degrees of Freedom for the fit: 2
Residual Deg. of Freedom: 126
at cycle: 3

Global Deviance: 632.4159
AIC: 636.4159
SBC: 642.12

>k >k >k 3k 5k ok ok 5k 5k >k >k >k >k >k >k 5k 5k 5k 5k 5k >k >k %k >k >k >k >k 5k 5k 5k 5k >k >k %k >k >k >k >k >k 5k 5k 5k >k >k >k >k >k >k >k >k >k 5k 5k >k >k >k >k >k %k >k >k >k >k >k >k >k k

Hence the fitted PIG model for the computer failure data is given by Y ~ PIG(f1, ) where
fi = exp(1.390) = 4.015 and & = exp(—0.3489) = 0.7055, with fitted mean F(Y) = i = 4.015
and fitted variance V (V) = i + 6% = 15.39.
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6.3.2 The lice data

Data summary:

R data file: 1lice in package gamlss.dist of dimensions 71 x 2
source: Williams (1944)
variables

head : the number of head lice

freq : the frequency of prisoners with the number of head lice
purpose: to demonstrate the fitting of a parametric discrete distribution to the data.

conclusion a SICHEL distributions fits best

The following data come from Williams (1944) and they are frequencies (freq) of prisoners
with number of head lice (head), for Hindu male prisoners in Cannamore, South India, 1937-
1939. We fit four different distributions to head and choose between them using AIC:

library(gamlss.dist)

con <- gamlss.control(trace = FALSE, n.cyc = 50)

data(lice)

mPO <- gamlss(head ~ 1, data = lice, family = PO, weights = freq,
trace = FALSE)

mNBI <- gamlss(head ~ 1, data = lice, family = NBI, weights = freq,
trace = FALSE)

mPIG <- gamlss(head ~ 1, data = lice, family = PIG, weights
trace = FALSE)

mSI <- gamlss(head ~ 1, data = lice, family = SICHEL, weights = freq,
n.cyc = 50, trace = FALSE)

AIC(mPO, mNBI, mPIG, mSI)

freq,

V+V+V +V +ViViVYyY

df AIC
mSI 3 4646.214
mNBI 2 4653.687
mPIG 2 4756.275
mPO 1 29174.823

We conclude that the Sichel model explains the data best. The summary of the final fitted
model is shown below:

> summary (mSI)

stk ke sk ok o sk sk sk sk sk sk ok sk sk sk sk sk ko sk sk sk sk sk sk sk ok sk sk kst ko sk sk sk sk sk sk sk sk sk sk sk sk kol sk sk sk sk sk sk sk sk sk sk sk sk sk kokok sk ok ok
Family: c("SICHEL", "Sichel")

Call:
gamlss(formula = head ~ 1, family = SICHEL, data = lice, weights = freq,
n.cyc = 50, trace = FALSE)
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Fitting method: RS()

Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.927 0.07952 24.23 5.965e-104

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 4.806 0.2034 23.63 6.974e-100

Nu link function: identity
Nu Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.004787 0.01595 -0.3002 0.7641

No. of observations in the fit: 1083
Degrees of Freedom for the fit: 3
Residual Deg. of Freedom: 1080
at cycle: 21

Global Deviance: 4640.214
AIC: 4646.214
SBC: 4661.177

>k >k K 3K 3K 3K 3k 5k 5k 3k 5k 5k %k 5k >k 3k 3K 5k 3k 5k 3k 3k 5k >k %k >k 3K 3K 3k 3k 3k %k 5k 5k 5k %K K 3K 3K 5K 5k 3k %k 5k >k >k %k %K 3K 3K 5K 5k 5k %k %k >k >k %k Xk K >k 5 >k %k %k %k k

Hence the fitted SICHEL distribution for the number of head lice (Y =head) is given by
Y ~ SICHEL(ji,6,0) where i = exp(1.927) = 6.869 and & = exp(4.806) = 122.24 and
U = —0.0047, with fitted mean E(Y) = i = 6.869 and fitted variance V(Y') = 432.25, (obtained
using the code VSICHEL (mSI) [1]). Figure 6.6 shows the fitted negative binomial and Sichel
models created by the following R commands. Note that Figure 6.6 only plots the data and
fitted distributions up to y = 10.

op <- par(mfrow = c(2, 1))

ml <- histDist(lice$head, "NBI", freq = lice$freq, xlim = c(O0,
10), main = "NBI distribution", trace = FALSE)

m2 <- histDist(lice$head, "SICHEL", freq = lice$freq, xlim = c(0,
10), main = "Sichel distribution", trace = FALSE, n.cyc = 50)

par (op)

vV + VvV + VvV
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Figure 6.6: The lice data with the fitted (a) negative binomial and (b) Sichel distributions
respectively
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6.3.3 A stylometric application

Data summary:

R data file: stylo in package gamlss.dist of dimensions 64 x 2
source: Dr Mario Corina-Borja

variables

word : is the number of times a word appears in a single text

freq : the frequency of the number of times a word appears in a text
purpose: to demonstrate the fitting of a truncated discrete distribution to the data.

conclusion the truncated SICHEL distributions fits best

The data are from a stylometric application, the discipline which tries to characterize the
style of a text, Chappas and Corina-Borja (2006). Here the response variable, word, is the
number of times a word appears in a single text. The variable freq records the frequency of
the word (i.e. frequency freq is the number of different words which occur exactly word times
in the text). Possible values of word are y = 1,2,3, ..., and since the objective here is to fit an
appropriate distribution to the data we are looking for a zero truncated discrete distribution.
In the specific data we are using, the maximum times that any word appears in the text is 64
(word=64), while the most frequent value of wold is 1 with frequency 947. We first input and
plot the data:

> library(gamlss.dist)

> library(gamlss.tr)

> data(stylo)

> plot(freq ~ word, data = stylo, type = "h", xlim = c(0, 22),
+ xlab = "no of times", ylab = "frequencies", col = "blue")

Note that for plotting we restrict the upper x-limit to 22 since the most of the frequencies
after that have zero values. We will now generate several truncated discrete distributions, using
the function gen.truc() from the package gamlss.tr, to fit them to the data. Specifically we
generate 1) truncated Poisson, ii) truncated negative binomial type II iii) truncated Depalorte
and iv) truncated Sichel. [Note that the truncated negative binomial type I model takes more
that 300 iterations to converge and eventually give the same result as the truncated negative
binomial type II.]

> library(gamlss.tr)
> gen.trun(par = 0, family = PO, type = "left")

A truncated family of distributions from PO has been generated
and saved under the names:

dPOtr pPOtr gqPOtr rPOtr POtr

The type of truncation is left and the truncation parameter is O

> gen.trun(par = 0, family = NBII, type = "left")
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Figure 6.7: The stylometric data: number of time a word appear in a text against the frequencies

A truncated family of distributions from NBII has been generated
and saved under the names:

dNBIItr pNBIItr gNBIItr rNBIItr NBIItr
The type of truncation is left and the truncation parameter is O

> gen.trun(par = 0, family = DEL, type = "left")

A truncated family of distributions from DEL has been generated
and saved under the names:

dDELtr pDELtr qDELtr rDELtr DELtr
The type of truncation is left and the truncation parameter is O

> gen.trun(par = 0, family = SICHEL, type = "left", delta = 0.001)

A truncated family of distributions from SICHEL has been generated
and saved under the names:

dSICHELtr pSICHELtr gSICHELtr rSICHELtr SICHELtr
The type of truncation is left and the truncation parameter is O

We new fit the distributions to the data and choose betwing them using AIC:

mP0 <- gamlss(word ~ 1, weights = freq, data = stylo, family = POtr,
trace = FALSE)

mNBII <- gamlss(word ~ 1, weights = freq, data = stylo, family = NBIItr,
n.cyc = 50, trace = FALSE)

mDEL <- gamlss(word ~ 1, weights = freq, data = stylo, family = DELtr,
n.cyc = 50, trace = FALSE)

mSI <- gamlss(word ~ 1, weights = freq, data = stylo, family = SICHELtr,

vV + VvV + VvV + V
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+ n.cyc = 50, trace = FALSE)
> GAIC(mPO, mNBII, mDEL, mSI)

df AIC
mSI 3 5148.454
mDEL 3 5160.581
mNBII 2 5311.627
mPO 1 9207.459

The best fitted model according to the AIC is the truncated Sichel model. The Depalorte
model performed better than the negaitive binomial type II model. Figure 6.8 shows all of the
fitted models above. The fit of the (zero truncated) Poisson distribution is shown in part (a) of
the Figure 6.8. This is not a very good fit to the data and an improved fit is achieved by using
the (truncated) negative binomial distrinution II in part (b) and the Delaporte distribution in
(¢). The (truncated) Sichel in panel (d) is a superior fit accoriding to both AIC and SBC.
Figure 6.8 was produced using the following code:

> op <- par(mfrow = c(2, 2))

> tabley <- with(stylo, table(rep(word, freq)))

> mNO <- histDist(stylo$word, family = POtr, freq = stylo$freq,

+ main = "(b) Poisson", ylim = c(0, 0.65), xlim = c(1, 26),

+ trace = FALSE)

> mNBII <- histDist(stylo$word, family = NBIItr, freq = stylo$freq,
+ main = "(c¢) negative binomial II", ylim = c(0, 0.65), xlim = c(1,
+ 26), start.from = mNBII, trace = FALSE)

> mDEL <- histDist(stylo$word, family = DELtr, freq = stylo$freq,

+ main = "(c) Delaporte", ylim = c(0, 0.65), xlim = c(1, 26),

+ start.from = mDEL, trace = FALSE)

> mSI <- histDist(stylo$word, family = SICHELtr, freq = stylo$freq,
+ main = "(d) Sichel", ylim = c(0, 0.65), xlim = c(1, 26),

+ start.from = mSI, trace = FALSE)

> par (op)

6.4 Examples: regression analysis

6.4.1 The fish species data

Data summary: the fish species data
R data file: species in package gamlss.dist of dimensions 70 x 2
variables

fish : the number of different species in 70 lakes in the world

lake : the lake area
purpose: to demonstrate the fitting of count data distributions

conclusion:
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(b) Poisson (c) negative binomial Il

© ©

o 7] S 7]

< <

S 7 S 7

N N

o 7] S 7

o o

c T rrrrrTd o

1 4 7 11 15 19 23 1 4 7 11 15 19 23
(c) Delaporte (d) Sichel

© ©

S ] S 7]

< <

o 7 S 7

[9\) N

o 7] S 7

o o

o - e o - T T

1 4 7 11 15 19 23 14 7 11 15 19 23

Figure 6.8: The stylometric data fits with (a) Poisson (b) negative binomial type IT (c¢) Delaporte
and (d) Sichel distributions respectively
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The number of different fish species (fish) was recorded for 70 lakes of the world together

with explanatory variable x=log(lake), i.e. x = log lake area. The data are plotted in Figure
6.9.

> library(gamlss.dist)
> data(species)
> plot(fish ~ log(lake), data = species)
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Figure 6.9: The fish species data

The data are given and analyzed by Stein and Juritz (1988) using a Poisson inverse Gaussian,
PIG(p,0) distribution for fish with a linear model in log(lake) for logpu parameter and a
constant for logo.

Rigby et al. (2008), when analyzing this data set, identified the following questions that
need to be answered. Note that the same questions could apply to any regression type situation
where the response variable is counts and where x represents a set explanatory variables.

e How does the mean of the response variable depend on x?
e Is the response variable overdispersed Poisson?

e How does the variance of the response variable depend on its mean?

What is the distribution of the response variable given x?
e Do the scale and shape parameters of the response variable distribution depend on x?

Here we will model the data using different discrete distributions and consider flexible mod-
els for the distributional parameters, where any or all of them can possibly depend on the
explanatory variable log(lake).
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We start by fitting six different count distributions to the data [Poisson (PO), negative
binomial type I and II (NBI, NBII), poisson inverse Gaussian (PIG), Delaporte (DEL) and
Sichel (SICHEL)] using a first a linear and then a quadratic polynomial in x=log(lake). The
AIC of each model is then printed for comparison:

species$x <- log(species$lake)
fam <- c("PO", "NBI", "NBII", "PIG", "DEL", "SICHEL")
m.1 <- m.q <- list()
for (i in 1:6) {
m.1[[fam[i]]] <- gamlss(fish ~ x, data = species, family = fam[i],
n.cyc = 60, trace = FALSE)$aic
}
for (i in 1:6) {
m.q[[fam[i]]] <- GAIC(gamlss(fish ~ poly(x, 2), data = species,
family = fam[i], n.cyc = 60, trace = FALSE))
}
unlist(m.1)

vV + + + VvV + + + VvV V VvV

PO NBI NBII PIG DEL SICHEL
1900.1562 625.8443 647.5359 623.4638 626.2330 625.4000

> unlist(m.q)

PO NBI NBII PIG DEL SICHEL
1855.2965 622.3173 645.0129 621.3460 623.5816 623.1018

The Poisson model has a very large AIC compared to the rest of the distributions so we can
conclude that the data are overdispersed. The quadratic polynomial in x seems to fit better
than the linear term across the different count distributions. The best model at this stage is the
Poisson inverse Gaussian (PIG) model with a quadratic polynomial in x. We now compare the
AIC of a PIG model with a cubic smoothing spline in x instead of a quadratic polynomial in x.
The total “effective” degrees of freedom for x in the cubic spline model (including the constant
and linear term) is 5 compared to 3 in the quadratic model.

> GAIC(gamlss(fish ~ cs(x), data = species, family = PIG, trace = FALSE))
[1] 623.9339

The cubic smoothing spline does not seem to improve the model, so we keep the quadratic
polynomial in x. We shall now try to model log(o) as a linear function of x in the five remaining
count distributions.

fam <- c("NBI", "NBII", "PIG", "DEL", "SICHEL")
m.ql <- list()
for (i in 1:5) {
m.ql[[fam[i]]] <- GAIC(gamlss(fish ~ poly(x, 2), data = species,
sigma.fo = “x, family = fam[i], n.cyc = 60, trace = FALSE))

}
unlist(m.ql)

vV + + + Vv vV

NBI NBII PIG DEL  SICHEL
614.9565 615.1250 612.3684 614.6059 613.7347
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Modelling log(o) as a linear function of x improves the AIC for all models. The PIG model
is still the “best”. Since the Sichel and the Delaporte distributions have three parameters we
will try to model the third parameter v as a linear function of x. The Sichel uses the identity
as the default link for v while the Delaporte uses the logit.

fam <- c("DEL", "SICHEL")

m.qll <- list()

for (i in 1:2) {

m.qll[[fam[i]]] <- GAIC(gamlss(fish ~ poly(x, 2), data = species,

sigma.fo = "x, nu.fo = "x, family = fam[i], n.cyc = 60,
trace = FALSE))

}

unlist(m.qll)

vV + + + + Vv vV

DEL  SICHEL
614.7376 611.6365

Modelling the v as a linear function of x improves the Sichel model (which now has lower
AIC than the PIG model) but not the Delaporte model. A further simplification of the Sichel
model can be achieved by dropping the linear terms in x for the log(o) model which given the
linear model in x for v does not seem to contribute anything to the fit (a least according to the

AIC):

> GAIC(gamlss(fish ~ poly(x, 2), data = species, sigma.fo = "1,
+ nu.fo = "x, family = SICHEL, n.cyc = 60, trace = FALSE))

[1] 609.7299

The fitted parameters of the “best” Sichel model are shown below. They are obtained by
refitting the model using this time an ordinary quadratic polynomial in x for log(u) model
rather that the orthogonal quadratic polynomial produced by poly(x,2):

> mSI <- gamlss(fish ~ x + I(x"2), sigma.fo = "1, nu.fo = "x, data = species,
+ family = SICHEL, n.cyc = 60)

GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration
GAMLSS-RS iteration

Global Deviance = 613.576

Global Deviance = 602.8399
Global Deviance = 598.3117
Global Deviance = 597.7534
Global Deviance = 597.74

Global Deviance = 597.7313
Global Deviance = 597.7275
Global Deviance = 597.7275

0 ~NO O WN -

> summary (mSI)

stk sk ok sk ok o sk sk ok ok sk sk ok R sk oK R sk K oK K oK R oK K oK oK ok K ok oK ook oK sk ok sk ok sk ok sk ok sk sk sk sk ok ok o
Family: c("SICHEL", "Sichel")

Call:
gamlss(formula = fish ~ x + I(x"2), sigma.formula = “1, nu.formula = ~x,
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family = SICHEL, data = species, n.cyc = 60)

Fitting method: RS()

Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.788804 0.173170 16.10446 1.001e-24
X -0.006788 0.068115 -0.09966 9.209e-01
I(x"2) 0.013972 0.005782 2.41639 1.841e-02

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.3693 0.4361 0.8468 0.4

Nu link function: identity
Nu Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) -10.843 3.3234 -3.263 0.001728
b4 1.048 0.3535 2.965 0.004166

No. of observations in the fit: 70
Degrees of Freedom for the fit: 6
Residual Deg. of Freedom: 64

at cycle: 8

Global Deviance: 597.7275
AIC: 609.7275
SBC: 623.2185

3k >k 3K 3K 3K 3K 5k 5k 5k 5k 5k 5k %k 5k >k 3k 3K 3k 3k 5k 5k 5k 5k 5k %k K 3K 3K 5k 3k 3k 5k 5k 5k 5k %K K 3K 5K 3K 5K 3k %k 5k 5k >k %k % 3K 3K 3K 5k 5k %k 5k 5k >k %k %k >k >k 3 >k >k %k %k k

> plot(fish ~ log(lake), data = species)
> lines(species$x[order (species$lake)], fitted(mSI) [order (species$lake)],
+ col = "red")

The fitted model p together with the data are shown in Figure 6.10. Figures 6.11(a) and
6.11(b) give the fitted distribution of the number of fish species for observation 40, with lake
area of 165 and (fi,6,70) = (22.64,1.44, —5.68), and observation 67, with lake area 8264 and
(1, 6,0) = (47.78,1.44, —1.2), respectively.

> pdf.plot(mSI, c(40, 67), min = 0, max = 110, step = 1)

Table 6.3, taken from Rigby et al. (2008), gives the deviance (DEV), AIC and SBC for
specific models fitted to the fish species data, and is used to answer the questions at the start of
this section. The terms 1, x and x<2> indicate constant, linear and quadratic terms respectively,
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Figure 6.10: Fitted p (the mean number of fish species) against log lake area
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Figure 6.11: Fitted Sichel distributions for observations (a) 40 and (b) 67
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while the term cs(x,2) indicates a cubic smoothing spline with two degrees of freedom on top
of the linear term x.

The following analysis is from Rigby et al. (2008). Comparing models 2, 3 and 4 indicates
that a quadratic model for log p is found to be adequate (while the linear and the cubic spline
models models was found to be inappropriate here). Comparing model 1 and 3 indicates that
Y has a highly overdispersed Poisson distribution. Comparing model 3 with models 5 and
6 shows that either a linear model in x for log(c) or a different variance-mean relationship
from that of the negative binomial (NBI) [i.e V [Y] = u + ou?] is required. In particular the
estimated v parameter in the negative binomial family (NBF) of model 6 is 7 = 2.9 suggesting
a possible variance-mean relationship V [Y] = u + op®. [The binomial family NBF() function
is an experimental gamlss.family function, defined on the ideas of Section 6.2.7, and it is not
fully implemented yet in gamlss]. Modelling ¢ in the NBF did not improve the fit greatly, as
shown by model 7. A search of alternative mixed Poisson distributions (type (a) in Section 6.1),
included the Poisson-inverse Gaussian (PIG), the Sichel (SI) and and the Delaporte (DEL).
The models with the best AIC for each distribution were recorded in Table 6.3 models 8 to
11. A normal random effect mixture distribution (type (b) in Section 6.1) was fitted using
20 Gaussian quadrature to the Poisson and NBI conditional distributions giving models 12
and 13, i.e. Poisson-Normal and NBI-Normal respectively. 'Non-parametric’ random effects
(effectively finite mixtures) (NPFM), type (i) in Section 6.1, were also fitted to Poisson and
NBI conditional distributions giving models 14 and 15, i.e. PO-NPFM(6) and NB-NPFM(2)
with 6 and 2 components respectively. >From category (i) solutions, Efron’s double exponential
(Poisson) distribution was fitted giving model 16 (doublePO). >From category (ii) the best
discretized continuous distribution fitted was a discrete inverse Gaussian distribution giving
model 17 (IGdisc), again suggesting a possible cubic variance-mean relationship.

Overall the best model according to Akaike information criterion (AIC) is model 9, the Sichel
model, following closely by model 11, a Delaporte model. According to the Schwarz Baysien
criterion (SBC) the best model is model 17, the discetized inverse Gaussian distribution, again
followed closely by model 11.

The model in Table 6.3 with the minimum AIC value 609.7 was selected, i.e. model 9,
a Sichel, SI(u,o,v), model fitted earlier in this section, with log i = 2.790 — 0.00679x +
0.014022, 6 = 1.447 and © = —10.843 + 1.048z. For comparison model 11 gives the Dela-
porte, DEL(p,0.v), model (with lowest AIC). Note in model 11 that ¢ = 1 is fixed in the
Delaporte distribution (??) corresponding to a Poisson-shifted exponential distribution, giving
fitted model log fi = 2.787—0.004207x+0.01395922, o = 1 (fixed) and logit 7 = 1.066 —0.2854.

The following code can be used to reproduce the results of Table 6.3. Model 16 is not fitted
here since it requires Jim Lindsay’s package rmutil. For completeness we refit models we fitted
earlier:

library(gamlss.mx)
ml <- gamlss(fish ~ poly(x, 2), data = species, family = PO,
trace = FALSE)
m2 <- gamlss(fish ~ x, data = species, family = NBI, trace = FALSE)
m3 <- gamlss(fish ~ poly(x, 2), data = species, family = NBI,
trace = FALSE)
m4 <- gamlss(fish ~ cs(x, 3), data = species, family = NBI, trace = FALSE)
m5 <- gamlss(fish ~ poly(x, 2), sigma.fo = "x, data = species,
family = NBI, trace = FALSE)
m6 <- gamlss(fish ~ poly(x, 2), sigma.fo = "1, data = species,
family = NBF, n.cyc = 200, trace = FALSE)

+ V+VV+ VYV + VYV
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Table 6.3: Comparison of models for the fish species data

Model  fy(y) 1 c v DEV df AIC  SBC
1 PO r<2> - - 18493 3 1855.3 1862.0
2 NBI T 1 - 6198 3 625.8 632.6
3 NBI r<2> 1 - 6143 4 6223 631.3
4 NBI es(z,3) 1 - 6119 6 6239 6374
5 NBI r<2> x - 6050 5 615.0 626.2
6 NBI-family r<2> 1 1 606.1 5 616.1 627.4
7 NBI-family r<2> x 1 6049 6 6169 6304
8 PIG r<2> 1 - 6133 4 621.3 630.3
9 SI r<2> 1 x 5977 6 609.7 623.2
10 DEL r<2> 1 x 6007 6 612.7 626.2
11 DEL r<2> - x 6006 5 610.6 621.9
12 PO-Normal r<2> 1 - 615.2 4 623.2 632.2
13 NBI-Normal r<2> z 1 603.7 6 615.7 629.2
14 PO-NPFM(6) =z<2> - — 601.9 13 6279 657.2
15 NB-NPFM(2) z<2> 1 — 611.9 6 6239 6374
16 doublePO r<2> x - 6164 5 6264 637.6
17 IGdisc r<2> 1 - 6033 4 611.3 620.3

m7 <- gamlss(fish ~ poly(x, 2), sigma.fo = “x, data = species,
family = NBF, n.cyc = 100, trace = FALSE)

m8 <- gamlss(fish ~ poly(x, 2), data = species, family = PIG,
trace = FALSE)

trace = FALSE)

m10 <- gamlss(fish ~ poly(x, 2), nu.fo = “x, data
family = DEL, n.cyc = 50, trace = FALSE)

m11 <- gamlss(fish ~ poly(x, 2), nu.fo = "x, data = species,
family = DEL, sigma.fix = TRUE, sigma.start = 1, n.cyc = 50,
trace = FALSE)

m12 <- gamlssNP(fish ~ poly(x, 2), data = species, mixture = '"gq",
K = 20, family = PO)

species,

+ V+4+V+VE+V+VEYV

1..2..3..4.5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..104 .

EM algorithm met convergence criteria at iteration 105
Global deviance trend plotted.

> m13 <- gamlssNP(fish ~ poly(x, 2), sigma.fo = “x, data = species,
+ mixture = "gq", K = 20, family = NBI)

1..2.3..4.5..6..7..8..9..10..11 ..12 ..13 ..14 ..15 ..16 ..45 .

EM algorithm met convergence criteria at iteration 46
Global deviance trend plotted.

n n

> m14 <- gamlssNP(fish ~ poly(x, 2), data = species, mixture = "np",
+ K = 6, family = PO)

135

m9 <- gamlss(fish ~ poly(x, 2), nu.fo = “x, data = species, family = SICHEL,

.46 ..

.105 ..
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1..2..3..4..5..6..7..8..9..10 ..11 ..12 ..

EM algorithm met convergence criteria at iteration 12
Global deviance trend plotted.

EM Trajectories plotted.

> m15 <- gamlssNP(fish ~ poly(x, 2), data = species, mixture = "np",
+ K = 2, family = NBI)

1..2..3..4.5..6..7..8..9..10..11 ..12 ..13 ..14 ..15 ..16 ..51 ..52 ..

EM algorithm met convergence criteria at iteration 52
Global deviance trend plotted.
EM Trajectories plotted.

> library(gamlss.cens)

> m17 <- gamlss(Surv(fish, fish + 1, type = "interval2")
+ I(x"2), sigma.fo = 1, data = species, family = cens(IG,
+ type = "interval"))

x +

GAMLSS-RS iteration 1: Global Deviance = 603.2793
GAMLSS-RS iteration 2: Global Deviance = 603.2793

> GAIC(m1, m2, m3, m4, m5, m6, m7, m8, m9, mi10, mil, mi12, mi3,
+ mi4, m15, m17)

df AIC
m9 6.00000 609.7299
mll 5.00000 610.6493
ml7 4.00000 611.2793
ml0 6.00000 612.6593
m6 5.00000 614.9565
ml3 6.00000 615.7281
m6 5.00000 616.0828
m7 6.00000 616.9229
m8 4.00000 621.3460
m3 4.00000 622.3173
ml2 4.00000 623.2455
ml5 6.00000 623.8794
m4 5.99924 623.9085
m2 3.00000 625.8443

ml4 13.00000 627.9431
ml 3.00000 1855.2965

6.5 Bibliography

Appendix of Chapter 6: Skewness and kurtosis for the
(mixed) Poisson distributions.

Let Y|y ~PO(wy) and « have a distribution with cumulative generating function K. (t), then
the cumulative generating function of the marginal distribution of Y, Ky (), is given by

Ky(t) =K, [p(e" = 1)]
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and hence, assuming that v has mean 1, the cumulants of Y and v are related by E (V) = pu,
V(Y)=p+p?V(y,), , ,
Kgy = p+ 3"V (7) + Ky,

Kay = p+ TPV (7) + 64 kg + 't fay,

where k3y and k4y are the third and fourth cumulants of Y
The skewness and kurtosis of Y are /B, = sy /[V (Y)]'® and 8, = 3+ {/434)// [V(Y)]Z}

respectively. Specific marginal distributions for Y are considered below.

Poisson distribution

If Y has a Poisson, PO(u), distribution then the mean, variance, skewness and kurtosis of Y’
are respectively given by E(Y) = u, V(Y) = u, VB1 = p7 %5, o = 3+ (1/p).

Negative binomial distribution

If Y has a negative binomial type I, NBI(u, o), distribution then E(Y) = u, V(Y) = u + ou?,

VB = (14 2u0) / [u(1 + po)]”® and
P2 =3+ (1+6uo +6p20?) / [u(1 + po)].

Delaporte distribution
If Y has a Delaporte, DEL(u,0,v), distribution then E(Y) = p, V(Y) = p + op?(1 — v)?,
VIB1) = 1 [1+3p0(1 — v)? + 22021 — )] / [V(Y)]"® and

By =3+ {u (14 Tuo(1 — v)2 + 12p%02(1 — v)® + 6°03(1 — v)4] / [V(Y)F} .

Poison-shifted generalized inverse Gaussian (PSGIG) distribution

If Y has a PSGIG(u, 0, v, 7) distribution then the mean, variance skewness and kurtosis of ¥’
are obtained from the equations given at the start of this Appendix, where the cumulants of the
mixing distribution v ~ SGIG(1,0'/2,v,7), defined by Z = (v — 7)/(1 — 7) ~ GIG(1,0?,v)
and equation 6.1, are given by E(y) = 1,
V() =01-12V(Z)=(1-7) g,
Koy = (1= 7)°kaz = (1= 7)% [92 — 311,

Kay = (1 — T)3K4Z =(1- 7')4 (gg —4gs + 691 — ng) ,

where
g1 =[1/ +20(v+1)/c—1],
g2 =20(v+2)/+ [4c*(v + 1) (v +2) + 1] /* — 1,
g3 =[14+40*(v+2)(v+3)] /" + [80* (v + 1) (v +2)(v + 3) + do(v + 2)] /* — 1,

obtained from Z = (y —7)/(1 —7) ~ GIG(1,0'/2,v), where the cumulant generating functions
of v and Z are related by K, (t) =7t + Kz [(1 — 7)t].

The corresponding results for the Sichel distribution for Y are given by setting 7 = 0 in the
above results for the PSGIG distribution for Y.
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Exercises for Chapter 6

e Q1 Gupta et al. (1996) present the following data giving the number of Lamb foetal
movements y observed with frequency f recorded by ultrasound over 240 consecutive five
second intervals:

y

O 1| 2|3|4|5]|6

f

182 141 (122|200 |1

(a)

Fit each of the following distributions for y to the data (using different model names
e.g. mPO etc. for later comparison): PO(u), NBI(u,0), NBII(u,0), PIG(u, o),
SICHEL(u, 0,v), DEL(u, 0,v) and ZIP(u,0). [Note that the default fitting method
RS may be slow for the Sichel distribution, so try using e.g. method=mixed(2,100),
which performs 2 iterations of the RS algorithm, followed by (up to) 100 iterations
of the CG algorithm.]

Use the AIC command with each of the penalties k = 2, 3.8 and 5.48=log(240),
[corresponding to criteria AIC, x3 5 and SBC respectively], in order to select a
distribution model. Output the parameter estimates for your chosen model. [Note
that the residuals for frequency data are not currently implemented.]

References: Gupta, P.L., Gupta, R.C. and Tripathi, R.C. (1996) Analysis of zero-adjusted
count data. Computational Statistics and Data Analysis, 23, 207-218.

e Q2 The USA National AIDS Behavioural Study recorded y, the number of times indi-
viduals engaged in risky sexual behaviour during the previous six months, together with
two explanatory factors sex of individual (male or female) and whether they has a risky
partner risky (no or yes), giving the following frequency distributions:

y 0O 1| 2| 3[4 |5|5|7[10]12|15|20 30|37 |50
male,no 541|119 |17 116 |3|6|5|2| 6| 1| 0| 3| 1| 0] O
male,yes 102 5| 8 211141110 0| O 1 0| O 1 0
femaleno | 238 | 8| 0 21111 (1]1 0| O 1 0| 0| 0] O
femalejyes | 103 | 6 | 4| 2(0[1]0(0] O O O] O O O] 1

The data were previously analysed by Heilbron (1994).

(a)

Read the above frequencies (corresponding to the male yes, male no, female yes,
female no rows of the above table) into a variable f. Read the corresponding count
values into y. buy using y<-rep((c(0:7),10,12,15,20,30,37,50) ,4). Generate a
single factor type for type of individual with four levels (corresponding to male yes,
male no, female yes, female no) by type<-gl(4,15).

Fit each of the following distributions for y to the data (using different model names
for later comparison): PO (p), NBI(u, o), NBII(u,0), PIG(y,0), SICHEL(u, o, v),
DEL(u,0,v) and ZIP(u,0), using factor type for the mean model and a constant
scale (and shape).

Use the AIC command with each of the penalties k = 2, 3 and 4, in order to select
a distribution model.

Check whether your chosen distribution model needs the factor type in its scale (and
shape) models. Check whether the factor type is needed in the mean model.
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(e) Output the parameter estimates for your chosen model.

References: Heilbron, D.C. (1994) Zero-Altered and Other Regression Models for Count
Data with Added Zeros. Biometrical Journal, 36, 531-547.
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Chapter 7

Discrete response: binary and
binomial data

7.1 Available distributions

The binomial distribution is denoted BI(n, 1)) in gamlss for y = 0,1,...,n, where 0 < u < 1
and n is a known positive integer called the binomial denominator, (bd in the R code). The
binomial distribution has mean nyu and variance nu(1 — p).

The beta binomial distribution, is denoted BB(n, i, o) in gamlss for y = 0,1,...,n, where
0 < p <1 >0 and n is a known positive integer, has mean np and variance nu(l —
w)[1+0o(n—1)/(1+ o)] and hence provides a model for overdispersed binomial data.

7.2 Examples of fitting binomial data

7.2.1 The alveolar-bronchiolar adenomas data

Data summary:

R data file: alveolar in package gamlss.dist of dimensions 23 x 2
source: Tamura and Young (1987), and Hand et al. (1994)
variables

r : number of mice having alveolar-bronchiolar

n : total number of mice
purpose: to demonstrate the fitting of a binomial distribution to the data.

conclusion a binomial distribution is adequate

Here we consider the alveolar-bronchiolar adenomas data used by Tamura and Young (1987)
and also reproduced in Hand et al. (1994), data set 256. The data are the number of mice having
alveolar-bronchiolar adenomas out of total numbers of mice (i.e. the “binomial denominator”)
in 23 independent groups.

141
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For binomial type of data with no explainatory variables the histDist () can still be used
but with a limited scope. The plot works fine if the 'binomial denominator’ is constant for all
observations. In this case we can plot a histogram of y against the number of events from zero
to the constant ’binomial denominator’, and then superimpose the fitted probabilities from the
fitted binomial distribution. When the binomial denominator is not constant for all observations
then histDist () plots a histogram of the proportions (which may be of some interest) and then
indicates where the fitted proportion lies:

library(gamlss.dist)

data(alveolar)

alveolar$y <- with(alveolar, cbind(r, n - r))

con <- gamlss.control(trace = F)

ml <- gamlss(y ~ 1, data = alveolar, family = BI, control = con)
m2 <- gamlss(y ~ 1, data = alveolar, family = BB, control = con)
GAIC(m1, m2)

V VVVVYVYyV

df AIC
ml 1 73.1292
m2 2 75.0665

> m3 <- with(alveolar, histDist(y, "BI", xlim = c(0, 0.3)))

GAMLSS-RS iteration 1: Global Deviance = 71.1292
GAMLSS-RS iteration 2: Global Deviance = 71.1292

proportions of y

15

10

f0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

proportions

Figure 7.1: The proportion of alveolar-bronchiolar adenomas

With the two models having similar deviances there is no support from the data to favour
the beta binomial model instead of the binomial one. Figure 7.1 shows the histogram of propor-
tion of mice having alveolar-bronchiolar adenomas and the red vertical line indicates the fitted
probability.
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In order to demonstrate what would have happen in the plot if the binomial denominator
was the same for all observations we fix it in the above data to be 10.

> alveolar$yy <- with(alveolar, cbind(r, 10 - r))

> ml <- gamlss(yy ~ 1, data = alveolar, family = BI, control
> m2 <- gamlss(yy ~ 1, data = alveolar, family = BB, control
> GAIC(m1, m2)

con)
con)

df AIC
m2 2 88.9301
ml 1 104.7267

> m3 <- histDist(alveolar$yy, "BB")

GAMLSS-RS iteration 1: Global Deviance = 87.4166
GAMLSS-RS iteration 2: Global Deviance = 85.0155
GAMLSS-RS iteration 3: Global Deviance = 84.9312
GAMLSS-RS iteration 4: Global Deviance = 84.9301
GAMLSS-RS iteration 5: Global Deviance = 84.9301

0.30
|

0.20
|

0.10
|

0.00
| |
——0
_3
E:}

Figure 7.2: The proportion and fitted distribution to the artificial alveolar-bronchiolar adenomas
data
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7.2.2 The first year student examination results data

Data summary:

R data file: students created here of dimensions 8 x 2
source: Karlis and Xekalaki (2008)

variables

r : number of exams first year students passed out of 8 in total

freq : the frequency (i.e. the number od students) for the number of exams passed

purpose: to demonstrate the fitting of a binomial distribution to the data when the bino-
mial denominator is fixed.

conclusion a beta binomial distribution is adequate

Here we demonstrate the fitting of a binomial type data response variable given that the
binomial denominator if constant. The data shown in Table 7.1 (first used by Karlis and
Xekalaki, 2008) refer to the numbers of courses passed, r, and their frequency, freq, of a class
of 65 first year students. The students enrolled for a 8 course during the year. The variable n.r
in table 7.1 is define as 8 — r.

r nr freq
0.00 8.00 1.00
1.00 7.00  4.00
2.00 6.00 4.00
3.00 5.00 8.00
4.00 4.00  9.00
5.00 3.00 6.00
6.00 2.00 8.00
7.00 1.00 12.00
8.00 0.00 13.00

© 00O Ui Wi+

Table 7.1: The first year student examination results data where the binomial denominator is
constant at 8.

Now we create the data and fit a binomial and a beta binomial distribution. We then select
a model using AIC.

trace = FALSE)
GAIC(m1, m2)

>r <- 0:8

> freq <- c(1, 4, 4, 8, 9, 6, 8, 12, 13)

> y <- cbind(r, 8 - r)

> colnames(y) <- c("r", "n-r")

> students <- data.frame(y, freq)

> ml <- gamlss(y ~ 1, weights = freq, data = students, family = BI,
+ trace = FALSE)

> m2 <- gamlss(y ~ 1, weights = freq, data = students, family = BB,
+

>
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df AIC
m2 2 273.4987
ml 1 339.6467

The beta binomial model has a superior fit. This is also demonstrated in Figure 7.3 where
the fitted probabilities from the two models are plotted. The figures were produced using the
following code:

> op <- par(mfrow = c(2, 1))

> m3 <- with(students, histDist(cbind(rep(y[, 1], freq), rep(yl[,

+ 2], freq)), family = BI, ylim = c(0, 0.3), xlab = "number of courses passed",
+ ylab = "probability", main = "(a) binomial"))

337.6467
337.6467

GAMLSS-RS iteration 1: Global Deviance
GAMLSS-RS iteration 2: Global Deviance

> m4 <- with(students, histDist(cbind(rep(y[, 11, freq), rep(yl[,
+ 2], freq)), family = BB, ylim = c(0, 0.3), xlab = "number of courses passed",
+ ylab = "probability", main = "(b) beta binomial"))

GAMLSS-RS iteration 1: Global Deviance = 270.2592

GAMLSS-RS iteration 2: Global Deviance = 269.4993
GAMLSS-RS iteration 3: Global Deviance = 269.4987
> par (op)
= ‘
Y 51 —CmEml] i I
o 1 2 3 a 5 6 7 8
number of exams passed
= PN
5] omuml] s 1]
o 1 2 3 a 5 6 7 8

number of exams passed

Figure 7.3: The first year student examination results data: Fitted probabilities (a) binomial
(b) beta binomial distributions
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7.2.3 The hospital stay data

Data summary:
R data file: aep in package gamlss of dimensions 1383 x 8
source: Gange et al. (1996)
variables
los : total number of days
noinap : number of inappropriate days patient stay in hospital
loglos : the log of los/10
sex : the gender of patient
ward : type of ward in the hospital (medical, surgical or other)
year : 1988 or 1990
age : age of the patient subtracted from 55

y : the response variable, a matrix with columns noinap, los-noinap
purpose: to demonstrate the fitting of a beta binomial distribution to the data.

conclusion a beta binomial distribution is needed

The data, 1383 observations, are from a study at the Hospital del Mar, Barcelona during
the years 1988 and 1990, see Gange et al. (1996). The response variable is the number of
inappropriate days (noinap) out of the total number of days (los) patients spent in hospital.
Each patient was assessed for inappropriate stay on each day by two physicians who used the
appropriateness evaluation protocol (AEP), see Gange et al. (1996) and their references for
more details. The following variables were used as explanatory variables, age, sex, ward, year
and loglos.

A plot of the inappropriateness rates ninap/los against age, sex, ward and year are shown
in Figure 7.4 obtained by:

> data(aep)

> prop <- with(aep, noinap/los)

> op <- par(mfrow = c(2, 2))

> plot(prop ~ age, data = aep, cex = los/30)
> plot(prop ~ sex, data = aep)

> plot(prop ~ ward, data = aep)

> plot(prop ~ year, data = aep)

> par (op)

Gange et al. (1996) used a logistic regression model for the number of inappropriate days,
with binomial and beta binomial errors and found that the later provided a better fit to the
data. They modelled both the mean and the dispersion of the beta binomial distribution (BB)
as functions of explanatory variables using the epidemiological package EGRET, Cytel Software
Corporation (2001), which allowed them to fit a parametric model using a logit link for the
mean and an identity link for the dispersion. Their final model was a beta binomial model
BB(u,0), with terms ward, year and loglos in the model for logit(u) and term year for
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Figure 7.4: The rate of appropriateness against age, sex, ward and year
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model for o.

First we fit their final model, equivalent to model I in Table 7.2. Although we use a log
link for the dispersion ¢ in Table 7.2, this does not affect model I since year is a factor. Table
7.2 shows the GD, AIC and SBC for model I, 4519.4, 4533.4 and 4570.08 respectively. Here we
are interested in whether we can improve the model using the flexibility of GAMLSS. For the
dispersion parameter model we found that the addition of ward improves the fit (see model II in
Table 7.2 with AIC = 4501.02, SBC = 4548.11) but no other term was found to be significant.
Non-linearities in the mean model for the terms loglos and age were investigated using cubic
smoothing splines (cs) in models IIT and IV. There is strong support for including a smoothing
term for loglos as indicated by the reduction in the AIC and SBC for model III compared to
model II. The inclusion of a smoothing term for age is not so clear cut since while there is some
marginal support from the AIC it is rejected strongly from SBC, when comparing model III to
model IV. The R script for fitting the models in Table 7.2 is shown below:

> mI <- gamlss(y ~ ward + year + loglos, sigma.fo = “year, family = BB,

+ data = aep, trace = FALSE)

> mII <- gamlss(y ~ ward + year + loglos, sigma.fo = “year + ward,

+ family = BB, data = aep, trace = FALSE)

> mIII <- gamlss(y ~ ward + year + cs(loglos, 1), sigma.fo = “year +

+ ward, family = BB, data = aep, trace = FALSE)

> mIV <- gamlss(y ~ ward + year + cs(loglos, 1) + cs(age, 1), sigma.fo = “year +
+ ward, family = BB, data = aep, trace = FALSE)

> GAIC(mI, mII, mIII, mIV, k = 0)

df AIC
mIV 12.00010 4454.362
mIII 10.00045 4459.427
mII 9.00000 4483.020
mI 7.00000 4519.441

> GAIC(mI, mII, mIII, mIV)

df AIC
mIV 12.00010 4478.362
mIII 10.00045 4479.427
mII 9.00000 4501.020
mI 7.00000 4533.441

> GAIC(mI, mII, mIITI, mIV, k = log(length(aep$age)))

df AIC
mIIT 10.00045 4531.750
mIV 12.00010 4541.147
mII 9.00000 4548.108
mI 7.00000 4570.065

Note also that the model IV can also be improved marginally by changing the logistic link
for the mean to a probit link giving GD = 4452.36, AIC = 4476.36 aand SBC = 4539.14 as
shown below:
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Table 7.2: Models for the AEP data

Models | Links Terms GD

(AIC)

[SBC]

I logit(p) | 1+ward+loglos+year 4519.4
log(o) 1+year (4533.4)
[4570.1]

II logit(p) | 1+ward+loglos+year 4483.0
log(o) 1+year+ward (4501.0)
[4548.1]

III logit(u) | 1+ward+cs(loglos,2)+year 4459.4
log(o) 1+year+ward (4479.4)
[4531.8]

v logit(p) | 1+ward+cs(loglos,2)+year+cs(age,2) | 4454.4
log(o) 1+year+ward (4478.4)
[4541.2]

> (mIV1 <- gamlss(y ~ ward + year + cs(loglos, 1) + cs(age, 1),
+ sigma.fo = “year + ward, family = BB(mu.link = "probit"),
+ data = aep, trace = FALSE))

Family: c("BB", "Beta Binomial")
Fitting method: RS()

Call: gamlss(formula = y ~ ward + year + cs(loglos, 1) + cs(age, 1),
sigma.formula = “year + ward, family = BB(mu.link = "probit"),

data = aep, trace = FALSE)

Mu Coefficients:

(Intercept) ward?2 ward3 year90 cs(loglos, 1)
-0.667316 -0.244238 -0.473429 0.151170 0.240327
cs(age, 1)
0.002647
Sigma Coefficients:
(Intercept) year90 ward?2 ward3
0.2953 -0.3729 -0.7172 -1.1713

Degrees of Freedom for the fit: 12.00011 Residual Deg. of Freedom 1371
Global Deviance: 4452.36

AIC: 4476.36

SBC: 4539.14

The fitted functions for all the terms for p in model IV are shown in Figure 7.5. The fitted
terms for o are shown in Figure 7.6. They have been obtained using the function term.plot ()
as follows:

> op <- par(mfrow = c(2, 2))
> term.plot(mIV, se = T)
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> par (op)
> op <- par(mfrow = c(2, 1))
> term.plot(mIV, "sigma", se = T)

> par (op)
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Figure 7.5: The fitted terms for p in model IV

Figure 7.7 displays six instances of the normalized randomised quantile residuals (see Section
2.6.5) from model TV. The residuals seem to be satisfactory. The figure is generated using the
function rqres.plot():

> rqres.plot(mIV)
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Figure 7.6: The fitted terms for ¢ in model IV
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Figure 7.7: Six instances of the normalized randomised quantile residuals for model



Chapter 8

Fitting Finite Mixture
Distributions

This Chapter covers finite mixtures within GAMLSS. In general finite mixture distributions
are fitted within GAMLSS using the EM algorithm. Certain specific mixtures distributions
are explicitly available in gamlss packages. The zero inflated Poisson (ZIP and ZIP2) the zero
adjusted (inflated) inverse Gaussian (ZAIG), and the four parameter beta inflated at zero and
one (BEINF).

8.1 Introduction to finite mixtures

Suppose that the random variable Y comes from component k, having probability (density)
function fi(y), with probability m; for £ = 1,2,..., K, then the (marginal) density of Y is
given by

K
) = Y mfiy) (8.1)
k=1

where 0 < 7, < 1 is the prior (or mixing) probability of component k, for k = 1,2,..., K and
Zszl T, = L.

More generally the probability (density) function f;(y) for component & may depend on
parameters 0 and explanatory variables xy, i.e. fr(y) = fr(y|Ok,Xk).

Similarly fy(y) depends on parameters ¥ = (0, m) where 8 = (01,05,...,0x) and w1 =

(1,72, ..,k ) and explanatory variables x = (x1,Xa,...,Xk), i.e. fy(y) = fy(y|¥,x), and
K

Frlylg,x) = > e fr(ylOr xx) (8.2)
k=1

Subsequently we omit the conditioning on 6y, x; and 9 to simplify the presentation. In Sections
8.2, 8.3 and 8.7 we consider respectively maximum likelihood estimation, the corresponding fit-
ting function gamlssMX and examples for finite mixtures models with no parameters in common,
while in Sections 8.5, 8.6 and 8.7 we consider respectively maximum likelihood estimation, the
corresponding fitting function gamlssNP and examples for finite mixture models with parame-
ters in common. Throughout this chapter we will assume that all K components of the mixture
can be represented by GAMLSS models.

153



154 CHAPTER 8. FITTING FINITE MIXTURE DISTRIBUTIONS

8.2 Finite mixtures with no parameters in common

Here the parameter sets (01,05, . .., 0y) are distinct, i.e. no parameter is common to two or more
parameters sets. Note that what this means in practice within GAMLSS is that the conditional
distribution components in (8.1), fx(y), can have different gamlss.family distributions, e.g.
one can be GA and the other IG.

8.2.1 The likelihood function

Given n independent observations y; for i = 1,2,...,n, from finite mixture model (8.2), the
likelihood function is given by

K
L- ny W =TI [z m@»] 3
= k=1

i=1

where y = (y1, 92, -, Yn), fx(¥i) = fx(yi|Ok, Xki), with log likelihood function given by

n K
y) =Y log [Z kak(yi)l (8.4)
i=1 k=1

We wish to maximize ¢ with respect to 1, i.e. with respect to @ and 7. The problem is that the
log function between the two summations in (8.4) makes it difficult. One solution, especially for
simple mixtures where no explanatory variables are involved, is to use a numerical maximization
technique, e.g. function optim in R, to maximize the log likelihood in (8.4) numerically, see for
example Venables and Ripley (2002) Chapter 16.

8.2.2 Maximizing the likelihood function using the EM algorithm

Here we will use the EM algorithm, (Dempser, Laird and Rubin, 1977) to maximize (8.4) with
respect to v, treating all the component indicator variables (i.e 8, defined below) as missing
variables.

Let

- { 1, if observation i comes from component k (8.5)

0, otherwise

for k=1,2,....,Kandi=1,2,...,n. Let JiT = (0;1,0i2,-..,0;) be the indicator vector for
observation 4. If observation ¢ comes from component k then d; is a vector of zeros, except for
the k' value which is 8, = 1. Let 87 = (87,02 ,...,82) combine all the indicator variable
vectors. Then the complete data, i.e. observed y and unobserved d, has complete likelihood
function given by

— Lc(¢7 Yy, 6)

6) = Hf(yu(sz)

(yild:) f(9:)

f
{H Fuys) P my }} (8.6)

k=1

Il
=

i=1

I
=

i
N

%
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since if §;; =1 and §,;,» = 0 for K # k, then
f(yild:)f(d:) = Fryi)me,
= Jk(yi)éikﬁkm
=TTy frlys)day™
and hence f(y;]8:) f(8;) = [Ty fi(ys)**m)* for all §;.
From (8.6) the complete log likelihood is given by

n K

le(h,y, 8 Zz@k log f(yi) + D Y dix logmy, (8.7)

i=1 k=1 =1 k=1

If 6 were known then, since 01, 6, ... 0 have no parameter in common, ¢, could be maxi-
mized over each 8y separately, since the likelihood separates.

The EM algorithm alternates between the E-step and the M-step until convergence. Iteration
(r 4+ 1) of the EM algorithm comprises an E-step followed by an M-step.

E-step
At the (r + 1) iteration, the E-step finds the conditional expectation of the complete data

log likelihood (8.7), over the missing 4, given y and the current parameter estimates 1,Ab(r) from
iteration r, i.e.

Q = Eg [fcly@(r)}

K n
= ZZ o log fr(y) + 3w logm, (8.8)

k=11i=1 k=1i=1
where
agt = B [5ik|Ya"2’(T)}
= [tepn =11y, 7)) + [0+ w60 = 11y 8"
= =1y, 9"
= p(0ik = 1lyi, (r))
_ Pk = 1yl ))
Fitd”)
e =1,9") pos = 119"
Pt
_ Al <
S A ity |
Note that w(TH) (i = 1|ys, ¥ )) is the posterior probability that observation y; comes

from component k, given y; and given 1 = i[)(r , while 7 A(T) =p(di = 1\1,Ab(r)) is the prior (or



156 CHAPTER 8. FITTING FINITE MIXTURE DISTRIBUTIONS

mixing) probability that observation y; comes from component k, given @ = 'tAb(r) only. On

+(00) (00)
k

convergence, i.e. r = 00, W, ~ and 7 are the estimated posterior and prior probabilities

that the observation y; comes from component k. respectively, since 1 is estimated by @b(w).

M-step

At the (r + 1) iteration, the M step maximizes Q with respect to 1. Since the parameters
0 in fi(y;) for k = 1,2,..., K are distinct, (i.e. there are no parameters in common to two

or more 0;’s), @ can be maximized with respect to each 6 by maximizing separately the

k' part of the first term in (8.8), i.e. maximize ) ., LDE,:H) log fx(y;) with respect to 0y, for

k=1,2,..., K. Assuming, for k = 1,2,..., K, that the k component follows a GAMLSS model,
this is just a weighted log likelihood for a GAMLSS model with weights w§;+1> fori=1,2,...,n.
Also the parameter 7 only occurs in the second term in (8.8) and so can be estimated by
maximimazing the second term, subject to 2571 mr = 1,1i.e. where mp, =1— ZkK;ll Tk, leading
tory T =15 @Gt for k=1,2,..., K.

Summary of the (r + 1) iteration of the EM algorithm

E-step Replace ;1 in (8.7) by u?fzﬂ) [its conditional expectation given y and given the current

estimate Q,AZJ(T) from iteration 7] obtained from (8.9) for k=1,2,..., K and i =1,2,...,n
to give (8.8).

M-step

A(r+1
(1) for each k = 1,2..., K, obtain 8, " by fitting the GAMLSS model for the k'
component to dependent variable y with explanatory variables x; using prior weights

VAVI(JH)7 where W;;F = (W1k, Woky - -, Wnk),
2) &7 =15 @Gt for k=1,2..., K,
3) " = [é““),fr(r“) where 6 = (01,65, ...,0x).

8.2.3 Modelling the mixing probabilities

Here we extend the finite mixture model by assuming that the mixing probabilities ) for
k=1,2,..., K for observations ¢ = 1,2, ..., n are not fixed constants but depend on explanatory
variables xg and parameters a, and hence depend on 4, so fy;(y;) = Zszl ik S (y:). We model
the mixing probabilities m;; using a multinomial logistic model where §; is a single draw from
a multinomial distribution with probability vector =, i.e. §; ~ M(1,7) and

TiK

log [m} P . (8.10)
fork=1,2,...,Kandi=1,2,...,n. Hence

Ty .
o — e {eixoi} (8.11)

B Zszl exp {anOi}
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fork=1,2,...,Kandi=1,2,...,n where ax = 0. Consequently the complete log likelihood
is given by replacing 7 by 7 in equation (8.7) to give

1/) y7 Zzézk 1Og fk yz + szzk logﬂ-zk (812)

i=1 k=1 i=1 k=1

This results in replacing 7, with 7 in equations (8.8) and (8.9) of the EM algorithm, i.e.

K n K n
Q = ZZU}( logf;€ yi) + ZZ 2D Jog 7 (8.13)
k

=11:=1 k=1 1i=1

where

~(7r ~(r)
S0 _ i) fe(yil0y)

(8.14)
SR A (il

Summary of the (r + 1)*" iteration of the EM algorithm

E-step Replace d;; in (8.12) by w(H_ ). obtained from (8.14), for k = 1,2,...,K and i =
1,2,...,n, to give (8.13).

M-step

(1) for each k = 1,2..., K, obtain 8, ", by fitting the GAMLSS model for the k'

component to response variable y with explanatory variables xj, using weights W (TH),

where Wk = (W1k, Woky - - -, Wnk),

(2) obtain &+ by fitting multinomial logistic model (8.10) to pseudo multinomial
response variable y, with expanded explanatory variables xg. using prior weights
& (r+1)
w )

3) " = [(é“*l),d(’“*l)) where 0 = (81,05, ...,0x).

Note that M-step (2) is achieved by expanding the data set K times as shown in Table 8.1.
That is, by setting up the pseudo multinomial response variable yg , taking data values ygik,

where subscript p stands for pseudo and where yg;k = (0,0,...,0,1,...,0) is a vector of zeros
except for one in the k" cell, for k=1,2..., K and i = 1,2, ..., n, prior weight variable w("+1)
[where wT' = (Wi, wi, ..., wk) and W} = (0], wl,,..., wT, ) for k=1,2,..., K] and fitting

a multinomial model to y, based on expanded explanatory variable x¢. using weights w1,

8.2.4 Zero components

Special cases of the models described above are distributions which we described earlier as
type mixed. For example, the zero adjusted inverse Gaussian distribution (ZAIG) described in
Appendix 10.6.5 can be thought of as a finite mixture where the first component is identically
zero, i.e. y = 0, with probability 1. Hence

if y=0

0, otherwise. (8.15)
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k| ye | Xoe Xie Xke | multinomial response y, | weights w( D)

1

1] y| Xo Xy Xx|1 0 0 ... 0 wi
n 1
1| 2

2| y| Xo Xy Xxk|0 1 0 0 Wity
n 2

K
2| K| y| Xo Xy Xk |0 0 0 .. 1 wirty
n| K

Table 8.1: Table showing the expansion of data for fitting the multinomial model at M step (2)
of the EM algorithm

Distributions of this type can be also fitted with the EM algorithm described in the previous
section. The EM algorithm only changes in M-step (1) where the fitting of the first component
is omitted (since it has no parameters). The rest of the algorithm is unchanged.

8.3 The gamlssMX() function

The function to fit finite mixtures with no parameters in common is gamlssMX (). In this section
we describe how it works. Examples of using the function are given in the next section. The
function gamlssMX() has the following arguments:

formula This argument should be a single formula (or a list of formulae of length K the

number of components in the mixture) for modelling the predictor for the p parameter
of the model. If a single formula is used then the K mixture components have the same
predictor for u, but different parameters in their predictors (since there are no parameters
in common to two or more of the K components). Note that modelling the rest of the
distributional parameters can be done by using the usual gamlss() formula arguments,
e.g. sigma.fo=~x , which passes the arguments to gamlss(). Again either a single
common formula or a list of formula of length K is used.

pi.formula This should be a formula for modelling the predictor for prior (or mixing) probabil-

family This should be a gamlss.family distribution (or a list of K distributions).

ities as a function of explanatory variables in the multinomial model (8.10). The default
model is constants for the prior (or mixing) probabilities. Note that no smoothing or
other additive terms are allowed here, only the usual linear terms. The modelling here is
done using the multinom() function from package nnet.

Note
that if different distributions are used here, it is preferable (but not essential) that their
parameters are comparable for ease of interpretation.
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weights For declaring prior weights if needed.
K For declaring the number of components in the finite mixture with default K=2
prob For setting starting values for the prior probabilities.

data The data frame containing the variables in the fit. Note that this is compulsory if
pi.formula is used for modelling the prior (or mixing) probabilities.

control This argument sets the control parameters for the EM iterations algorithm. The
default setting are given in the MX.control function

g.control This argument can be used to pass to gamlss () control parameters, as in gamlss.control.

zero.component This argument declares whether or not there is a zero component, i.e. y
identically equal to zero, y = 0, in the finite mixture.

. For extra arguments to be passed to gamlss().

8.4 Examples using the gamlssMX() function

8.4.1 The enzyme data

Data summary:
R data file: enzyme in package gamlss.mx of dimensions 245 x 1
variables
act : the enzyme activity in the blood.
purpose: to demonstrate the fitting of mixture distribution to a single variable.

conclusion: a two component Reverse Gumble model fits the data adequately

The data comprise independent measurements of enzyme activity (act), in the blood of 245
individuals. As reported by McLachlan and Peel (2000), the data were analyzed by Bechtel et
al. (1993), using a mixture of skew distributions, who identified 2 components, and subsequently
by Richardson and Green (1997) and by McLachlan and Peel (2000) who used a mixture of K
normal components with different means and standard deviations and identified 3, or possibly
4, components.

Here we model the distribution of the enzyme activity (act) as a mixture of K components
having no parameter in common. The form of the component distribution may be the same or
different. For example with K = 2 we may model enzyme as a mixture of two normal density
functions or as a mixture of a normal and a gamma density function.

> library(gamlss.mx)

sokkokkkkkkk  GAMLSS Version 1.7-9 skskskskkkskkk
For more on GAMLSS look at http://www.gamlss.com/
Type gamlssNews() to see new features/changes/bug fixes.
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data(enzyme)

library (MASS)

truehist (enzyme$act, h = 0.1)

ml <- gamlssMX(act ~ 1, data = enzyme, family = NO, K = 2)
m2 <- gamlssMX(act 1, data = enzyme, family = GA, K = 2)
m3 <- gamlssMX(act ~ 1, data = enzyme, family = RG, K = 2)
m4 <- gamlssMX(act ~ 1, data = enzyme, family = c(NO, GA), K
m5 <- gamlssMX(act ~ 1, data = enzyme, family = c(GA, RG), K
AIC(m1, m2, m3, m4, mb5)

2)
2)

VVVVVVVVYV

df AIC
96.29161
97.96889
102.42911
112.89528
119.28006

m3
mb5
m2
mé
ml

(OG22 NG NGy

The best model according to AIC is m3, i.e. the reverse Gumbel (RG) model with two
components. In order to be sure that we achieved the global (rather than a local) maximum
we repeat the fitting process 10 times using random starting values by using the function
gamlssMXfits):

> set.seed(1436)
> m3 <- gamlssMXfits(n = 10, act ~ 1, data = enzyme, family = RG,
+ K =2)

model=
model=
model=
model=
model=
model=
model=
model=
model=
model=

© 00 NO O WN -

-
o

> m3

Mixing Family: c("RG", "RG")

Fitting method: EM algorithm

Call: gamlssMX(formula = act ~ 1, family = RG, K = 2, data = enzyme)

Mu Coefficients for model: 1
(Intercept)

1.127
Sigma Coefficients for model: 1
(Intercept)
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-1.091
Mu Coefficients for model: 2
(Intercept)

0.1557
Sigma Coefficients for model: 2
(Intercept)

-2.641

Estimated probabilities: 0.3760176 0.6239824

Degrees of Freedom for the fit: 5 Residual Deg. of Freedom 240

Global Deviance: 86.2916
AIC: 96.2916
SBC: 113.798

The best (i.e. lowest global deviance) of the fits is saved in m3 and printed above. Note that
the mu and sigma parameters listed above are for the predictor models for mu and sigma. The
fitted mixture model for Y (i.e. enzyme activity, act) is given by

fy(y) = 0.376  f1(y) + 0.624 * fa(y)

where f1(y) is a reverse Gumbel distribution, RG(u1,01) with i1 = 1.127 and 61 = exp(—1.091) =
0.33588. and fa(y) is RG(p2, 02) with fia = 0.1557 and log(62) = —2.6411i.e. 63 = exp(—2.641) =
0.07129

To check whether more than 2 components are needed, we have fitted the reverse Gum-
bel model, with K = 3, ten times using different starting values and using the function
gamlssMXfits (). The chosen model with K = 3 has a global deviance of 82.692 and an AIC
of 98.692. This is larger that the AIC of the model with two components which was 96.29161
so it looks that the K = 2 component model is adequate.

We leave it to the readers to try different distributions and different K’s. We point out the
possibility that the model with family=c(RG, RG, NO), K=3, should be for a suitable candidate
for consideration.

Here we plot a histogram of the data together with the fitted two component mixture model
m3 (solid line) and a non-parametric density estimator (dash line) with a bandwidth calculated
using the "direct plug-in” estimator of Sheather and Jones (1991):

library (MASS)

truehist (enzyme$act, h = 0.1)

fyRG <- dMX(y = seq(0, 3, 0.01), mu = 1list(1.127, 0.1557), sigma = list(exp(-1.091),
exp(-2.641)), pi = 1ist(0.376, 0.624), family = list("RG",
"RG"))

lines(seq(0, 3, 0.01), fyRG, col = "red", lty = 1)

lines(density(enzyme$act, width = "SJ-dpi"), 1ty = 2)

VV+ 4+ VvV VvyVv

Note that in the dMX function above the prior (or mixing) probabilities, define by pi, must
add up exactly to one. The residuals of the final fitted model m3 can be plotted in the usual
way using the function plot. The residuals are the usual (normalized quantile) residuals, see
Section 2.6.5. The fitted model m3 appears to be adequate.

> plot(m3)
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Figure 8.1: A histogram of the enzyme activity data together with a non-parametric density
estimator (— — —) and the fitted two component RG model m3 ().
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Summary of the Randomised Quantile Residuals

mean = 0.004353063
variance = 1.029406
coef. of skewness = 0.02947350
coef. of kurtosis = 3.211291
Filliben correlation coefficient = 0.998238
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8.4.2 The Old Faithful geyser data

The data on the Old Faithful geyser (Azzalini and Bowman, 1990) has two variables, duration,
the duration of the eruption and waiting, the waiting time in minutes until the next eruption.
Firstly, the variable waiting is used on its own to demonstrate the fitting of a finite mixture
to a single response variable. In the second part the data are modified and used as to model of
the mixture response variable against an explanatory variable.



8.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 163
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Figure 8.2: The residual plot from the enzyme activity data final two component RG model
ma3.

Fitting a finite mixture to a single response

Data summary: the old faithful geyser
R data file: geyser in package MASS of dimensions 299 x 2
variables

duration : the eruption time (in minutes)

waiting : the waiting time (in minutes) until the next eruption.

purpose: only the variable waiting is used here to demonstrate the fitting of a finite
mixture distribution.

conclusion: A two component inverse Gaussian distribution is found to be adequate

Here we study the waiting time on its own. We use waiting time to demonstrate how to
fit a variety of two component mixtures of continuous distributions and then select the ‘best’
using AIC. Two component mixtures of normal, gamma, reverse Gumble, Gumble, logistic and
inverse Gaussian distributions are fitted:

library(gamlss.mx)

library (MASS)

data(geyser)

set.seed(1581)

mNO <- gamlssMX(waiting ~ 1 geyser, family
mGA <- gamlssMX(waiting ~ 1, data = geyser, family
mRG <- gamlssMX(waiting ~ 1 geyser, family

NO, K = 2)
GA, K = 2)
RG, K = 2)
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> mGU <- gamlssMX(waiting ~ 1, data = geyser, family = GU, K = 2)
> mLO <- gamlssMX(waiting ~ 1, data = geyser, family = LO, K = 2)
> mIG <- gamlssMX(waiting ~ 1, data = geyser, family = IG, K = 2)

> AIC(mNO, mGA, mRG, mGU, mLO, mIG)

df AIC
mIG 5 2321.827
mGA 5 2322.764
mRG 5 2323.879
mNO 5 2325.084
mLO0 5 2328.147
mGU 5 2420.051
> mIG

Mixing Family: c("IG", "IG")
Fitting method: EM algorithm
Call: gamlssMX(formula = waiting ~ 1, family = IG, K = 2, data = geyser)

Mu Coefficients for model: 1
(Intercept)

4.393
Sigma Coefficients for model: 1
(Intercept)

-4.642
Mu Coefficients for model: 2
(Intercept)

4.006
Sigma Coefficients for model: 2
(Intercept)

-4.304

Estimated probabilities: 0.669591 0.3304090

Degrees of Freedom for the fit: 5 Residual Deg. of Freedom 294
Global Deviance: 2311.83

AIC: 2321.83

SBC: 2340.33

The best model appears to be mIG, the two component inverse Gaussian (IG) model for Y
(=waiting) given by fy (y) = 7 f1(y) +7: f2(y) = 0.67f1(y) +0.33 f2(y) where f1(y) is an inverse
Gaussian distribution, IG(u1,01) with ji; = exp(4.393) = 80.88 and 61 = exp(—4.642) =
0.009638 and f>(y) is an inverse Gaussian distribution, 1G(us2, o2) with fis = exp(4.006) = 54.93
and d2 = exp(—4.304) = 0.01351. We next plot a histogram of the data together with the fitted
two component IG model (solid line) and a non-parametric density estimator (dash line):

> truehist(geyser$waiting, h = 2)
> fyIG <- dMX(y = seq(39, 115, 1), mu = list(exp(4.393), exp(4.006)),
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+ sigma = list(exp(-4.642), exp(-4.304)), pi = 1ist(0.6695835,
+ 0.3304165), family = list("IG", "IG"))

> lines(seq(39, 115, 1), fyIG, col = "red", 1ty = 1)

> lines(density(geyser$waiting, width = "SJ-dpi"), 1ty = 2)

0.04
J
N
/

geyser$waiting

Figure 8.3: A histogram of variable waiting time (to next eruption from the Old Faithful geyser
data), together with a non-parametric density estimator (dashed) and the fitted two component
IG model (solid).

The residuals of the final fitted model mIG are plotted next.

> plot (mIG)
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Summary of the Randomised Quantile Residuals

mean = -0.001605047
variance = 0.994629
coef. of skewness = 0.07091106
coef. of kurtosis = 2.862159
Filliben correlation coefficient = 0.9968815
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Figure 8.4: The residual plot from the fitted two component IG model for waiting time from
the Old Faithful geyser data.

Fitting a finite mixture to a simple regression problem

Data summary: the old faithful geyser
R data file: geyser2 created from gayser of dimensions 298 x 2
variables

waiting : the response variable waiting time (in minutes) until the next eruption.

duration : previous duration of the eruption used as explanatory variable

purpose: model the‘distribution of waiting time given the explanatory variable previous
duration

conclusion: The response can be modeled as a mixture of two components each having an
inverse Gaussian distribution or a single component inverse Gaussian with smoothing

We now follow Venables and Ripley (2002) p441 and model the probabilities, 7’s, of belonging
to one of the two mixture components as functions of the previous duration of the eruption.

Note that in order to model the n’s, the function gamlssMX needs the data argument.

We first create a data frame containing the current codewaiting time and the previous
duration of the eruption. The data are displayed in the left panel of Figure 8.5. Then we fit a
normal (NO) two component mixture model, used by Venables and Ripley (2002), and a inverse
Gaussian (IG) two component mixture model. First we fit constant models for the predictors of
both p and 7, then include duration in the predictor of each of p and 7 separately and finally
include duration in the predictor of both p and w. We compare all the models using AIC.

> geyser2 <- matrix(0, ncol = 2, nrow = 298)
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> geyser2[, 1] <- geyser$waiting[-1]
> geyser2[, 2] <- geyser$duration[-299]
> colnames (geyser2) <- c("waiting", "duration")
> geyser2 <- data.frame(geyser2)
> set.seed(1581)
> mNO1 <- gamlssMX(waiting ~ 1, data = geyser2, family = NO, K = 2)
> mIG1 <- gamlssMX(waiting ~ 1, data = geyser2, family = IG, K = 2)
> mNO2 <- gamlssMX(waiting ~ 1, pi.formula = “duration, data = geyser2,
+ family = NO, K = 2)
> mIG2 <- gamlssMX(waiting ~ 1, pi.formula = “duration, data = geyser2,
+ family = IG, K = 2)
> mNO3 <- gamlssMX(waiting ~ duration, pi.formula = ~1, data = geyser2,
+ family = NO, K = 2)
> mIG3 <- gamlssMX(waiting ~ duration, pi.formula = "1, data = geyser2,
+ family = IG, K = 2)
> mN04 <- gamlssMX(waiting ~ duration, pi.formula = “duration,
+ data = geyser2, family = NO, K = 2)
> mIG4 <- gamlssMX(waiting ~ duration, pi.formula = “duration,
+ data = geyser2, family = IG, K = 2)
> AIC(mNO1, mNO2, mNO3, mNO4, mIG1, mIG2, mIG3, mIG4)
daf AIC
mIG4 8 1930.034
mN04 8 1936.679
mNO3 7 1953.317
mIG3 7 1961.234
mIG2 6 1970.647
mNO2 6 1981.932
mIGl 5 2315.304
mNO1 5 2318.472
> mIG4
Mixing Family: c("IG", "IG")
Fitting method: EM algorithm
Call: gamlssMX(formula = waiting ~ duration, pi.formula = “duration,

family = IG, K = 2, data

Mu Coefficients for model: 1

(Intercept) duration
4.09618 0.07007
Sigma Coefficients for model:

(Intercept)
-4.807
Mu Coefficients for model: 2
(Intercept) duration
3.6312 0.1935

geyser2)

1
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Sigma Coefficients for model: 2
(Intercept)
-4.351
model for pi:
(Intercept) duration
fac.fit2 10.18838 -3.131291

Estimated probabilities:
pil pi2

1 0.91598280 0.0840172

2 0.03058744 0.9694126

3 0.91187830 0.0881217

Degrees of Freedom for the fit: 8 Residual Deg. of Freedom 290
Global Deviance: 1914.03

AIC: 1930.03

SBC: 1959.61

The best model using AIC is model mIG4. This model is a mixture of two components.
In each component waiting time has an inverse Gaussian distribution, with a simple linear
regression model in duration for the predictor of the mean and a constant scale. The predictor
for the mixing probability is also simple linear regression models in duration. So the final
mixture model mIG4 is given by

Ty (y) = T1fi(y) + T2 fa(y)

where f1(y) is an inverse Gaussian distribution IG(fi1,&71) with
fi1 = exp {4.0962 + 0.07008 * duration}

and
61 = exp {—4.807} = 0.00817

and where f5(y) is also an inverse Gaussian distribution IG(fiz, 62) with
fio = exp {3.6313 + 0.1935 x duration}

and
b9 = exp {—4.351} = 0.01289

and where
log [f2/(1 — #2)] = m,, = 10.1892 — 3.1318 * duration

Figure 8.5 (a) plots the data together with the fitted means of each of the two components.
Figure 8.5 (b) shows the fitted probability of belonging to group 1. As the previous eruption
duration increases, the probability that the waiting time will belong to component 2 increases.
Figure 8.5 was obtained by the following commands.

> op <- par(mfrow = c(1, 2))
> plot(waiting ~ duration, data = geyser2, xlab = "previous duration",
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ylab = "waiting time", main = "(a)")
lines(fitted(mIG4$models[[1]]) [order (geyser2$duration)]
geyser2$duration[order (geyser2$duration)],
col = "dark green", lty = 3)
lines(fitted (mIG4$models[[2]]) [order (geyser2$duration)]
geyser2$duration[order (geyser2$duration)],
col = "red", 1ty = 4)
plot (mIG4$prob[, 1] [order(duration)] ~ duration[order(duration)],
data = geyser2, xlab = '"previous duration", ylab = "probability of component 2",
main = "(b)")
lines (mIG4$prob[, 1][order(duration)] ~ duration[order(duration)],
data = geyser2)
lines (mIG4$prob[, 1][order(duration)] ~ duration[order(duration)],
data = geyser2)
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Figure 8.5: (a) A scatter plot of the waiting time against the previous eruption duration from
the Old Faithful geyser data together with the fitted values from the two componets, ( dotted
and dashed for component 1 and 2 respectively) (b) a plot of the probability of belonging to
component 2 as a function of duration estimated from model mIG4 .

Figure 8.6 shows the fitted distribution in three dimensions (using the commands below).

Figure 8.8 (a) shows it as a levelplot (see later for the commands).

>
+
>
>
>

grid <- expand.grid(duration = seq(1.5, 5.5, 0.1), waiting = seq(40,
110, 0.5))

etapi <- 10.19069 - 3.132215 * grid$duration

etamul <- 4.09618 + 0.07007 * grid$duration

etamu2 <- 3.6312 + 0.1935 * grid$duration
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pp <- (exp(etapi)/(1 + exp(etapi)))
grid$f1l <- dMX(y = grid$waiting, mu = list(exp(etamul), exp(etamu2)),
sigma = 1list(exp(-4.807), exp(-4.351)), pi = 1list(1 - pp,
pp), family = list("IG", "IG"))
library(lattice)
wireframe(f1 ~ duration * waiting, data = grid, aspect = c(1,
0.5), drape = TRUE)

+ VvV + + VvV

r 0.08

r 0.06

r 0.04
r 0.02

 0.00

Figure 8.6: Fitted conditional probability density function (£1) for waiting time given previous
eruption duration for model mIG4.

Model mIG4 provides us with an example of a regression model where the response variable
has a mixture distribution with two components and where the probability of belonging to each
component of the mixture is modelled as a function of a single explanatory variable. The model
is appropriate if modelling the probability of belonging to a component is of interest. If, on the
other hand, the interest lies in just modelling the waiting time as a function of the previous
duration, a simple GAMLSS model could be appropriate.

We will try here to compare the mIG4 (finite mixture) model with a single component model
(not a mixture) using the inverse Gaussian distribution with a regression models in the previous
duration for both p and o. A flexible smoothing cubic spline function as a function of the
previous duration is also used for p and o.

> mIG5 <- gamlss(waiting ~ duration, sigma.formula = “duration,

+ data = geyser2, family = IG, trace = FALSE)

> mIG6 <- gamlss(waiting ~ cs(duration), sigma.formula = “duration,

+ data = geyser2, family = IG, trace = FALSE)

> mIG7 <- gamlss(waiting ~ cs(duration), sigma.formula = “cs(duration),

+ data = geyser2, family = IG, trace = FALSE)

> mIG8 <- gamlss(waiting ~ cs(duration), sigma.formula = ~1, data = geyser2,
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+ family = IG, trace = FALSE)
> AIC(mIG4, mIG5, mIG6, mIG7, mIG8)

df
mIG6 7.000763
mIG4 8.000000
mIG7 10.000071
mIG8 6.000815
mIG5 4.000000

1928.
1930.
1933.
1957.
1958.

AIC
512
034
061
221
542

Model mIG6 is marginally better that model mIG4 in terms of AIC. Figure 8.7 compares the
fitted means for the two models. The smooth fitted lines of model mIG6 follows closely the
component 1 line of model mIG4 up to duration around 4 and then the component 2 line. The
two models behave very similar as far the model of the mean is concerned.

+ V+ 4+ V++V+yV

waiting time
60 70 8 90 100 110

50

plot(waiting ~ duration, data = geyser2, xlab = "previous duration",
ylab = "waiting time")
lines(fitted (mIG4$models[[1]]) [order (geyser2$duration)]
geyser2$duration[order (geyser2$duration)],
col = "green", 1lty = 3)
lines(fitted (mIG4$models[[2]]) [order (geyser2$duration)] ~
geyser2$duration[order (geyser2$duration)],
col = "red", 1ty = 4)
lines(fitted(mIG6) [order (duration)] ~ duration[order (duration)],
data = geyser2, col

= "blue", 1ty = 1)

previous duration

Figure 8.7: Comparison of the fitted values for u for models mIG4 (dashed and dotted lines) and

mIG6 (solid line).

Figures 8.8 (a) and (b) shows levelplots of the conditional probability density function (pdf
for waiting time given the previous eruption time for models (a) mIG4 and (b) mIG6 respectively
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obtained using the commands below. The plots are similar, although model mIG4 has a higher
conditional pdf for waiting time around 50 when previous duration is less than 2.

mu <- predict(mIG6, what = "mu", type = "response", newdata = grid[,
c("waiting", "duration")], data = geyser2)

sigma <- predict(mIG6, what = "sigma", type = "response", newdata = gridl[,
c("waiting", "duration")], data = geyser2)

grid$r2 <- dIG(y = grid$waiting, mu = mu, sigma = sigma)

print (levelplot(f1 ~ duration * waiting, data = grid, colorkey = F,
at = seq(0, 0.075, 0.001), xlab = "previous duration", ylab = "waiting time",
col.regions = rev(trellis.par.get("regions")$col), main = "(a)"),
split = c¢(1, 1, 2, 1), more = TRUE)

print(levelplot(f2 ~ duration * waiting, data = grid, colorkey = F,
at = seq(0, 0.075, 0.001), xlab = '"previous duration", ylab = "waiting time",
col.regions = rev(trellis.par.get("regions")$col), main = "(b)"),
split = c(2, 1, 2, 1))

+ + +V+++VV+V+V

(@) (b)
1 1 1 1 1 1 1 1
100 — — 100 — —
L so - L  so -
= =
= =
= =
= =
60 — - 60 — -
T T T T T T T T
2 3 4 5 2 3 4 5
previous duration previous duration

Figure 8.8: Levelplot of the fitted conditional probability density function of the waiting time
given the previous eruption time for models (a) mIG4 and model (b) mIG6.

8.5 Finite mixtures with parameters in common

Here the K components of the mixture may have parameters in common, i.e. the parameter sets
(01,04,...,0)) are not disjoint. The prior (or mixing) probabilities are either assumed to be
constant (as in function gamlssNP () ) or may depend on explanatory variables x¢ and parameters
a through a multinomial logistic model as in Section 8.2.3. We assume that the K components
fe() = fu(y|Ok, xx) for k = 1,2, ..., K can be represented by GAMLSS models. Note that since
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some of the parameters may be common to the K components, the distribution used must be the
same for all K components. Similarly the link functions of the distribution parameters must be
the same for all K components. GAMLSS models have up to four distributional parameters p,
o, v and 7. In our notation in this Chapter, the parameter vector 8 contains all the parameters
in the (linear) predictor models for u, o, v and 7 for component k, for k = 1,2,..., K. Here
are some examples to clarify this.

Example 1, Mixture of K Poisson regression models: f(y) = Zszl 7k f1(y) where fir.(y)
is PO(py) for k =1,2,..., K, and where log iy, = Bor+ S1z. Here the slope parameter 3y,
a predictor parameter for the distribution parameter uy, is the same for all K components,
but the intercept parameter (., depends on k, for kK =1,2,... K.

Example 2, Mixture of K negative binomials regression models: Let f(y) be NBI(ug, o)
for k =1,2,..., K, where log ux = B1ox + f11z and log oy, = logo = (o, + [Fo12. Here the
predictor slope parameter (311 for uj and all predictor parameters for o are the same for
all K components, but the predictor intercept parameter (1gx for ui depends on k, for
k=1,2,..., K.

Example 3, Mixture of K BCT models: Let fi(y) = BCT (g, o0, v, 1) fork =1,2,... K,
where log pix, = Bk + B11x2, 10g 0k = Baok + P21k, vk = v = [3, and log 7, = log 7 = [y,.

Here predictor parameters (1., and (11 for p and Bogr and (a1 for o depend on k for
k=1,2,..., K, but parameters 33, for v and (3,4, for 7 are the same for all £ components.

8.5.1 Maximizing the likelihood using the EM algorithm

As in Section 8.2.3 the complete log likelihood is given by (8.12). The following is a summary
of the EM algorithm suitable for dealing with GAMLSS models with common parameters in
the mixture.

Summary of the (r + 1) iteration of the EM algorithm

E-step Replace 0;; in (8.12) by u}gzﬂ), obtained from (8.14) for k = 1,2,..., K and ¢ =
1,2,...,ntogive (8.13),ie. Q = S22 2 T log fi () + 300, S ™ log .
M-step

(1) Since components fi(y) for k = 1,2..., K have parameters in common, ) cannot

~(r+1
be maximized separately with respect to each 8. Obtain O(H_ ) by fitting a single
GAMLSS model to an expanded response variable y., with expanded explanatory
variable design matrix X, using weights w("*1) (see Table 8.2).

(2) Obtain &) by fitting a multinomial logistic model as in Section 8.2.3.
(3) QZ)(TJFl) = |:é(r+1)7d(r+1)

Note that the M step (1) is achieved by expanding the data set K times as in Table 8.2.
This method is identical to the method used in Aitkin et al. (2006) but here we are not
restricting ourselves to the exponential family. The column headed as MASS identifies the K
mixture components. This column is declared as a factor in the R implementation of the EM
algorithm. If this factor MASS is included in the predictor for a distribution parameter u, o, v, or
7, then the predictor intercepts differs between the K components. If an interaction between this
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MASS |y, | X, [ wO D
1
1 y | X VAVYJFI)
n 1
1 2
2 2 y | X | wi
n 2
1| K
2| K | y| X |wi
n K

Table 8.2: Table showing the expansion of data use in M-step (1) of the EM algorithm for fitting
the common parameter mixture model

factor MASS and an explanatory variable x is included in the predictor model for a distribution
parameter, then the coefficient of x differ between the K components. Note however that the
syntax used in gamlssNP() for the interaction between MASS and x in the predictor for u is
achieved using the random=~x argument (see Section 8.7 for an example).

8.6 The gamlssNP() function

The function to fit finite mixtures with parameters in common is gamlssMX. In this section
we describe how it works. Examples of using the function are given in the next section. The
function gamlssMX has the following arguments:

formula This argument should be a formula defining the response variavle and texplanatory
he fixed effects terms for the p parameter of the model. Note that modelling the rest of
the distribution parameters can be done by using the usual formulae, e.g. sigma.fo= x,
which passes the arguments to gamlss()

random This should be a formula defining the random part of the model (for random effect
models). This formula is also used for fixed effect mixture models to define interactions
of the factor MASS with explanatory variables x in the predictor for p (needed to request
different coefficients in z in the predictor of u for the K components).

family A gamlss family distribution.

data This should be a data frame. Note that this argument is mandatory for this function
even if the data are attached. This is because the data frame is used to expand the data
as in Table 8.2.

K Declaring the number of mixture components (in fixed effects finite mixture models), or the
number of mass points or integration quadrature points (for random effects models)
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mixture Defining the mixing distribution, np” for non-parametric finite mixtures or ”"gq” for
Gaussian quadrature.

tol This defines the tolerance scalar usually between zero and one, used for changing the starting
values.

weights For prior weights

control This sets the control parameters for the EM iterations algorithm. The default setting
is the NP.control function.

g.control This is for controlling the gamlss control function, gamlss.control, passed to the
gamlss fit

... For extra arguments

8.7 Examples using the gamlssNP() function

8.7.1 The animal brain data

Data summary: the animal brain data

R data file: brains in package gamlss.mx of dimensions 28 x 2 (identical to Animals in
package (MASS))

variables

brain : brain weight in g.

body : body weight in kg.
purpose: To fit a finite mixture model with different intercepts.

conclusion: A three component normal distribution mixture is found to be adequate

The brain size (brain) and the body weight (body) were recorded for 28 different animals.
Since the distribution of both brain size and body weight are highly skewed a log transformation
was applied to each variable to give transformed variables 1brain and 1body. The resulting
data are plotted in Figure 8.9.

> library(gamlss.mx)

> data(brains)

> brains$lbrain <- log(brains$brain)

> brains$lbody <- log(brains$body)

> with(brains, plot(lbrain ~ lbody, ylab = "log brain", xlab = "log body"))

A normal error linear regression model of 1brain against 1body has a highly significant slope
for 1body but it is believed that the data may represent different stages of evolution and so a
mixture models is fitted to the data. In the mixture model, the evolution stage was represented
by a shift in the intercept of the regression equation. Normal mixture models with K equal
to 1,2, 3,4 are fitted below. Models br.2, br.3 and br.4 are models with different intercepts
for the K components, where K = 2,3 and 4 respectively. Slopes are the same for the K
components, so parallel lines are fitted (see later for how different slopes can be incorporated
in the model).
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Figure 8.9: A plot of the brain size data.

> br.1 <- gamlss(lbrain ~ lbody, data = brains)

GAMLSS-RS iteration 1: Global Deviance 101.2578
GAMLSS-RS iteration 2: Global Deviance = 101.2578

> br.2 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 2,
+ tol = 1, data = brains, family = NO)

1..2.3..4.5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..17 ..18 .

EM algorithm met convergence criteria at iteration 33
Global deviance trend plotted.
EM Trajectories plotted.

n

> br.3 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 3,
+ tol = 1, data = brains, family = NO)

1..2..3..4.5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..
EM algorithm met convergence criteria at iteration 14
Global deviance trend plotted.

EM Trajectories plotted.

> br.4 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 4,
+ tol = 1, data = brains, family = NO)

1.2.3..4.5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..17 ..18 .

EM algorithm met convergence criteria at iteration 29
Global deviance trend plotted.
EM Trajectories plotted.

.19 ..

.19 ..
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We compare the models using each of the ctiteria AIC and SBC:

> GAIC(br.1, br.2, br.3, br.4)

df AIC
br.3 7 79.15079
br.4 9 83.15613
br.2 5 85.95938
br.1 3 107.25779

> GAIC(br.1, br.2, br.3, br.4, k = log(length(brains$body)))

df AIC
br.3 7 88.47622
br.2 5 92.62040
br.4 9 95.14598
br.1 3 111.25440

Changing the starting values by trying different values for tol (e.g. trying each of the values
0.1,0.2,...,1 in turn), for models br.2, br.3 and br.4, did not change the values of AIC and
SBC given by the two GAIC commands above. The model br.3 with three components (i.e.
three parallel lines) is selected by both AIC and SBC criteria. We now print model br.3 and
its estimated (fitted) posterior probabilities.

> br.3

Mixing Family: c("NO Mixture with NP", "Normal Mixture with NP")
Fitting method: EM algorithm

Call: gamlssNP(formula = lbrain ~ lbody, family = NO, data = brains,
K = 3, mixture = "np", tol = 1)

Mu Coefficients :

(Intercept) 1body MASS2 MASS3
-3.072 0.750 4.981 6.553
Sigma Coefficients :
(Intercept)
-0.9387

Estimated probabilities: 0.1071429 0.7514161 0.1414410

Degrees of Freedom for the fit: 7 Residual Deg. of Freedom 21
Global Deviance: 65.1508

AIC: 79.1508

SBC: 88.4762

> br.3$post.prob

[[1]1]
[,1] [,2] [,3]
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[1,] 0 9.999624e-01 3.760045e-05
[2,1] 0 9.999995e-01 4.736429e-07
[3,] 0 9.996309e-01 3.691210e-04
(4,] 0 9.979683e-01 2.031733e-03
[5,] 0 9.999947e-01 5.254125e-06
(6,] 1 0.000000e+00 0.000000e+00
(7,1 0 9.583487e-01 4.165135e-02
[8,] 0 9.995208e-01 4.792198e-04
[9,] 0 9.999824e-01 1.764759e-05
[10,] 0 1.617020e-01 8.382980e-01
[11,] 0 9.947820e-01 5.217995e-03
[12,] 0 9.999769e-01 2.306099e-05
[13,] 0 9.998409e-01 1.590788e-04
[14,] 0 3.157024e-06 9.999968e-01
[15,] 0 9.997563e-01 2.436742e-04
[16,] 1 0.000000e+00 0.000000e+00
[17,] 0 1.044992e-04 9.998955e-01
[18,] 0 9.999998e-01 2.035525e-07
[19,] 0 9.999978e-01 2.187091e-06
[20,] 0 9.999398e-01 6.024621e-05
[21,] 0 9.999799e-01 2.013594e-05
[22,] 0 9.992899e-01 7.101261e-04
[23,] 0 9.999975e-01 2.489188e-06
[24,] 0 6.263055e-02 9.373694e-01
[25,] 1 0.000000e+00 0.000000e+00
[26,] 0 9.999977e-01 2.336595e-06
[27,] 0 8.662450e-01 1.337550e-01
[28,] 0 9.999999e-01 6.645917e-08

So model br.3 can be presented as Y ~ NO(ji, 6) where

—3.072 + 0.750z, with probability 0.107
o= 1.909 + 0.750z, with probability 0.751 (8.16)
3.481 + 0.750z, with probability 0.141

and & = 0.391. [Note that the inrecept for the second component in (8.16) is obtained from
the estimated parameter coefficients for g by 1.909 = —3.072 + 4.981, since MASS2 gives the
adjustment to the intercept for the second mixture component; similarly for MASS3.] The
output given by br.3$post.prob contains the estimated posterior probabilities of each of the
observations in the data set belonging to each of the 3 components. These are the fitted weights
Wk given by (8.9) on convergence of the EM algorithm.

A plot of the data together with the fitted values for the p parameter of model br . 3 are shown
in Figure 8.10. Each observation of the data was allocated to the component for which it had
the highest posterior probability and the observations are plotted in the command below with
circles (colour red), squares (colour green) and diamonds (colour blue) representing allocation
to each of the 3 components. Note that since the parameter 4 in this (normal distribution) case
is the mean of the distribution the lines are the fitted means of the conditional distributions
fx(y) for k =1,2,3. Figure 8.10 is obtained by :

> with(brains, plot(lbody, lbrain, pch = c(21, 22, 23)[max.col(br.3$post.prob[[1]1])],
+ bg = c("red", "green3", "blue") [max.col(br.3$post.prob[[1]1]1)]))
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> for (k in 1:3) {

+ with(brains, lines(fitted(br.3, K = k) [order(1body)] ~ lbody[order(1body)],
+ 1ty = k))
+ }
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Figure 8.10: A plot of the brain size data together with a plot of the three component fitted
means of log brain size (1brain) against log body size (1body), (solid, dashed and dotted for
component 1,2 and 3 repsectively).

The weighted average for the (conditional) parameters j for the K (= 3) components for each
observation, i.e. Zle T fik can be obtained using the command fitted(br.3, K=0). Since
the parameter p is, in this case, the mean of the normal distribution, this gives the marginal
mean of the response variable 1brain given the explanatory variable 1body.

Note how the marginal mean, using the function fitted(), is obtained here compared to the
conditional means. If the argument K of the fitted () function has any value in the range 1, 2, 3,
(that is the range of permissible values for the model br.3), then the conditional parameters
is given. For any other value the average p is given. This will be the marginal mean only if
parameter p is the mean of the conditional distribution for each component.

A residual plot of the finite mixture model is obtained the usual way using the function
plot ().

> plot(br.3)

ook sk ok ok ok ok ok sk ok ok sk ok ok o ok sk o ok sk sk ok sk ok sk o ok sk sk ok sk sk ok s ok sk o ok sk sk ok sk ok sk ook sk o ok sk ok ok ok sk ook sk ok ok ok ok ok
Summary of the Randomised Quantile Residuals

mean = -0.004003875
variance = 1.052469
coef. of skewness = 0.1668313
coef. of kurtosis = 2.739025
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model | p intercept | u slope o
br.3 different same same
br.31 different same different

br.32 different different same
br.33 different different | diferent

Table 8.3: Possible alternative models for the animal brain data

Filliben correlation coefficient = 0.9962244
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Figure 8.11: The residual plot of model br.3 for the animal brain size data.

There are several different models that we could fit here depending on which parameters are
common to the K = 3 components in the model. Table 8.3 shows possible alternative models
and the code below shows how to fit them:

> br.31 <- gamlssNP(formula = lbrain ~ lbody, sigma.fo = “MASS,
+ mixture = "np", K = 3, tol = 1, data = brains, family = NO)

1.2.3..4.5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..17 ..18 .

EM algorithm met convergence criteria at iteration 28
Global deviance trend plotted.
EM Trajectories plotted.

> br.32 <- gamlssNP(formula = lbrain ~ lbody, random = ~lbody,
+ sigma.fo = "1, mixture = "np", K = 3, tol = 1, data = brains,
+ family = NO)

.19
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1..2.3..4..5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..
EM algorithm met convergence criteria at iteration 16

Global deviance trend plotted.

EM Trajectories plotted.

> br.33 <- gamlssNP(formula = lbrain ~ lbody, random = ~lbody,
+ sigma.fo = "MASS, mixture = "np", K = 3, tol = 1, data = brains,
+ family = NO)

1..2..3..4..5..6..7..8..9..10 ..11 ..12 ..13 ..14 ..15 ..16 ..17 ..
EM algorithm met convergence criteria at iteration 17

Global deviance trend plotted.

EM Trajectories plotted.

We compare the models using each of the criteria AIC and SBC:
> GAIC(br.3, br.31, br.32, br.33)

df AIC
br.32 9 77.31133
br.3 7 79.15079
br.33 11 80.26824
br.31 9 81.93037

> GAIC(br.3, br.31, br.32, br.33, k = log(length(brains$lbody)))

df AIC
br.3 7 88.47622
br.32 9 89.30117
br.31 9 93.92021
br.33 11 94.92249

Model br.3 has the smallest SBC. [Note model br.32 has the smallest AIC, however with
so many parameters in the model and so few data points it is not sensible to try to interpreted
this model.] Note also that since model br.33 has components with no parameters in common
it could also be fitted using the gamlssMX function.

8.8 Bibliographic notes

There is an extensive literature on mixture distributions and their used in modelling data.
Everitt and Hand (1981), Titterington et al. (1985), Lindsay (1995), Bohning (1999) and
McLachlan and Peel (2000) are some of the books dedicated exclusively on mixture distributions.
Aitkin, Francis and Hinde (2005) include useful chapters related to mixture distributions.

8.9 Exercises

8.9.1 Exercise 1

Here we analyse the acidity data, which records the acidity index for 155 lakes in the Northeast-
ern United States [previously analysed as a mixture of gaussian distributions on the log scale
by Crawford et al.(1992, 1994)]. These 155 observations are the log acidity indices for the lakes.
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e a) Load the acidity data, print the variable name and obtain a histogram of the acidity
index values:

data(acidity)
names (acidity)
hist(y)

e b) Fit a mixture of two normal distributions (with different means and variances) [note
gamlssMXfits fits the mixture from n=20 different starting values and chooses the best
mixture fit]:

mm<-gamlssMXfits(n=20,y"1, family=NO, K=2)
mm

e ¢) Calculate the probability density function for the fitted mixture and plot it with the
histogram of the acidity index values

fy<-dMX (y=seq(1,8,.1), mu=list(6.249, 4.33),
sigma=list(exp(-.6535), exp(-.988)),
p=list( 0.4039988, 0.5960012) )
hist(y,freq=FALSE)
lines(seq(1,8,.1),fy, col="red")



Chapter 9

Centile estimation

9.1 Head circumference data

The Fourth Dutch Growth Study, (Fredriks et al. 2000a; Fredriks, van Buuren, Wit and
Verloove-Vanhorick 2000b) is a cross-sectional study that measures growth and development
of the Dutch population between the ages 0 and 22 years. The study measured, among other
variables, height, weight, head circumference and age for 7482 males and 7018 females.

Here the head circumference (y) of the males is analyzed with explanatory variable z = age¢,
the transformed age. There are 7040 observations, as there were 442 missing values for head
circumference. The data are plotted in figure 9.1. The data were previously analyzed by van
Buuren and Fredriks (2001) who found strong evidence of kurtosis which they were unable to
model. The data were subsequently analysed by Rigby and Stasinopoulos (2006) using a BCT
distribution to model the kurtosis.

> library(gamlss)
> data(db)
> plot(head ~ age, data = db)

Given X = z, Y is modelled here by a Box-Cox t distribution, BCT(u,0,v,7), defined in
the Appendix, where the parameters u, o, v, and 7 are modelled, using a special case of the
GAMLSS model (2.28), as smooth nonparametric functions of z, i.e. Y ~ BCT(u, 0, v, 7) where

g1(p) = hi(z)
92(0) = ha() (9.1)
g3(v) = ha(z)
94(7) = ha(z)

and, for k = 1,2,3,4, gr(.) are known monotonic link functions, and hg(x) are smooth non-
parametric functions of x.

The model selection procedure comprised of choosing link functions gx(.), for k = 1,2, 3,4,
¢ in the transformation for age, * = age®, and the total (effective) degrees of freedom for the
smooth nonparametric cubic spline functions hy(z) for k = 1,2, 3,4, denoted df,, df,, df, and
df. respectively.

Identity link functions were chosen for p and v, while log link functions were chosen for o
and 7 (to ensure o > 0 and 7 > 0).

183
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Figure 9.1: Observed Head Circumference of Males (From the Fourth Dutch Growth Study)
Against Age.
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An automatic procedure, the function find.hyper () based on the numerical optimization
function optim in R, Thaka and Gentleman (1996), can be used to minimize the GAIC(f), over
the five hyperparameters df,,, df,, df,, df; and £ in the BCT model. The results for different
values of the penalty f in GAIC(f) are shown in Table 9.1. [Note that in general the GAIC(f)
can potentially have multiple local minima (especially for low values of #) and so the automatic
procedure should be run with different starting values to ensure a global minimum has been
found.]

The following R code can be used to find entries in Table 9.1. Here we show only the
GAIC(# = 2) code. The penalty § is specified by the find.hyper () argument penalty. Note
also the c.spar argument in the cubic spline function cs() which is necessary in this case
to make sure that the degrees of freedom for smoothing is able to take small values [see the
comments on the help file for ¢s() .

modl<-quote(gamlss(head”cs(nage,df=p[1]), sigma.fo="cs(nage,pl[2]),
nu.fo="cs(nage,p[3], c.spar=c(-1.5,2.5)),
tau.fo="cs(nage,p[4], c.spar=c(-1.5,2.5)),
data=db, family=BCT, control=gamlss.control(trace=FALSE)))
op<-find.hyper (model=modl, other=quote(nage<-age~pl[5]),
par=c(10,2,2,2,0.25),
lower=c(0.1,0.1,0.1,0.1,0.001), steps=c(0.1,0.1,0.1,0.1,0.2), factr=2e9,
parscale=c(1,1,1,1,0.035), penalty=2 )

The procedure takes a long time (approximately one hour!). The final chosen values of the
five hyperparameters and the final value of GAIC (#) are obtained by the components $par and
$value respectively.

par 10 2 2 2 0.25 crit= 26792.24 with pen= 2

par 10.1 2 2 2 0.25 crit= 26792.06 with pen= 2
par 9.9 2 2 2 0.25 crit= 26792.43 with pen= 2
par 10 2.1 2 2 0.25 crit= 26792.01 with pen= 2

2
2

par 18.43638 2.679676 0.9969013 6.73205 0.08739384 crit= 26780.56 with pen= 2
par 18.43638 2.679676 0.9969013 6.83205 0.09439384 crit= 26780.57 with pen=
par 18.43638 2.679676 0.9969013 6.83205 0.08039384 crit= 26780.56 with pen= 2
>op

$par

[1] 18.43637964 2.67967596 0.99690134 6.83204939 0.08739384

N

$value
[1] 26780.56

$counts

function gradient
13 13

$convergence

[11 o

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
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Note that the degrees of freedom reported in each of the first four components of $par in
the output do not include the constant and the linear term, so 2 degrees of freedom have to
be added to each value to give the total degrees of freedom given in the entries in Table 9.1.
If the automatic procedure results in a value of 0.1 for the extra degrees of freedom, that is,
the lower boundary of the search, then a further search has to be done to check if the models
can be simplify further to either just a linear term or just a constant term. For example, using
penalty # = 3 (see row 3 of the Table 9.1) the results of running the automatic procedure were

> op
$par
[1] 10.4233233 3.4981990 0.1463869 0.1000000 0.3118194

$value
[1] 26811.75

$counts

function gradient
12 12

$convergence

(11 o

indicating that the extra degrees of freedom of the 7 parameter has reached its lower limit. [also
v has a value close to 0.10]. The model with 7 linear in nage was refitted using the commands

modl<-quote(gamlss(head”cs(nage,df=p[1]), sigma.fo="cs(nage,pl[2]),
nu.fo="cs(nage,p[3], c.spar=c(-1.5,2.5)),
tau.fo="nage,
data=db, family=BCT, control=gamlss.control(trace=FALSE)))
op<-find.hyper (model=modl, other=quote(nage<-age~pl[4]), par=c(10,4,1,0.25),
lower=c(0.1,0.1,0.1,0.001), steps=c(0.1,0.1,0.1,0.2), factr=2e9,
parscale=c(1,1,1,0.035), penalty=3 )

The final results are given by

>op
$par
[1] 10.3840121 3.5787116 0.1000000 0.3261456 # now nu at 0.2

$value
[1] 26811.67

$counts

function gradient
6 6

$convergence

(11 o

Given that the v parameter degrees of freedom has now reached its lower limit of 0.10, we
refit the model with a linear function for nage for v and repeat the process.
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Table 9.1: Selected hyperparameters for different penalties f in the BCT model

i dfy dfy dfy dfr S
2 20.4 47 3.0 88 0.09
2.5 16.9 45 2.7 7.6 0.11
3 12.3 5.7 2 2 0.33
3.84 11.0 2.8 2 2 0.45
log(n)= 8.86 8.9 1 1 2 0.41

modl<-quote(gamlss(head”cs(nage,df=p[1]), sigma.fo="cs(nage,pl[2]),
nu.fo="nage, tau.fo="nage, data=db, family=BCT,
control=gamlss.control (trace=FALSE)))
op<-find.hyper (model=modl, other=quote(nage<-age~pl[3]), par=c(10,4,0.25),
lower=c(0.1,0.1,0.001), steps=c(0.1,0.1,0.2), factr=2e9,
parscale=c(1,1,0.035), penalty=3 )

The final results are given by

> op
$par [1] 10.284879 3.647258 0.331152

$value
[1] 26811.67

$counts

function gradient
7 7

$convergence

(11 o

This is the the final results in Rigby and Stasinopoulos (2006) and given in row 3 of Table
9.1

Table 9.1 indicates the need for smoothing for x4 and possibly also for o but it is less clear
whether smoothing is needed for either v or 7. The transformation parameter £ increases for
simpler models indicating that this parameter depends partly on the complexity of the fitted
model. Below we fit each of the models chosen by § = 2,3 and 8.86 and given in Table 9.1.

> nage <- db$%age~0.087

> m2 <- gamlss(head ~ cs(nage, df = 18.44), sigma.fo = “cs(nage,

+ df = 2.68), nu.fo = “cs(nage, df = 0.99, c.spar = c(-1.5,

+ 2.5)), tau.fo = “cs(nage, df = 6.83), data = db, family = BCT)

GAMLSS-RS iteration 1: Global Deviance = 26878.32

GAMLSS-RS iteration 9: Global Deviance = 26706.67
GAMLSS-RS iteration 10: Global Deviance = 26706.67
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> nage <- db$age~0.33

> m3 <- gamlss(head ~ cs(nage, df = 10.28), sigma.fo = “cs(nage,

+ df = 3.65), nu.fo = “nage, tau.fo = “nage, data = db, family = BCT,
+ start.from = m2)

GAMLSS-RS iteration 1: Global Deviance = 26749.54

GAMLSS-RS iteration 5: Global Deviance = 26745.88
GAMLSS-RS iteration 6: Global Deviance 26745.88

> nage <- db$age”0.414
> m8 <- gamlss(head ~ cs(nage, df = 6.9), sigma.fo = "1, nu.fo = "1,

+ tau.fo = “nage, data = db, family = BCT, start.from = m3)
GAMLSS-RS iteration 1: Global Deviance = 26792.1
GAMLSS-RS iteration 5: Global Deviance = 26791.48
GAMLSS-RS iteration 6: Global Deviance = 26791.48

> fitted.plot(m3, m2, m8, x = db$age, color = FALSE, line.type = TRUE)

Figure 9.2 shows the fitted models for i, o, v and 7 with penalties § = 2 (AIC), 3 (GAIC)
and 8.86 (SBC). The fitted models for p are very similar but the fitted models for o, v and
7 vary considerably according to the penalty f. The Akaike information criterion (AIC) for
model selection appears too liberal in its choice of degrees of freedom. The Schwartz Bayesian
Criterion (SBC) for model selection appears too conservative in its choice of degrees of freedom.
In general, a higher penalty £ leads to a reduction in selected degrees of freedom and hence to
a simpler model with smoother fitted u, o, v and 7 and smoother resulting fitted centiles. The
penalty 3 appears to be a reasonable compromise between the AIC and SBC criteria. In the
rest of analysis the penalty { is fixed at 3.

The hyperparameters df,, df,, df,, df- and &, resulting from minimizing GAIC(3) for seven
different distributions (all available in the GAMLSS implementation) are examined in Table 9.2.
Of the seven distributions shown, the Box-Cox ¢t (BCT), Johnson’s Su (JSU) Johnson (1949),
skew exponential power (SEP) Azzalini (1986) and DiCiccio and Monti (2004), and Box-Cox
power exponential (BCPE) Rigby and Stasinopoulos (2004) are all capable of modelling both
skewness and kurtosis. The ¢ distribution (TF) is able to model only kurtosis, while the Box-
Cox normal distribution, (BCN or BCCG or LMS method), Cole and Green (1992), is able
to model only skewness. Table 9.2 shows that the normal distribution (NO), unable to model
either skewness or kurtosis, provides the worst fit to the data. The t distribution performs well
due to the presence of extreme outliers in the data, but the Box-Cox t distribution performs
best as judged GAIC(3). [The models in Table 9.2 were selected using find.hyper using the
same techniques described above.]

The conclusion from Table 9.2 is that the BCT model provides the best fit to head cir-
cumference, according to criterion GAIC(3), i.e. head circumference requires modelling of both
skewness and kurtosis (e.g. using BCT) and is not adequately modelled by modelling either
skewness (e.g. using BCN) or kurtosis (e.g. using TF) alone. Hence the final chosen model was
BCT(12.3,5.7,2,2,0.33) with global deviance=26745.7.
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Figure 9.2: The fitted parameters against age for the ’best’” BCT models using AIC (---),

GAIC(3) (—), and SBC (- - ), criteria: (a) u (b) o (c) v (d) 7.

Table 9.2: Choosing the distribution using GAIC(§ = 3)

distribution GAIC(3)-26814.7 df,, df, df, df, 3

NO 221.6 16.4 30 - - 0.001
BCCG 172.9 16.7 20 14.7 - 0.01
BCPE 81.7 12.2 7.9 2 2 0.34
SEP 717 11.7 3.7 2 2 0.40
TF 48 13.1 2.9 - 3.1 0.27
JSU 3.4 11.7 3.4 2 2 0.46
BCT 0 12.3 5.7 2 2 0.33
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The fitted models for u, o, v, and 7, given by (9.1), for the chosen model BC'T(12.3,5.7,2,2,0.33),
are displayed in solid lines in Figure 9.2. The fitted model for p indicates that the median head
circumference of newly born Dutch male babies increases very rapidly until age 1 year, and then
increases at a much slower rate (roughly linear from age 3 to 21 years). The fitted centile based
coeflicient of variation of head circumference is high for newly born Dutch male babies, but
decreases until about age 6 months, then increases until age 6 years and then slowly decreases.
[This is shown by plotting CVy-, from Appendix A or Rigby and Stasinopoulos (2006) against
age. The plot (not shown here) is similar in shape to the fitted o plot in figure 9.2(b)].

The fitted model for v indicates that the distribution of head circumference of newly born
Dutch male babies is slightly negatively skew (since 7 > 1). The negative skewness gradually
disappears with age to approximate symmetry at age 19 years (since ¥ ~ 1). The fitted model
for 7 indicates that the distribution of head circumference of newly born Dutch male babies is
highly leptokurtic (since 7 is low). The kurtosis gradually reduces with age towards that of a
normal distribution (as 7 increases).

Figure 9.3 displays the (normalized quantile) residuals, from model BCT(12.3,5.7,2,2,0.33).
Panels (a) and (b) plot the residuals against the fitted values of © and against age respectively,
while panels (c) and (d) provide a kernel density estimate and normal QQ plot for them re-
spectively. The residuals appear random but the QQ plot shows seven extreme outliers (0.1%
of the data) in the upper tail of the distribution of y. Nevertheless the Box-Cox ¢ distribution
model provides a reasonable fit to the data, substantially better than to the Box-Cox normal
distribution (BCCG, LMS) model and preferable to the ¢ distribution (TF) model.

> newpar <- par(mfrow = c(2, 2), mar = par("mar") + c(0, 1, O,

+ 0), col.axis = "blue4", col = "blue4", col.main = "blue4",
+ col.lab = "blue4", pch = "+", cex = 0.45, cex.lab = 1.2,
+ cex.axis = 1, cex.main = 1.2)

> plot(m3, xvar = db$age, par = newpar)

stk ok ook sk ok sk ok sk kst stk st stk stk sk kol sk ok sk ok sk sk ok sk sk sk sk sk s sk kok
Summary of the Quantile Residuals

mean = -0.0003938235
variance = 1.000134
coef. of skewness = 0.00893704
coef. of kurtosis = 3.057721
Filliben correlation coefficient = 0.9995363

ko ko ko ok ko ok sk ok ok ok ok ok ko ok sk K ok ok ook ok K kR Kk K kK Rk Kok Kok K ok K ok Kok Kok Kk
> par (newpar)

Figure 9.4 displays detailed diagnostic plots for the residuals using a worm plot developed
by van Buuren and Fredriks (2001). In this plot the range of age is split into sixteen contiguous
non-overlapping intervals with equal numbers of cases. The sixteen age ranges are displayed in
horizontal steps in the chart above the worm plot in Figure 9.4. A detrended normal QQ plot
of the residuals in each interval is then displayed. The nineteen outliers are omitted from the
worm plot as their deviations lie above the upper limit of the deviation range used in the plots.
The worm plot allows detection of inadequacies in the model fit within specific ranges of age.
From Figure 9.4, the de-trended QQ plots show adequate fits to the data within most of the 16
age ranges, with only occasional minor inadequacies. van Buuren and Fredriks (2001) proposed
fitting cubic models to each of the de-trended QQ plots, with the resulting constant, linear,
quadratic and cubic coeflicients, bo, bl, by and b3 respectively, indicating differences between the
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Figure 9.3: The Residuals From Model BCT'(12.3,5.7,2,2,0.33). (a) against fitted values of u
(b) against age (c) kernel density estimate (d) normal QQ plot.
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empirical and model residual mean, variance, skewness and kurtosis respectively, within the
age range in the QQ plot. They summarize their interpretations in their Table II. For model
diagnosis, they categorize absolute values of Z;O, 131, by and by in excess of threshold values, 0.10,
0.10, 0.05 and 0.03 respectively, as misfits.

The commands below produce the worm plot in Figure 9.4 together with the number of
points missing from each of the 16 detrended Q-Q plots (from the bottom left to top right of
Figure 9.4). The sixteen age ranges used are given by $classes, while $coef gives the coefficients
50,517Eg,and.ég,ofvan,Btuuen,and.FYedrﬂﬁ;(2001)

> a<- wp(m3, xvar = db$age, n.inter = 16, ylim.worm = 0.5, cex = 0.3,
+ pch = 20)

number of missing points from plot= 3 out of 450
number of missing points from plot= 0 out of 430
number of missing points from plot= 1 out of 441
number of missing points from plot= 3 out of 448
number of missing points from plot= 0 out of 433
number of missing points from plot= 1 out of 444
number of missing points from plot= 2 out of 434
number of missing points from plot= 0 out of 441
number of missing points from plot= 0 out of 441
number of missing points from plot= 1 out of 440
number of missing points from plot= 1 out of 438
number of missing points from plot= 1 out of 442
number of missing points from plot= 1 out of 438
number of missing points from plot= 0 out of 444
number of missing points from plot= 3 out of 439
number of missing points from plot= 2 out of 437
> a
$classes
[,11  [,2]

[1,] 0.025 0.225

[2,] 0.225 0.695

[3,] 0.695 1.195

[4,] 1.195 1.755

[5,] 1.755 2.545

[6,] 2.545 3.935

[7,] 3.935 7.885

[8,] 7.885 9.995

[9,] 9.995 11.215

[10,] 11.215 12.515

[11,] 12.515 13.655
[12,] 13.655 14.845
[13,] 14.845 16.065
[14,] 16.065 17.375
[15,] 17.375 18.765
[16,] 18.765 21.685
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$coef

[1,]
[2,]
[3,]1
[4,1
[5,1
[6,1
[7,]1
[s8,1
[9,]1
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]

[,1]

.014862811
.014988764
.007657586
.023052142
.013179422
.035064002
.014269124
.050715396
.008268443
.057049858
.079489065
.016635691
.024378092
.051203931
. 022295461
.040936746

[,2]

.040637477
.034146717
.007530662
.018047072
.054963231
.056472193
.018249398
.007961654
.041987444
.004467303
.009189481
. 040864566
.019097741
.038990419
.005969662
.016087180

[,3]

.0286515015
.0286393976
.0204782385
.0312188920
.0292996078
.0184655978
.0085894877
.0246738398
.0069455143
.0209612695
.0242124192
.0019787469
.0003928479
.0315863594
. 0368449838
.0130906981

[,4]

.0061187442
.0051177561
.0143011841
.0223862354
.0008635760
.0056714383
.0070093940
.0018852659
.0062738689
.0130664534
.0091691084
.0023046281
.0101459813
.0009339960
.0006083498
.0036709766
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> par (newpar)

van Buuren and Fredriks (2001) reported results for the male head circumference data using
the LMS model with a 're-scale transformation’ of age (which stretches periods of rapid growth
and compresses periods of lower growth in y to provide a uniform growth rate on the transformed
age scale); see Cole et al. (1998) for details. Following this complex transformation of age, they
chose 9 degrees of freedom for i, 5 for o and a constant value v = 1. However, they reported a
total of 16 violations in the resulting worm plot coefficients from their chosen fitted model (i.e.
values of b’s in excess of their threshold values), indicating that the model does not adequately
fit the data within many specific age ranges. In contrast, there are no violations in the worm
coefficients from the fitted model BCT(12.3,5.7,2,2,0.33), indicating an adequate fit to the
data within age ranges.

The fit within age groups can be further investigated by calculating @ statistics for testing
normality of the residuals within age groups, Royston and Wright (2000) .

Let G be the number of age groups and let {rg,i=1,2,..,n;} be the residuals in age
group g, with mean 7, and standard deviation sg4, for g = 1,2,..,G. The following statistics
Z41,242,243,Z44 are calculated from the residuals in group g to test whether the residuals in
group g have population mean 0, variance 1, skewness 0 and kurtosis 3, where Z;; = n;/ 2Fg,
Zgo = {5_3/3 —[1=2/(9ny — 9)]} /{2/(9ng — 9)}1/2 and Zg3 and Z44 are test statistics for skew-
ness and kurtosis given by D’Agostino et al. (1990) , in their equations (13) and (19) respectively.

The @ statistics of Royston and Wright (2000) are then calculated by Q; = Zle Zij for j =
1,2, 3,4. Royston and Wright (2000) discuss approximate distributions for the ) statistics under
the null hypothesis that the true residuals are normally distributed (although their simulation
study was mainly for normal error models) and suggest Chi-squared distributions with adjusted
degrees of freedom G — df,,, G — [df, + 1]/2 and G — df,, for Q1,Q2 and Q3 respectively. By
analogy we suggest degrees of freedom G — df, for Q4. The resulting significance levels should
be regarded as providing a guide to model inadequacy, rather than exact formal test results.

Significant @1, Q2,3 or (4 statistics indicate possible inadequacies in the models for pa-
rameters u, o, v and 7 respectively, which may be overcome by increasing the degrees of freedom
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Figure 9.4: Worm Plot of the Residuals From Model BCT'(12.3,5.7,2,2,0.33). The 16 detrended
QQ plots, from bottom left to top right plot, correspond to 16 age ranges (displayed in steps
above the worm plot from 0 to 22 years).
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in the model for the particular parameter. Q-statistics can be obtained using the Q.stats()
function.

> Q.stats(m3, xvar=db$age, n.inter=16)
z1 2 Z3 Z4 AgostinoK2

0.02500 to 0.22499 0.29075746 0.76161874 1.49751824 0.41809350 2.41736305
0.22499 to 0.69499 -0.28128215 -1.41060390 -1.44149082 -0.30586512 2.17144925
0.69500 to 1.195 0.58959281 -1.43372471 1.00651318 -1.47503391 3.18879384
1.195 to 1.755 0.17095219 1.57566314 2.04577887 2.90097247 12.60085244
1.755 to 2.545 -0.88211304 1.69886701 -1.41571580 0.26905454 2.07664157
2.545 to 3.935 0.35088203 -2.17873364 -0.98249826 -0.40098283 1.12609006
3.935 to 7.885 -0.47567339 1.16169259 -0.37681407 0.93929578 1.02426540
7.885 to 9.995 0.54839023 -0.37698931 -1.25419319 -0.02916264 1.57385101
9.995 to 11.215 0.02820869 0.71347006 -0.36923843 -0.46702964 0.35445370
11.215 to 12.515  -0.75829127 -1.25102427 1.05517635 -1.24239880 2.65695190
12.515 to 13.6565  -1.15834867 -1.04467613 1.24497745 -0.69930559 2.03899714
13.655 to 14.845 0.39122457 1.46133224 0.28838334 0.88510660 0.86657865
14.845 to 16.065 0.50199822 -0.28470210 -0.03779593 -0.81610852 0.66746165
16.065 to 17.375 0.41530414 1.10292277 -1.53827925 0.13612365 2.38483271
17.375 to 18.765 1.23685873 -0.16111535 2.01054712 0.97951796 5.00175515
18.765 to 21.685  -1.12861039 -0.76835437 -0.70354040 0.02422780 0.49555609
TOTAL Q stats 7.26743288 23.44758925 23.99114844 16.65474516 40.64589361
df for Q stats 3.71821323 12.67541799 14.00000000 14.00000000 28.00000000
p-val for Q stats 0.10373252 0.03212991 0.04593521 0.27504371 0.05785201

The Z,4; statistic when squared provides the contribution from age group g to the statistic
Q;, and hence helps identify which age groups are causing the @); statistic to be significant and
therefore in which age groups the model is unacceptable.

Provided the number of groups G is sufficiently large relative to the degrees of freedom in the
model for the parameter, then the Z,; values should have approximately standard normal dis-
tributions under the null hypothesis that the true residuals are standard normally distributed.
We suggest as a rough guide values of |Z;| greater than 2 be considered as indicative of signif-
icant inadequacies in the model. Note that significant positive (or negative) values Zy; > 2 (or
Zg; < 2) for j =1,2,3 or 4 indicate respectively that the residuals in age group g have a higher
(or lower) mean, variance, skewness or kurtosis than the assumed standard normal distribution.
The model for parameter u, o, v or 7 may need more degrees of freedom to overcome this. For
example if the residual mean in an age group is too high, the model for ¢ may need more degrees
of freedom in order for the fitted p from the model to increase within the age group.

The following command centiles.split obtains the centiles curves given in figure 9.5 for head
circumference against age split at age=2.5 years [defined by c(2.5) in the command]. The
output below compares the sample proportion below each centile curve for each of the two age
ranges, i.e. below age 2.4 years and above age 2,5 years.

> centiles.split(m3, xvar = db$age, c(2.5), ylab = "HEAD", xlab = "AGE")

0.03 to 2.5 2.5 to 21.68
0.4 0.4599816 0.4110152
2 1.7479301 1.7879162
10 10.3495860 9.8849157
25 26.3109476  25.2774353

450
430
441
448
433
444
434
441
441
440
438
442
438
444
439
437
7040
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50 50.1839926  49.7533909
75 73.7810488  74.3937526
90 90.2023919  89.9712289
98 98.4360626  98.2326346
99.6 99.4940202  99.7944924

Centile curves using BCT Centile curves using BCT

o _
©

HEAD
HEAD

40

AGE AGE

Figure 9.5: Observed Head Circumference With Nine Fitted Model Centile Curves (0.4, 2, 10,
25, 50, 75, 90, 98, 99.6), From Model BCT'(12.3,5.7,2,2,0.33), against Age: (a) 0-2.5 years (b)
2.5-22 years

Figure 9.5 provides nine fitted model centile curves, defined by (9.2) below, for head cir-
cumference for model BCT(12.3,5.7,2,2,0.33), with centiles 100ac = 0.4, 2, 10, 25, 50, 75, 90,
98, 99.6. For each «, the centile curve, y, against z, is obtained by finding the fitted values
(i1, 6,0,7) for each x (over a range of values of z) and substituting the values into

1+ cn/tﬂa}l/" ifv#£0

pexplots o if v=0, (9:2)

ya:{'u

where ¢, , is the 100« centile of ¢, a standard ¢ distribution with degrees of freedom parameter
7. [Strictly the exact formula for y, is given in Appendix A of Rigby and Stasinopoulos (2006)
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Table 9.3: Comparison of model and sample percents lying below each centile curve for model
BCT(12.3,5.7,2,2,0.33).

Percent
model 0.4 2 10.0 25 50 75 90 98 99.6
sample 0.43 1.78 10.02 25.6 49.88 74.2 90.04 98.29 99.7

]. The resulting centiles are plotted for age range 0 to 2.5 years in Figure 9.5(a) and for age
range 2.5 to 22 years in Figure 9.5(b), for clarity of presentation. Table 9.3 compares the sample
percent lying below each centile curve with the nominal model 100« percent. The model and
sample percents agree reasonably well.

Finally in order to investigate whether skewness and kurtosis were due to the effect of
extreme outliers the 14 most extreme observations (7 from the upper and 7 from the lower tail,
were removed and the models for each of the seven distributions in Table 9.2 were refitted (after
reselecting their optimal df’s and A). The BCT and JSU distributions still provide the best
fits according to GAIC(3), indicating that there is both skewness and kurtosis remaining even
after the removal of the extreme outliers. In addition their fits to the data were substantially
improved, leading to improved centile estimates. [Finally an adjustment to the resulting centile
percentages, for the 0.1 % (7 out of 7040 in each tail) of cases removed, should be made if these
cases are believed to be genuine.]

9.2 Exercises

9.2.1 Exercise 1

¢ Rigby and Stasinopoulos (2004) analysed the body mass index (bmi) of 7294 Dutch boys
against age using a Box-Cox Power Exponential (BCPE) distribution for bmi. The data
are stored in file dbbmi and contain the variables bmi and age.

(a) Plot bmi against age.
(b) Transform age to a new variable nage <- dbbmi$age0.377 and plot bmi against
nage.

(c) Fit a BCPE distribution to bmi using a P-splines in nage i.e. pb(nage) for the pre-
dictors for parameter u. How many degrees of freedom were used for the smoothing?
(Use the function edf () or m1$mu.df).

(d) Use the fitted values from (c) as starting values for fitting a BCPE distribution to
bmi using P-splines in nage for the predictors for parameters p, o, v and 7. What
are the effective degrees of freedom for all the parameters? [You can use the function
edfA11()].

(e) Plot the fitted parameters for the fitted model in (c) using fitted.plot ().
(f) Obtain a centile plot for the fitted model in (d) using centiles() or centiles.split().

(g) Investigate the residuals from the fitted model in (c) using e.g. plot (), wp() (worm
plot) and Q.stats() (Q-statistics).
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Comment: Numerical optimization could be used to select the power parameter £ applied
to transform the explanatory variable age. Here we applied the transformation power
¢ = 0.377 found to be appropriate if an GAIC(3) is used [see Rigby and Stasinopoulos
(2004)]. The code used for this optimization is:

nage<-dbbmi$age”3

m3<-gamlss (bmi~pb(nage), sigma.fo="pb(nage), nu.fo="pb(nage),
tau.fo="pb(nage) ,data=dbbmi, family=BCPE)

fn<-function(p)

{
nage<- dbbmi$age”p
cat (p R Il\nll)

AIC(m4<-gamlss(bmi~pb(nage), sigma.fo="pb(nage), nu.fo="pb(nage),
tau.fo="pb(nage), data=dbbmi, family=BCPE, start.from=m3), k=3)

}

optim(0.3, fn, method= "L-BFGS-B")



Chapter 10

Distributions in the gamlss
packages

In this Chapter we provide the mathematical form of the probability function of all gamlss.family
distributions together with their means and variances.

The distributions in Tables 10.1, 10.2 and 10.3 provide a list of all gamlss.family distribu-
tions with the default link functions for each of the parameters of the distribution. The tables
are constructed according to the type of random variable involve, that is whether the random
variable is a continuous, a discrete or a mized (i.e. a mixture of a continuous and a discrete
distribution, for example a continuous distribution with additional point probabilities) random
variables. In the rest of the chapter we will put the mixed distributions with the continuous
ones (depending of the range possible values of the response) and we will categorize the discrete
distributions depending on whether the response variable is a count or binomial type (i.e. a
count out of a binomial denominator or total.)

In each case the specific parameterization(s) used by gamlss for each of the distributions is
given. Note that the gamlss package provides, for each parameterization, functions for the prob-
ability density function (pdf), cumulative distribution function (cdf), inverse cdf (i.e. quantile)
and random number generation. The functions are given by putting each of the letters d, p, q
and r respectively before the gamlss.family name for the particular distribution parameteri-
zation. For example, for the parameterization of the normal distribution given by (10.1) below,
denoted by NO(u,0), the corresponding gamlss.family functions dNO, pNO, gNO and rNO define
its pdf, cdf, inverse cdf and random number generation respectively. Note also that the package
gamlss.demo provides visual presentation of all the gamlss.family distributions and can be
used to examine how changing the parameters effects the shape of the distribution.

10.1 Continuous two parameter distributions on

10.1.1 Normal (or Gausian) distribution (NO, NO2, NOF)

First parameterization (NO)

The normal distribution is the default of the argument family of the function gamlss(). The
parameterization used for the normal (or Gaussian) probability density function (pdf), denoted

199
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Distributions R Name n o v T
beta BEQ) logit logit - -
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPEQ) identity log identity | log
Box-Cox t BCT() identity log identity | log
exponential EXPQO log - - -
exponential Gaussian exGAUS() | identity log log -
exponential gen. beta type 2 EGB2() identity | identity log log
gamma GAQO log log - -
generalized beta type 1 GB1QO) logit logit log log
generalized beta type 2 GB2Q) log identity log log
generalized gamma GGO log log identity -
generalized inverse Gaussian GIGO log log identity -
generalized ¢ GTQO identity log log log
Gumbel GUQO identity log - -
inverse Gaussian IGO log log - -
Johnson’s SU (u the mean) JSUQ) identity log identity | log
Johnson’s original SU JSUo () identity log identity | log
logistic LoO identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNOQO) log log fixed -
NET NET () identity log fixed fixed
normal NOO identity log - -
normal family NOF ) identity log identity -
power exponential PEQ) identity log log -
reverse Gumbel RGQ) identity log - -
skew power exponential type 1 | SEP1() identity log identity | log
skew power exponential type 2 | SEP2() identity log identity | log
skew power exponential type 3 | SEP3() identity log log log
skew power exponential type 4 | SEP4() identity log log log
sinh-arcsinh SHASHQO) identity log log log
skew ¢ type 1 ST10 identity log identity | log
skew ¢ type 2 ST20) identity log identity | log
skew ¢ type 3 ST30) identity log log log
skew ¢ type 4 ST4() identity log log log
skew ¢ type 5 ST50) identity log identity | log
¢t Family TFQ) identity log log -
Weibull WEIQ log log - -
Weibull (PH) WEI2() log log - -
Weibull (4 the mean) WEI3() log log - -

Table 10.1: Continuous distributions implemented within the gamlss packages (with default link
functions)
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Distributions R Name n o v
beta binomial BB(O) logit log -
binomial BIO logit - -
logarithmic LGQO) logit - -
Delaporte DEL(Q) log log logit
negative binomial type I NBIQ) log log -
negative binomial type II NBII() log log -
Poisson POO) log - -
Poisson inverse Gaussian PIGQO) log log -
Sichel SIO) log log | identity
Sichel (p the mean) SICHEL() log log | identity
zero altered beta binomial ZABB() logit | log logit
zero altered binomial ZABI() logit | logit -
zero altered logarithmic ZALG() logit | logit -
zero altered neg. binomial ZANBI() log log logit
zero altered poisson ZAP() log | logit -
zero inflated beta binomial ZIBB() logit log logit
zero inflated binomial ZIBIQ) logit | logit -
zero inflated neg. binomial ZINBIQ) log log logit
zero inflated poisson ZIPQ) log | logit -
zero inflated poisson (u the mean) | ZIP2() log | logit -
zero inflated poisson inv. Gaussian | ZIPIG() log log logit

Table 10.2: Discrete distributions implemented within the gamlss packages (with default link
functions)

beta inflated (at 0) BEOIQ) logit | log | logit | -
beta inflated (at 0) BEINFO() | logit | logit | log -
beta inflated (at 1) BEZI() logit | log | logit | -
beta inflated (at 1) BEINF1() | logit | logit | log -
beta inflated (at 0 and 1 ) | BEINF() logit | logit | log | log
zero adjusted GA ZAGAQ) log log | logit -
zero adjusted IG ZAIGQO) log log | logit -

Table 10.3: Mixed distributions implemented within the gamlss packages (with default link
functions)
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by NO(u,0), is

202

fy(ylp, o) = \/21?0 exp [— (y—u)] (10.1)

for —oo < y < 00, where —oo < pu < 0o and o > 0. The mean of Y is given by E(Y) = p and
the variance of Y by Var(Y) = 02, so u is the mean and o is the standard deviation of Y.

Second parameterization (NO2)

NO2(u,0) is a parameterization of the normal distribution where p represents the mean and o
represents the variance of Y, i.e. fy (y|u, o) = (1/v270)exp[—(y — u)?/(20)].

Normal family (of variance-mean relationships) (NOF')

The function NOF (u,0,v) defines a normal distribution family with three parameters. The
third parameter v allows the variance of the distribution to be proportional to a power of the
mean. The mean of NOF (u,0,v) is equal to 4 while the variance is equal to Var(Y) = o2|ul”,
so the standard deviation is o|u|"/2. The parametrization of the normal distribution given in
the function NOF (u,0,v) is

_ 1 (y — p)?
fylp,o,v) = WGXP [_W’] (10.2)

for —oo < y < 00, where —o0o < < 00, 0 > 0 and —oco0 < v < 0.

The function NOF (u,0,v) is appropriate for normally distributed regression type models
where the variance of the response variable is proportional to a power of the mean. Models of
this type are related to the "pseudo likelihood” models of Carroll and Rubert (1987) but here a
proper likelihood is maximized. The v parameter here is not designed to be modelled against
explanatory variables but is a constant used as a device allowing us to model the variance
mean relationship. Note that, due to the high correlation between the ¢ and v parameters, the
mixed () method argument is essential in the gamlss() fitting function. Alternatively v can be
estimated from its profile function, obtained using gamlss package function prof.dev().

10.1.2 Logistic distribution (LO)

The logistic distribution is appropriate for moderately kurtotic data. The parameterization of
the logistic distribution, denoted here as LO(u,0), is given by

= [ (52 oo (5]} s

for —0o < y < 00, where —0co < p < 0o and ¢ > 0, with E(Y) = p and Var(Y) = 720?/3,
Johnson et al. (1995) p 116.

10.1.3 Gumbel distribution (GU)

The Gumbel distribution is appropriate for moderately negative skew data. The pdf of the
Gumbel distribution (or extreme value or Gompertz), denoted by GU(u,0), is defined by

fy (ylp,0) = % exp Kw) — exp <y0“)] (10.4)
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for —co < y < oo, where —0o < 1 < o0 and o > 0, with E(Y) = pp — vo ~ u — 0.577220 and
Var(Y) = 7202 /6 ~ 1.6449302. See Crowder et al. (1991) p 17.

10.1.4 Reverse Gumbel distribution (RG)

The reverse Gumbel distribution, which is also called is the type I extreme value distri-
bution is a special case of the generalized extreme value distribution, [see Johnson et al. (1995)
p 2 and p 75]. The reverse Gumbel distribution is appropriate for moderately positive skew
data. The pdf of the reverse Gumbel distribution, denoted by RG(u,0) is defined by

v (ylp, o :lexp (=) —exp |- (10.5)
Frivtuo) = ep{ = (121 e |-

g

for —oo < y < oo, where —oo < p < oo and ¢ > 0, with E(Y) = p+ vyo ~ pu + 0.577220
and Var(Y) = n20%/6 ~ 1.6449302. [Note that if Y ~ RG(u,0) and W = =Y, then W ~
GU(_M7U)']

10.2 Continuous three parameter distributions on R

10.2.1 Exponential Gaussian distribution (exGAUS)
The pdf of the ex-Gaussian distribution, denoted by exGAUS(u,0), is defined as
2

1 L=y o y—p o
= Cexp Y T g g 10.
fy (ylp, o,v) l/exp[ > +2y2} ( > > (10.6)

for —oo < y < 00, where —oco < 4 < 00, 0 > 0 and v > 0, and where ® is the cdf of the standard
normal distribution. Since Y = Y; + Y3 where Y; ~ N(u,0?) and Yo ~ EX(v) are independent,
the mean of Y is given by E(Y) = p + v and the variance is given by Var(Y) = o% + v2. This
distribution has also been called the lagged normal distribution, Johnson et al., (1994), p172.

10.2.2 Power Exponential distribution (PE, PE2)
First parameterization (PE)

The power exponential distribution is suitable for leptokurtic as well as platykurtic data. The
pdf of the power exponential family distribution, denoted by PE(u,0,v), is defined by

fy(ylp,ov) = 7@) (10.7)

for —oo < y < oo, where —oo < p < 00, ¢ > 0 and v > 0 and where z = (y — p)/o and
A =T(1/v)[LB/v)] L.

In this parameterization, used by Nelson (1991), E(Y) = p and Var(Y) = o2. Note that
v =1 and v = 2 correspond to the Laplace (i.e. two sided exponential) and normal distributions
respectively, while the uniform distribution is the limiting distribution as v — co.

The cdf of Y is given by Fy(y) = [l + Fs(s)sign(z)] where S = |z/c|” has a gamma
distribution with pdf fs(s) = s¥/* exp(—s)/T (%).
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Second parameterization (PE2)

An alternative parameterization, the power exponential type 2 distribution, denoted by PE2(u,0,v),
is defined by

vexp[—|2]"]

207 (1) (10.8)

fY(y\Man V)

for —o0o < y < o0, where —0o < pu < 00, 0 > 0 and v > 0 and where z = (y — u)/o. Here
E(Y)=pand Var(Y) = 0%/c?, where ¢ = T'(1/v)[['(3/v)] " .

See also Johnson et al., 1995, volume 2, p195, equation (24.83) for a re-parameterized version
by Subbotin (1923).

10.2.3 ¢ family distribution (TF)

The t family distribution is suitable for modelling leptokurtic data, that is, data with higher
kurtosis than the normal distribution. The pdf of the ¢ family distribution, denoted here as
TF(u,0,v), is defined by

v41

1 (y—p3?] 7
IO [1+02V } (10.9)

for —o0o < y < 00, where —oo < p1 < 00, 0 > 0 and v > 0, where B(a,b) = I'(a)I'(b)/T'(a + b)
is the beta function. The mean and variance of Y are given by E(Y) = p and Var(Y) =
o?v/(v—2) when v > 2. Note that T = (Y — u)/o has a standard ¢ distribution with v degrees
of freedom, given by Johnson et al. (1995), p 363, equation (28.2).

fy Wlp,o,v) =

10.3 Continuous four parameter distributions on R

10.3.1 Exponential Generalized Beta type 2 distribution (EGB2)

The pdf of the exponential generalized beta type 2 distribution, denoted by EGB2(u,o,v,7),
is defined by

Fr (gl 0,0,7) = " {lo| B, r) [1 + 747} (10.10)
for —oco < y < 00, where —c0 < p < 00, —00 < 0 < o0, ¥ > 0 and 7 > 0, and where

z = (y—p)/o, McDonald and Xu (1995), equation (3.3). Here E(Y) = p+0 [V (v) — ¥(7)] and
Var(Y) =0 [¢W(v) + W (7)], from McDonald (1996), p437.

10.3.2 Generalized ¢ distribution (GT)
This pdf of the generalized ¢ distribution, denoted by GT(u,0,v,7), is defined by

frlylpov, ) =1 {2Uu1/TB (1/7,v)[1+ |Z|T/V]V+<1/T>}_1 (10.11)

for —o00 < y < 00, where —c0 < p < 00, 0 > 0, v > 0 and 7 > 0, and where z = (y —
w)/o, McDonald (1991) and McDonald and Newey (1988) Here E(Y) = p and Var(Y) =
oc*?/"B (2,v— 2)/B (%,v), from McDonald (1991) p274.
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10.3.3 Johnson SU distribution (JSUo, JSU)

First parameterization (JSUo)

This is the original parameterization of the Johnson S, distribution, Johnson (1949). The
parameter v determines the skewness of the distribution with v > 0 indicating negative skewness
and v < 0 positive skewness. The parameter 7 determines the kurtosis of the distribution. 7
should be positive and most likely in the region above 1. As 7 — oo the distribution approaches
the normal density function. The distribution is appropriate for leptokurtotic data.

The pdf of the original Johnson’s S, denoted here as JSUo(u,0,v,7), is defined by

o1 1 1,
OV, T) = = —— exp | — =2 10.12
fylp, ov,7) o 21 )t Vo Xp[ 5 ] (10.12)

for —oo < y < 00, where —o0o < < 00, 0 > 0, —00 < v < 0o and 7 > 0, and where
z=v+7sinh '(r) =v 4+ 7log {r—i— (r? + 1)%} ) (10.13)

where = (y — p)/o. Note that Z ~ NO(0,1). Here E(Y) = p — ow"/?sinh (v/7) and
Var(Y) = 024 (w — 1) [wcosh(2v/7) 4 1], where w = exp(1/72).

Second parameterization (JSU)

This is a reparameterization of the original Johnson S, distribution, Johnson (1949), so that
parameters u and o are the mean and the standard deviation of the distribution. The parameter
v determines the skewness of the distribution with v > 0 indicating positive skewness and v < 0
negative. The parameter 7 determines the kurtosis of the distribution. 7 should be positive and
most likely in the region above 1. As 7 — oo the distribution approaches the normal density
function. The distribution is appropriate for leptokurtic data.

The pdf of the Johnson’s S, denoted here as JSU(u,0,v,7), is defined by

T 1 1 2
OV T)== ——————— exp|—=z 10.14
fy (ylp ) co (r2+ 1) 27 P { ] ( )

for —oo < y < 00, where —0o < pp < 00, 0 > 0, —00 < v < 00, 7 > 0, and where

z=—v+rsinh”(r) = —v 4 7log {r +(r? + 1)%)] ) (10.15)

y — (1 + cow? sinh Q)
T =
co ’

o= {;(u} 1) [wcosh (20) + 1}}5 ,

w = exp(1/72) and Q = —v/7. Note that Z ~ NO(0,1). Here E(Y) = p and Var(Y) = o2.
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10.3.4 Normal-Exponential-t distribution (NET)

The NET distribution is a four parameter continuous distribution, although in gamlss it is
used as a two parameter distribution with the other two of its parameters fixed. It was intro-
duced by Rigby and Stasinopoulos (1994) as a robust method of fitting the mean and the scale
parameters of a symmetric distribution as functions of explanatory variables. The NET distri-
bution is the abbreviation of the Normal-Exponential-Student-¢ distribution and is denoted by
NET (u,0,v,7), for given values for v and 7. It is normal up to v, exponential from v to 7 and
Student-¢ with (v7 — 1) degrees of freedom after 7. Fitted parameters are the first two parame-
ters, i and o. Parameters v and 7 may be chosen and fixed by the user. Alternatively estimates
of the third and forth parameters can be obtained, using the gamlss function prof.dev().

The pdf of the normal exponential ¢ distribution, denoted here as NET (u,0,v,7), is given
by Rigby and Stasinopoulos (1994) and defined by
exp{—%}, when |z| <v
fyylp,o,v,7) = € exp {—V\z| + ";}, when v<|z| <7 (10.16)
o

exp{—m'log (%) — v+ l’;}, when |z| > 7

for —co < y < 00, where —c0 < < 00,0 >0, v >1,7>v ! and where 2 = (y — pu)/o
and ¢ = (c; + co + ¢3)7!, where ¢; = V21 [1 — 20(—v)], ¢o = 2 exp{f”;} and ¢z =

v

—2 _ exp{—vT+ v , where ®(-) is the cumulative distribution function of the standard
(vt—1)v 2

normal distribution. Here p is the mean of Y.

10.3.5 Sinh-Arcsinh (SHASH)

The pdf of the Sinh-Arcsinh distribution, denoted by SHASH (u,0,v,7), Jones(2005), is defined
by

o nn) = (10.17)
where
z= % {exp [rsinh ™ ()] — exp [~vsinh ™ ()]}
and

c= % {7exp [rsinh ™' (r)] + vexp [~vsinh ()]}

and r = (y — p)/o for —oo < y < oo, where —o0o < p < 400, 0 > 0, v > 0 and 7 > 0.
Note sinh™*(r) = log(u) where u = r + (r* + 1)1/2. Hence z = % (u” —u™"). Note that
Z ~NO(0,1). Hence p is the median of Y.

Lsince NET involves the Student-¢ distribution with (v7-1) degrees of freedom
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10.3.6 Skew Exponential Power type 1 distribution (SEP1)

The pdf of the skew exponential power type 1 distribution, denoted by SEP1(u,0,v,7), is defined
by

Pyl o,vnm) = 2 f2,() Fr,(w2) (10.18)

for —oo < y < 00, where —oco < p < 00, 0 > 0, —o0 < ¥ < o0 and 7 > 0, and where z =
(y—p)/o and fz, and Fyz, are the pdf and cdf of Z; ~ PE2(0,7/7,7), a power exponential type
2 distribution with fz, (2) = a~exp[~|z|7 /7], where a = 27(/7)=1T(1/7). This distribution
was introduced by Azzalini (1986) as his type I distribution.

Here E(Y) = p+ oE(Z) and Var(Y) = 62V (Z) = 0? {E(Z*) — [E(Z)]?} where Z = (Y —

p)/o and E(Z) = sign(v)7V/7 [T (%)/P(})]pBEo( v 1 2) and E(22) = 72/7T (2) /1 (1),

1+vm 707 )7
where pBFo(q, a,b) is the cdf of an original beta distribution BFEo(a,b) evaluated at ¢, Azzalini
(1986), p202-203.

The skew normal type 1 distribution, denoted by SN1(u,0,v), a special case of SEP1(u,0,v,7)
given by 7 = 2, has mean and variance given by E(Y) = pu + osign(v) {202/ [r(1 + 1?)] }1/2
and Var(Y) = 0% {1 — 202/ [n(1 + v?)] }, Azzalini (1985), p174. Note that SN1 is not currently
implemented as a specific distribution, but can be obtained by fixing 7 = 2 in SEP1 using the
arguments tau.start=2, tau.fix=TRUE in gamlss().

10.3.7 Skew Exponential Power type 2 distribution (SEP2)

The pdf of the skew exponential power type 2 distribution, denoted by SEP2(u,0,v,7), is defined
by

Pyl o) = 2 12,() () (10.19)

for —oo < y < o0, where —00 < p < 00, 0 > 0, —00 < v < 0o, and 7 > 0, and where
z = (y—p)/o and w = sign(2)|z|7/?v/2/7 and fz, is the pdf of Z; ~ PE2(0,7/7,7) and ®(w)
is the cdf of a standard normal variable evaluated at w.

This distribution was introduced by Azzalini (1986) as his type II distribution and was
further developed by DiCiccio and Monti (2004). The parameter v determines the skewness of
the distribution with v > 0 indicating positive skewness and v < 0 negative. The parameter
7 determines the kurtosis of the distribution, with 7 > 2 for platykurtic data and 7 < 2 for
leptokurtic.

Here E(Y) = pu+ oE(Z) and Var(Y) = 02V (Z) where

2r1/Ty ST (2+n+3) [ 202 \"
E(z) = VAL () (14 v2)@/m+1/2) Z 2n + 1N <1 + u2> (10-20)
n=0

and E(Z2) = 71/7T (2) /T (1), where (2n + 1)!! = 1.3.5...(2n — 1), DiCiccio and Monti (2004),
p439.

For 7 = 2 the SEP2(u,0,v,7) distribution is the skew normal type 1 distribution, Azzalini
(1985), denoted by SN1(u,o,v), while for v = 1 and 7 = 2 the SEP2(u,0,v,7) distribution is
the normal density function, NO(u,0).
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10.3.8 Skew Exponential Power type 3 distribution (SEP3)
This is a "spliced-scale” distribution with pdf, denoted by SEP3(u,0,v,7), defined by

c 1 - 1z
Frlluov,7) =< Jexp | =S lvzl| Iy <) +exp |5 |
o 2 21l

T rw=0f a0

for —oo < y < 00, where —oo < p < 00, ¢ > 0, ¥ > 0, and 7 > 0, and where z = (y — u)/o
and ¢ = v7/[(1+v2)2Y/7T (1)], Fernandez, Osiewalski and Steel (1995). Note that I() is an
indicator function, where I'(u) =1 if w is true and I(u) = 0 if u is false.

Note that p is the mode of Y. Here E(Y) = p+ 0FE(Z) and Var(Y) = 02V (Z) where
E(Z)=2Y"T(2)(v—1)/T (%) and E(Z2%) =22/"T (3) (*+ %)/ [[' (%) (v+ 2)], Fernan-
dez, Osiewalski and Steel (1995), p1333, eqns. (12) and (13).

The skew normal type 2 distribution, Johnson et al. (1994) p173, denoted by SN2(u,0,v),
(or two-piece normal) is a special case of SEP3(u,0,v,7) given by 7 = 2.

10.3.9 Skew Exponential Power type 4 distribution (SEP4)
This is a "spliced-shape” distribution with pdf, denoted by SEP4(u,0,v,7), defined by

Ty ylp,o,v,7) = g{exp[*IZIV] I(y < p) +exp[—|z|"] I(y > p)} (10.22)

for —oo < y < 00, where —oo < 1 < 00, 0 >0, v > 0, and 7 > 0, and where z = (y — p)/o and
c=[T(1+1)+T(1+1)] ~! Jones (2005). Note that p is the mode of Y.

Here E(Y) = p+ 0E(Z) and Var(Y) = 02V (Z) where E(Z) = ¢ [T (2) — 1T (2)] and
E(Z?%) = [T (5) + 2T (2)]-

10.3.10 Skew ¢ type 1 distribution (ST1)
The pdf of the skew ¢ type 1 distribution, denoted by ST1(u,0,v,7), is defined by

Pyl o) = 2 f2,(2) Fr, (w2) (10.23)

for —oco < y < 00, where —c0 < p < 00, 0 > 0, —o00 < v < oo and 7 > 0, and where
z = (y—p)/o and fz, and Fz, are the pdf and cdf of Z ~ TF(0,1,7), a ¢ distribution with
7 > 0 degrees of freedom, with 7 treated as a continuous parameter. This distribution is in the
form of a type I distribution of Azzalini (1986).

10.3.11 Skew ¢ type 2 distribution (ST2)
The pdf of the skew ¢ type 2 distribution, denoted by ST2(u,0,v,7), is defined by

Fr o) = 2 f2,(2) Fru(w) (10.24)

for —oco < y < o0, where —o00 < p < 00, 0 > 0, —00 < v < oo, and 7 > 0, and where
z=(y—p))o, w=rvA/?zand A = (1 +1)/(1+ 22) and fz, is the pdf of Z; ~ TF(0,1,7) and
Fyz, is the cdf of Zy ~ TF(0,1,7+1). This distribution is the univariate case of the multivariate
skew t distribution introduced by Azzalini and Capitanio (2003).

Here the mean and variance of Y are given by E(Y) = u+ ocE(Z) and Var(Y) = o2V (Z)
where E(Z) = vr'/?T (352) / [#1/2(1 + 0220 ()] for 7 > 1 and E(Z2) = /(1 — 2) for
7 > 2, Azzalini and Capitanio (2003), p382.
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10.3.12 Skew ¢ type 3 distribution (ST3)

This is a "spliced-scale” distribution with pdf, denoted by ST3(u, o, v, 7), defined by

Sy lp, o0, 7) = g {1 + 272 [VQ Iy < p)+ % I(y > u)} } (10.25)

for —oo < y < 00, where —oo < < 00, 0 >0, v > 0, and 7 > 0, and where z = (y — )/0 and
c=2v/[oc(1+v?)B(3,%) 7'/?], Fernandez and Steel (1998).

Note that p is the mode of Y. The mean and variance of Y are given by E(Y) = u +
oB(Z) and Var(Y) = 0V (Z) where E(Z) = 2r'/2(v? = 1)/ [(t = 1)B (3, %) v] and E(Z?) =

272

(¥ + %)/ [(t—2) (v+ 1)], Fernandez and Steel (1998), p360, eqn. (5).

10.3.13 Skew ¢ type 4 distribution (ST4)

This is a "spliced-shape” distribution with pdf, denoted by ST4(u, o, v, 7), defined by
22 ] —(v+1)/2

. 27— (T+1)/2
frlylpov,m) = = { [1 + I(y <p)+ {1 + T} I(y = u)}(lo-%)

for —oo < y < 00, where —0o < < 00, 0 >0, v >0 and 7 > 0, and where z = (y — ) /o and
c=2['2B(},5)+72B(3.3)] .

Here E(Y) = p+o0E(Z) and Var(Y) = 02V (Z) where E(Z) = ¢ [i - #}, provided
v>land7>1,and B(Z%) = ${[r3?B(3,3) /(t—2)] + [*/*B (3, % }
v>2and T > 2.

10.3.14 Skew ¢ type 5 distribution (ST5)

The pdf of the skew t distribution type 5, denoted by ST5(u,o,v,7), Jones and Faddy (2003),
is defined by

c ; at1/2 ; b+1/2
seon) = S ]
for —oo < y < 00, where —oco < pu < 00, 0 > 0, —00o < v < oo and 7 > 0, and where z =
(y—p)/o and ¢ = [29~1(a + b)1/2B(a,b)] and v = (a—b)/ [ab(a + b)}l/2 and 7 = 2/(a+b).
Here E(Y) = pu+ 0E(Z) where E(Z) = (a —b)(a+b)Y?T' (a— 3)T (a— %) / [2T'(a)T(b)]
and Var(Y) = 02V (Z) where E(Z?) = (a+b) [(a —b)?* +a+b—2] /[4(a — 1)(b—1)], Jones
and Faddy (2003), p162.

10.4 Continuous one parameter distribution in

10.4.1 Exponential distribution (EXP)

This is the only one parameter continuous distribution in gamlss packages. The exponential
distribution is appropriate for moderately positive skew data. The parameterization of the
exponential distribution, denoted here as EXP(u), is defined by

R
Sy (ylp) = e p{ u} (10.27)

for y > 0, where > 0 and where E(Y) = pu and Var(Y) = p.
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10.5 Continuous two parameter distribution in R+

10.5.1 Gamma distribution (GA)

The gamma distribution is appropriate for positively skew data. The pdf of the gamma distri-
bution, denoted by GA(u,0), is defined by
1 y,%z—l e~/ (a%n)
fY(y|/1’70) - (U2M)1/02 F(l/O'Q)

(10.28)

for y > 0, where 4 > 0 and o > 0. Here E(Y) = p and Var(Y) = o?u?. This a reparame-
terization of Johnson et al. (1994) p 343 equation (17.23) obtained by setting 02 = 1/a and

uw=apf.
10.5.2 Log Normal distribution (LOGNO, LNO)

Log Normal distribution (LOGNO)

The log-normal distribution is appropriate for positively skew data. The pdf of the log-normal
distribution, denoted by LOGNO(u,0), is defined by

fy (ylp, o) = \/% iexp {—W} (10.29)

for y > 0, where > 0 and ¢ > 0. Here E(Y) = w'/2e# and Var(Y) = w(w — 1)e?*, where
w = exp(c?).

Log normal family (i.e. original Box-Cox) (LNO)

The gamlss function LINO(u,0,v) allows the use of the Box-Cox power transformation approach,
Box and Cox (1964), where the transformation Y () is applied to Y in order to remove skewness,
where Z = (Y — 1)/v(if v # 0) 4+ log(Y)(if v = 0). The transformed variable Z is then
assumed to have a normal NO(u, o) distribution. The resulting distribution for Y is denoted
by LNO(y,0,v). When v = 0, this results in the distribution in equation (10.29). For values of
v different from zero we have the resulting three parameter distribution

exp [— (22_0’2“‘)2] (10.30)

v—1

fy (ylﬂa g, V) Smo?
for y > 0, where ¢ > 0, ¢ > 0 and —o0 < v < o0, and where z = (y” — 1)/v(if v #
0) + log(y)(if v = 0). The distribution in (10.30) can be fitted for fixed v only, e.g. v = 0.5,
using the following arguments of gamlss(): family=LNO, nu.fix=TRUE, nu.start=0.5. If v
is unknown, it can be estimated from its profile likelihood. Alternatively instead of (10.30), the
more orthogonal parameterization of (10.30) given by the BCCG distribution in Section 10.6.1
can be used.

10.5.3 Inverse Gaussian distribution (IG)

The inverse Gaussian distribution is appropriate for highly positive skew data. The pdf of the
inverse Gaussian distribution, denoted by IG(u,0) is defined by

1 1

2
e . — e (y— 10.31
fy (ylp, o) prre i d W Ter= (y — n) (10.31)
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for y > 0, where x> 0 and o > 0 with E(Y) = p and Var(Y) = o?u3. This is a reparameteri-
zation of Johnson et al. (1994) p 261 equation (15.4a), obtained by setting o2 = 1/\.

10.5.4 Weibull distribution (WEI, WEI2, WEI3)
First parameterization (WEI)

There are three version of the two parameter Weibull distribution implemented into the gamlss
package. The first, denoted by WEI(u,0), has the following parameterization

fy(ylp, o) = Uyl;,—l exp [— (z)g} (10.32)

for y > 0, where p > 0 and o > 0, [see Johnson et al. (1994) p629]. The mean and the variance
of Y in this parameterization (10.32) of the two parameter Weibull are given by E(Y) =

pT (2 +1) and Var(y) = p? {F (2+1)-[T(t+ 1)]2}, from Johnson et al. (1994) p632.
Although the parameter p is a scale parameter, it also affects the mean of Y. The median of Y
is my = u(log2)'/?, see Johnson et al. (1994), p630.

Second parameterization (WEI2)
The second parameterization of the Weibull distribution, denoted by WEI2(u,0), is defined as

Fr(ylp, o) = opy”te " (10.33)

for y > 0, where px > 0 and ¢ > 0, Johnson et al. (1994), p686. The mean of Y in this
parameterization (10.33) is E(Y) = p~ /2T (2 +1) and the variance of Y is Var(Y) =

p P (241 = [0+ 1))

In the second parameterization of the Weibull distribution the two parameters p and o are
highly correlated, so the RS method of fitting is very slow and therefore the CG() method of
fitting should be used.

Third parameterization (WEI3)

This is a parameterization of the Weibull distribution where p is the mean of the distribution.
This parameterization of the Weibull distribution, denoted by WEI3(u,0), is defined as

fy (ylp, o) = % <Z>M exp {— <Z)U} (10.34)

for y > 0, where p > 0 and o > 0 and where 8 = u/T'(1 +1). The mean of Y is given by

[ea

E(Y) = p and the variance Var(Y) = u? {F(% +1) [N(2 +1)] 2 1}.

10.6 Continuous three parameter distribution in R*

10.6.1 Box-Cox Cole and Green distribution (BCCG)

The Box-Cox Cole and Green distribution is suitable for positively or negatively skew data. Let
Y > 0 be a positive random variable having a Box-Cox Cole and Green distribution, denoted
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here as BCCG (u,0,v), defined through the transformed random variable Z given by

L) -1, it w0

élog(%), if v=20

(10.35)

for 0 <Y < oo, where p > 0, 0 > 0 and —oco < v < oo, and where the random variable
Z is assumed to follow a truncated standard normal distribution. The condition 0 < Y < o
(required for Y to be real for all v) leads to the condition —1/(ov) < Z < oo if ¥ > 0 and
—00 < Z < —1/(ov) if v < 0, which necessitates the truncated standard normal distribution
for Z.

Hence the pdf of Y is given by
yLexp(—12%)

fY(y): Myam(b(ﬁ)

(10.36)

where z is given by (10.35) and ®() is the cumulative distribution function (cdf) of a standard
normal distribution.

If the truncation probability @(—ﬁ is negligible, the variable Y has median p. The pa-
rameterization (10.35) was used by Cole and Green (1992) who assumed a standard normal
distribution for Z and assumed that the truncation probability was negligible.

10.6.2 Generalized gamma distribution (GG, GG2)

First parameterization (GG)

The specific parameterization of the generalized gamma distribution used here and denoted by
GG(p,0,v) was used by Lopatatzidis and Green (2000), and is defined as

_ [v]092% exp {—0z}
Iy (ylp,o,v) = T0)y (10.37)

for y > 0, where > 0, 0 > 0 and —oo < v < oo and where z = (y/p)” and 0 = 1/(%1?).
The mean and variance of Y are given by E(Y) = uI' (6 + 1) / [0*/*T(0)] and Var(Y) =

It {F(G)F (0+2)-[T(0+ %)]2} / {92/” [I‘(Q)]Q}. Note that GG2 is not currently implemented

in gamlss.

Second parameterization (GG2)

A second parameterization, given by Johnson et al., (1995), p401, denoted by GG2(u,0,v), is
defined as

fyylp,o,v) = %exp{— (g)u} (10.38)

for y > 0, where —oco < p < 00, 0 > 0 and v > 0.
The mean and variance of Y ~ GG2(u,0,v) can be obtained from those of GG (u,0,v) since

GG(u,0,v) = GG2(v,uf~ /" 0) and GG2(u,0,v) = GG(O’VI/”,[/L2I/]71/2, ).
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10.6.3 Generalized inverse Gaussian distribution (GIG)

The parameterization of the generalized inverse Gaussian distribution, denoted by GIG (u,o,v),

is defined as
Frlylp,ov) = (< ’ Le L (w r (10.39)
Y \Y|l, 0, - L 2Kl, (#) Xp 20.2 i cy :

for y > 0, where > 0, 0 > 0 and —o0 < v < 00, where ¢ = [Ku+1 (1/02)} [Kl, (1/02)]_1 and
Ka(t) =3 [5° a* L exp{—3t(z + 27 1)}dx.

Here E(Y) = p and Var(Y) = p? [20%(v +1)/c+1/c* — 1]. GIG(p,0,v) is a reparame-
terization of the generalized inverse Gaussian distribution of Jorgensen (1982) . Note also that
GIG (11,0 -0.5) = IG(u, o~ /?) a reparameterization of the inverse Gaussian distribution.

10.6.4 Zero adjusted Gamma distribution (ZAGA)

The zero adjusted Gamma distribution is appropriate when the response variable Y takes values
from zero to infinity including zero, i.e. [0,00). Hence Y = 0 has non zero probability v. The
pdf of the zero adjusted Gamma distribution, denoted by ZAGA (u,0,v), is defined by

v ify=0

Iy (ylp, o, v) = 1 Szl —u/ (02
(1 - l/) (02p)t/o2 4 I'(1/02)

fy>0 (10.40)

for 0 <y < oo, where 0 < v <1, g > 0and ¢ > 0 with E(Y) = (1 —v)p and Var(Y) =
(1= )2 + 02).

10.6.5 Zero adjusted Inverse Gaussian distribution (ZAIG)

The zero adjusted inverse Gaussian distribution is appropriate when the response variable Y
takes values from zero to infinity including zero, i.e. [0,00). Hence Y = 0 has non zero probability
v. The pdf of the zero adjusted inverse Gaussian distribution, denoted by ZAIG(u,0,v), is
defined by

v ify=20
Frlov) =9 - V)m exp [~k (y— | iy >0 (10.41)

for 0 <y < o0, where 0 < v <1, u > 0 and 0 > 0 with E(Y) = (1 — v)p and Var(Y) =
(1= v)p*(v + po?).

10.7 Continuous four parameter distribution in R*

10.7.1 Box-Cox t distribution (BCT)

Let Y be a positive random variable having a Box-Cox ¢ distribution, Rigby and Stasinopoulos
(2006), denoted by BCT(u,0,v,7), defined through the transformed random variable Z given
by (10.35), where the random variable Z is assumed to follow a truncated ¢ distribution with
degrees of freedom, 7 > 0, treated as a continuous parameter.
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The pdf of Y, a BCT(u,0,v,7) random variable, is given by

v fr(2)

(10.42)
woFr(5)

fY(y‘,U/7O-7 v, T) =
for y > 0, where ¢ > 0, 0 > 0 and —oo < v < o0, and where z is given by (10.35) and fr(¢)
and Fr(t) are respectively the pdf and cumulative distribution function of a random variable
T having a standard t distribution with degrees of freedom parameter 7 > 0, ie T ~ ¢, =
TF(0,1,7). If the truncation probability FT(—ﬁV‘) is negligible, the variable Y has median p.

10.7.2 Box-Cox power exponential distribution (BCPE)

Let Y be a positive random variable having a Box-Cox power exponential distribution, Rigby
and Stasinopoulos (2004) , denoted by BCPE(u,0,v,7), defined through the transformed ran-
dom variable Z given by (10.35), where the random variable Z is assumed to follow a truncated
standard power exponential distribution with power parameter, 7 > 0, treated as a continuous
parameter.

The pdf of Y, a BCPE(u,0,v,7) random variable, is given by (10.42), where fr(t) and Fr(t)
are respectively the pdf and cumulative distribution function of a variable T having a standard
power exponential distribution, T ~ PE(0,1,7). If the truncation probability FT(—ﬁ) is
negligible, the variable Y has median pu.

10.7.3 Generalized Beta type 2 distribution (GB2)
This pdf of the generalized beta type 2 distribution, denoted by GB2(u, o, v, 7), is defined by

Pl = oy~ (i Bl 1+ /w17 }

_ Pw+n)  oy/w (10.43)

LOT(T) y[1+ (y/m)]""
for y > 0, where u > 0, —00 < 0 < o0, ¥ > 0 and 7 > 0, McDonald and Xu (1995),
equation (2.7). The mean and variance of Y are given by E(Y) = uB (v+ 2,7 — 1) /B (v,7)
for —v <1 <rand E(Y?)=p?B(v+2,7—2)/B(v,7) for —v < 2 < 7, McDonald (1996),
p434. Note the by setting v = 1 in 10.43 we obtain the Burr distribution:

To(y/m)°
fy(ylp,o,7) = / 1 (10.44)
y 1+ (y/p)]
By setting o = 1 in 10.43 we obtain the Generalized Pareto distribution:
Pv+7) (Wy !
fy (Yl v, m) = (10.45)

P)D(T) (y + p) 7

10.8 Continuous two parameter distribution in R[0, 1]

10.8.1 Beta distribution (BE, BEo)

The beta distribution is appropriate when the response variable takes values in a known re-
stricted range, excluding the endpoints of the range. Appropriate standardization can be ap-
plied to make the range of the response variable (0,1), i.e. from zero to one excluding the
endpoints. Note that 0 <Y < 1 so values Y = 0 and Y = 1 have zero density under the model.
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First parameterization (BEo)

The original parameterization of the beta distribution, denoted by BFEo(u, o), has pdf given by
fylp, o) = % y* (1 —y)°~! for 0 < y < 1, with parameters p > 0 and o > 0. Here

B(Y) = /(u +0) and Var(¥) = po(p+0)(u + 0 + 1),
Second parameterization (BE)

In the second parameterization of the beta distribution below the parameters p and o are
location and scale parameters that relate to the mean and standard deviation of Y. The pdf of
the beta distribution, denoted by BE(u,0), is defined by

Yy 1 —y)P ! (10.46)

1
Ty ylp, o) =
V)= B )
for 0 <y < 1, where a = p(1 — 0?)/o? and f = (1 — p)(1 —0?)/0?, a > 0, and 3 > 0 and
hence 0 < 4 < 1 and 0 < o < 1. [Note the relationship between parameters (u,0) and (o,53) is
given by = a/(a + ) and ¢ = (a+ B+ 1)71/2] In this parameterization, the mean of Y is
E(Y) = p and the variance is Var(Y) = o?u(1 — p).

10.8.2 Beta inflated distribution (BEINF, BEINF0, BEINF1)

The beta inflated distribution is appropriate when the response variable takes values in a known
restricted range including the endpoints of the range. Appropriate standardization can be
applied to make the range of the response variable [0,1], i.e. from zero to one including the
endpoints. Values zero and one for Y have non zero probabilities py and p; respectively. The
probability (density) function of the inflated beta distribution, denoted by BEINF (u,0,v,7) is
defined by

Do ify=20
frylpov,m) =9 L—po—p)pag v 'Q-y’" f0<y<l (10.47)
41 ify=1

for 0 < y < 1, where a = pu(1 —0?)/0?, B = (1 — p)(1 —0?)/0?, po = v(1 +v + 7)1,
pr=7(l+v+7)tsoa>0>00<py<1,0<p <1—py. Hence BEINF (u,0,v,7) has
parameters = o/(a+ () and 0 = (a4 B+1)"Y2, v = po/p2, T = p1/p2 where py = 1 —py—p;.
Hence 0 < p<1,0<o0<1,v>0and7>0. NotethatE(y):%.

The probability (density) function of the inflated at zero beta distribution, denoted by
BEINFO(u,0,v) is defined by

Do ify=0

fr Wl ,v) = { (I =po) g v 'A—y’ ! fo<y<l (10.48)
for 0 <y < 1, where a = u(1—0?)/0?, 8= (1—p)(1—02)/0% po = v(1+v)~1, soa > 0,8 >0,

0 < po < 1. Hence BEINFO(y,0,v) has parameters = o/(a + ) and 0 = (a + 3+ 1)71/2,

v =po/l —po. Hence 0 < p < 1,0 < ¢ < 1, v > 0. Note that for BEINFO(u,o,v),
B(y) = 1oy

The probability (density) function of the inflated beta distribution, denoted by BEINF1(u,0,v)

is defined by

(1 —pl)m ye (1 —y)ﬁfl f0<y<l1

o fy—1 (10.49)

h@MmWZ{
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for 0 <y <1, where o = pu(1—0%) /02, 8= (1—p)(1—02)/0%, p1 =7(1+7)"Lsoa >0,8>0,
0 < p1 < 1. Hence BEINF1(u,0,) has parameters p = o/ (o + 3) and 0 = (a+ 3 + 1)~/
v=p1/(1 —p3). Hence 0 < p < 1,0 <o <1, v >0. Note that E(y) = (’{i‘y‘).

For different parametrization of the BEINFO(u,0,v) and BEINF1(u,0,v) distributions see
also BEZI(u,0,v) and BEOI(u,0,v) distributions contributed to gamlss by Raydonal Ospina,

Ospina and Ferrari (2010).

10.8.3 Generalized Beta type 1 distribution (GB1)

The generalized beta type 1 distribution is defined by assuming Z = Y7 /[v + (1 — v)Y"| ~
BE(u,0). Hence, the pdf of generalized beta type 1 distribution, denoted by GB1(u, o, v, 7), is
given by

B Tyﬁy‘ra—l(l _y'r)ﬂ—l
Pl o) = B B (1= s

(10.50)

for 0 < y < 1, where a = p(1 — 0?)/0? and B = (1 — pu)(1 — 02)/0?, a > 0 and 3 > 0. Hence,
GB1(u,0,v,7) has adopted parameters = a/(a+ ), 0 = (a+ f+1)"*2, v and 7, where
0<pu<l1l,0<o<1l,v>0and 7 >0. The beta BE(u,o) distribution is a special case of
GB1(p,0,v,7) where v =1 and 7 = 1.

10.9 Binomial type data one parameter distributions
10.9.1 The Binomial distribution (BI)
The probability function of the binomial distribution, denoted here as BI(n,u) , is given by

n!
py (yln,p) = P(Y =yln,p) = ——— p (1 —p)"Y
(yln, p) = P( n, ) S0 =) ( )

fory =0,1,2,...,n, where 0 < u < 1, (and n is a known positive integer), with F(Y) = nu and
Var(Y) =nu(1 — p). See Johnson et al. (1993), p 105 where p = p.
10.10 Binomial type data two parameters distributions

10.10.1 Beta Binomial distribution (BB)

The probability function of the beta binomial distribution denoted here as BB (n,u,0) is given
by

B (n+ 1) D(HT(y + 2)Tn + -y
Wl o) = R M =y 1) Dins H)D(ET(E) (10.51)

fory=10,1,2,...,n, where 0 < u < 1 and o > 0 (and n is a known positive integer). Note that

EY)=npand Var(Y) = nu(l — p) {1 + 175 (n— 1)}

The binomial BI(n,u) distribution is the limiting distribution of BB(n,u,0) as 0 — 0. For
#=0.5and o = 0.5, BB(n,1,0) is a uniform distribution.
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10.10.2 Zero altered (or adjusted) binomial (ZABI)

Let Y = 0 with probability ¢ and Y ~ BItr(n,u) with probability (1 — o), where BItr(n, u)
is a Binomial truncated at zero distribution, then Y has a zero altered (or adjusted) binomial
distribution, denoted by ZABI(n, u, o), given by
o, if y=0
n,u,o) = 10.52
py (ln. p.o) e (1052)
N RMICEmIE y==5H209. .

For 0 < p <1, and 0 < 0 < 1. The mean and variance of Y are given by

_ (I=o)np
S ey
e (1=0)(1—p+np)
Cnp(l—o)(L—p+np) 5
Var(Y) = = (—p [E(Y)]
respectively.

10.10.3 Zero inflated binomial (ZIBI)

Let Y = 0 with probability o and Y ~ BI(n, y) with probability (1 — o), then Y has a zero
inflated binomial distribution, denoted by ZIBI(n, u, o), given by

o+ (l—0o)(1—p)", if y=0
py (y|n,p,0) = ) . (10.53)
Hooieye e if y=1,2,3,...

For0 < pu<1,and 0 < 0 < 1. The mean and variance of Y are given by
EY)=(1-0)nu

and
Var(Y)=nu (1 —o0)[1 — g+ nuo]

respectively.

10.11 Binomial type data three parameters distributions

10.11.1 Zero altered (or adjusted) beta binomial (ZABB)

Let Y = 0 with probability v and Y ~ BBtr(n, u, o) with probability (1—v), where BBtr(n, i, o)
is a beta binomial truncated at zero distribution, then Y has a zero altered (or adjusted) beta
binomial distribution, denoted by ZABB(n, p, o,v), given by

) if y=0

pY(y|n7Nao—7 V) = (1054)

(1—v)py/ (y|n,p,0) : _
—[1_1)3/(0&7”7’;)] , if y=1,2,3,...

14

where Y/ ~ BB(n, pu,0). For 0 < p < 1,0 >0 and 0 < v < 1. The mean and variance of Y are
given by
(1= v)np

E(Y) = [1 — py(0|n, u, o))
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and
(=) {ru(t=p [1+ 1% (0= 1] - n22}
[T py (Ol 1.0)]

Var(Y) = ~[BY))

respectively.

10.12 Binomial type data three parameters distributions

10.12.1 Zero inflated beta binomial (ZIBB)

Let Y = 0 with probability v and Y ~ BB(n, u, o) with probability (1 — v), then Y has a zero
inflated beta binomial distribution, denoted by ZIBB(n, u, o,v), given by

V+(17V)py’(0|nvﬂa0—)a if y=0
pY(y|n7M70—7 I/) - (1055)
(1 —v)pyr(yln, p, o), if y=1,2,3,...

For0<p<1,0>0and 0 <v <1 where Y’ ~ BB(n,u,o). The mean and variance of Y are
given by

EY)=(1-v)nu
and

o
1+o

Var(Y)=0—-v)nup(1—p) |1+ (n—1|+v(1—v)n?u?

respectively.

10.13 Count data one parameter distributions

10.13.1 Poisson distribution (PO)
Poisson distribution

The probability function of the Poisson distribution, denoted here as PO(u), is given by

py (ylp) = P(Y =ylp) = ei;“ ’ (10.56)

where y = 0,1,2,..., where p > 0, with E(Y) = pand Var(Y) = u. [See Johnson et al. (1993),
p 151.] The moment ratios of the distribution are given by /3; = p= %5 and By = 3 + p~!
respectively. Note that the Poisson distribution has the property that E[Y] = Var[Y] and
that 3y — 81 —3 = 0. The coefficient of variation of the distribution is given by p=°°. The
index of dispersion, that is, the ratio Var[Y]/E[Y] is equal to one for the Poisson distribution.
For Var[Y] > E[Y] we have overdispersion and for Var[Y] < E[Y] we have underdispersion
or repulsion. The distribution is skew for small values of p, but almost symmetric for large p
values.
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10.13.2 Logarithmic distribution (LG)
The probability function of the logarithmic distribution, denoted here as LG (), is given by

ap?
py(ylp) = P(Y =y|u) = 5 for y=12,... (10.57)
where a = — [log(1 — )] " for 0 < < 1. Note that the range of Y starts from 1. The mean
and variance of Y are given by E(Y) = (1‘1“#) and Var(Y) = W, see Johnson et al.

(2005) p.302-342.

10.14 Count data two parameters distributions

10.14.1 Negative Binomial distribution (NBI, NBII)
First parameterization: Negative Binomial type I (NBI)
The probability function of the negative binomial distribution type I, denoted here as NBI(u,0),

is given by
o) = LW D) <fw )( 1 >””
,0) =
PR O+ ) \T+on) \T+ou

for y =0,1,2, ..., where u > 0, ¢ > 0 with E(Y) = p and Var(Y) = p + op?. [This parameter-
ization is equivalent to that used by Anscombe (1950) except he used o = 1/o, as pointed out
by Johnson et al. (1993), p 200, line 5.

Second parameterization: Negative Binomial type IT (NBII)

The probability function of the negative binomial distribution type II, denoted here as NBII(u,0),
is given by

I'(y + p/o)o”
p/o)T(y + 1) (1 + o)vtrlo
for y = 0,1,2,...,, where p > 0 and ¢ > 0. Note E(Y) = g and Var(Y) = (1 + o)u, so o

is a dispersion parameter [This parameterization was used by Evans (1953) as pointed out by
Johnson et al (1993) p 200 line 7.]

py (ylp, o) = T

10.14.2 Poisson-inverse Gaussian distribution (PIG)
The probability function of the Poisson-inverse Gaussian distribution, denoted by PIG(u,0), is

given by
2a B Myel/aKyfg(a)
py (ylp, o) = (7r> W
where a? = %—l—%“, fory =0,1,2,...,00 where p > 0and o > 0 and K, (t) = % OOO P eXp{—%t(aH—

2~ 1) }dz is the modified Bessel function of the third kind. [Note that the above parameterization

was used by Dean, Lawless and Willmot (1989). It is also a special case of the gamlss.family

distribution SI(u,0,v) when v = —1]
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10.14.3 Zero inflated poisson (ZIP, ZIP2)

First parameterization (ZIP)

Let Y = 0 with probability ¢ and Y ~ Po(u) with probability (1 — o), then Y has a zero
inflated Poisson distribution, denoted by ZIP(u,0), given by

o+ (1—o)e *, it y=0
py(ylp,o) = (10.58)

(1—0’)%6_“, if y=1,2,3,...
See Johnson et al (1993), p 186, equation (4.100) for this parametrization. This parametrization
was also used by Lambert (1992). The mean of Y in this parametrization is given by E(Y) =

(1 — o)p and its variance by Var(Y) = u(1 — o) [1 + pol.

Second parameterization (ZIP2)

A different parameterization of the zero inflated poisson distribution, denoted by ZIP2(u,0),
is given by

o+ (1—o)e (7)), if y=0
py (ylp, o) = , ) (10.59)
(1—a)me—(m), it y=1,2,3,...

The mean of Y in (10.59) is given by F(Y) = p and the variance by Var(Y) = p + ;Lz(lf—g).

10.14.4 Zero altered (or adjusted) poisson (ZAP)

Let Y = 0 with probability ¢ and Y ~ POtr(u) with probability (1 — o), where POtr(u) is a
Poisson truncated at zero distribution, then Y has a zero adjusted Poisson distribution, denoted
by ZAP(u,0), given by

o, if y=0
pylne) = . (10.60)
Yll—e—+r) > if Yy = 1,2,37...

The mean of YV in this parametrization is given by E(Y) = (1 —o)pu/ (1 —e #) and its
variance by Var(Y) = (ﬁ;(fz) [w+p? - [E ()%

10.14.5 Zero altered (or adjusted) logarithmic (ZALG)

Let Y = 0 with probability o and Y ~ LG(u), a logarithmic distribution with probability
(1—0), then Y has a zero altered (adjusted) logarithmic distribution, denoted by ZALG (u,0),
with probability function given by

o, if y=0
py(ylino) = y (10.61)
(1—0)%7 if y=1,2,3,...
where a = — [log(1 — )] " for 0 < p < 1 and 0 < ¢ < 1. The mean and variance of of Y are

given by E(Y) = % and its variance by Var(Y) = (1_0)’12‘1[1_;5%_0)0‘“].
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10.15 Count data three parameters distributions

10.15.1 Delaporte distribution (DEL)
The probability function of the Delaporte distribution, denoted by DEL(u,0,v), is given by

Py (vl o) = fs L+ (1= 7S (10.62)

=2 ()5 beraa] TG)

fory=0,1,2,...,co where p > 0,0 > 0and 0 < v < 1. This distribution is a reparameterization
of the distribution given by Wimmer and Altmann (1999) p 515-516 where o = pv, k = 1/0
and p = [1 + po(1 — v)]7!. The mean of Y is given by E(Y) = u and the variance by
Var(Y) = p+ p2o (1 —v)°.

where

10.15.2  Sichel distribution (SI, SICHEL)

First parameterization (SI)

The probability function of the first parameterization of the Sichel distribution, denoted by
SI(u,0,v), is given by

1Ky (@)
(o) vyl K, (3)

pY(ZJ‘,lL,O', V) = (1063)
Wherea 2—1—2“ fory=0,1,2,...,00 where 4 >0, 0 > 0 and —oo < v < 0o and K(t) =
3y et exp{ 1t(x+x*1)}dx is the modified Bessel function of the third kind. Note that the
above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above
probability function but treat x, a and v as the parameters. Note that o = [(2 +a2)2 — ] L.

Second parameterization (SICHEL)

The second parameterization of the Sichel distribution, Rigby, Stasinopoulos and Akantziliotou
(2008), denoted by SICHEL(u,0,v), is given by

)V Kyt (o

[ed

py (ylp,o,v) =
for y = 0,1,2,..., 00, where a?

=0 —|— w(co)™t. The mean of Y is given by E(Y) = u and
the variance by Var(Y) = p + p? [20(v +

/c+ 1/t —1].

10.15.3 Zero inflated negative binomial distribution (ZINBI)

Let Y = 0 with probability v and Y ~ NBI(u, o), with probability (1 — v), then Y has a zero
inflated negative binomial distribution, denoted by ZINBI(u, o, v), with probability function
given by

V+(1_V)pY’(0|:U’vU)7 if y=0

Py (y|lu‘a a, V) = (1065)
(lflj)py/(yLLL,J)? if y=12,3,...
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fory>0,0>0and 0 <v <1, where Y ~ NBI(u,0) so

_1
Py (Olp,0) = (1 +op) ~

Pt = F(E()yrz;i)l) (liiuy <1+1ou)1/0

fory =0,1,2,3,.... The mean of Y is given by E(Y) = (1 — v) p and the variance by Var(Y) =
w(1—v)[1+ (0 +v)u], since for any three parameter zero inflated distribution

and

BE(Y)=(1-v)E®Y")

and
Var(Y) = (1—v)Var(Y) +v(1—v)[E(Y)].

10.15.4 Zero altered (or adjusted) negative binomial distribution (ZANBI)

Let Y = 0 with probability v and Y ~ N BItr(u, o), with probability (1—v), where NBItr(u, o)
is a negative binomial truncated at zero distribution, then Y has a zero altered (or adjusted)
negative binomial distribution, denoted by ZANBI(u, o, v), with probability function given
by
v, if y=20
py(ylp,ov) = o olie) (10.66)
—V)py/ ,0 . o
[1—py/ (O]p,0)] ? if Y= 1,2,3,...

for p>0,0>0and 0 <v <1 whereY' ~ NBI(u,0) so

_1
py(0lp,0) = (L+ou) °

py (ylp, o) = Lly+3) (au >y< 1 )1/0

I(LO(y+1) \1+ou 1+op

fory=0,1,2,3,.... The mean of Y is given by

. and

o (=v)p
BY) = i o)

and the variance by

(1-v) 2 2
Var(Y) = ——————= {pu+(c+1 —[BE(Y
)= gy O+ DS 1)
since for any three parameter zero altered distribution we have
_ /
By~ L= WEN)
[1 = py+(0lp, 0)]

and
Var(y) = — =0 {Var(') + (B} = [BOOP.
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10.15.5 Zero inflated Poisson inverse Gaussian distribution (ZIPIG)

Let Y = 0 with probability v and Y ~ PIG(u, o), with probability (1 — v), then Y has a zero
inflated Poisson inverse Gaussian distribution, denoted by ZIPIG(u, o, v), with probability
function given by

V+(1_V)pY’(0|M70)7 if y=20
py (ylp,o,v) = (10.67)
(1_V)pY’(y|:U’7U)7 if y:1a2737"'

foru >0, 0 >0and 0 < v < 1, where Y ~ PIG(p,0). The mean of Y is given by
E(Y) = (1 —v)u and the variance by Var(Y) = p (1 —v)[1+ (0 + v) ul.
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