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1 Introduction

The package gamlss.spatial provides a set of functions to facilitate the fitting of spatial models
within GAMLSS, Rigby and Stasinopoulos [2005]. At the moment it allows only Gaussian
Markov random fields (GMRF) terms, Rue and Held [2005], other spatial data facilities will be
added in the future. Chapter 9 of Stasinopoulos et al. [2017] provides more information of what
other types of additive terms can be used within the gamlss packages. De Bastiani et al. [2016]
describes the implementation of GMRF within GAMLSS and the material presented here is
supplementary to this article.

Markov random fields (MRF) is a generic term to describe k random variables whose joint
distribution is specified using local conditional independence assumptions. This package uses
spatial Gaussian Markov random field (GMRF) models. More specifically it uses intrinsic au-
toregressive models (IAR) (which are a limiting case of the conditional autoregressive models
(CAR) of Besag [1974]. Besag and Kooperberg [1995] is a good reference for the definition of
those models. The IAR models are ideal for modelling a response variable measured in geo-
graphical areas. When we model a response variable measured in areas we expect neighbouring
areas to have a more similar response variable distribution than areas which are far apart. This
is what a IAR term in the model for a response variable distribution parameter aims to achieve
by bringing the fitted parameter values of neighbouring areas closer to each other. The fitting
of an IAR model requires the specification of the precision matrix. The precision matrix can
be constructed by using the geographical information of the areas.
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The package provides several functions. The functions MRF() and MRFA() are appropriate for
fitting a simple IAR model. Those two functions are called by the function gmrf() in order to
fit an additive IAR term within the model for a response variable distribution parameter in the
gamlss() function.

Section 1.1 provides information about the MRF() and MRFA() functions and their arguments.
Section 1.2 describes additional functions for converting the way graphical information is stored.
Section 1.3 gives an example of using the MRF() and MRFA() functions. Section 2 describes the
GAMLSS additive function gmrf() and Section 3 gives an example of its use. Conclusions are
given in Section 4.

1.1 The functions MRF() and MRFA()

The model fitted by the two functions MRF() and MRFA() can be written as:

y = Z� + ✏

where Z is an n ⇥ q incidence matrix (Zij = 1 if observation i belongs to area j and Zij = 0
otherwise), � is a q ⇥ 1 vector of random e↵ects for the areas, and where � ⇠ Nq(0,�2

bG
�1)

for a specific scaled precision matrix G and ✏ ⇠ N(0,�2
eW

�1) where W is a diagonal matrix
of prior weights. If the number of observations equals the number of areas, then Z = I the
identity matrix.

To estimate the random e↵ect �’s one can use the (weighted) penalised least square solution

�̂ =
�
ZWZ> + �G

��1
Z>Wy

where � = �2
e/�

2
b .

As described in De Bastiani et al. [2016], assume that a response variable and explanatory
variables are recorded at observations which belong spatially to one of a set of areas (or regions).
Zero, one or more than one observation may be recorded in each region. To incorporate IAR
models within the GAMLSS model, set Z to be an incidence matrix defining which observation
belongs to which area, and let � be the vector of q spatial random e↵ects and assume � ⇠
Nq(0,�2

bG
�1), where G�1 is the (generalized) inverse of a q ⇥ q matrix, G. In the following

IAR model, based on Besag and Higdon [1999], the matrix G contains the information about
the neighbours (adjacent regions), with elements given by Gmm = nm where nm is the total
number of adjacent regions to region m and Gmt = �1 if region m and t are adjacent, and
zero otherwise, for m = 1, . . . , q and t = 1, . . . , q. This model has the attractive property that
conditional on �2

b and �t for all t 6= m, then �m ⇠ N(
P

�tn�1
m ,�2

bn
�1
m ) where the summation is

over all regions which are neighbours of region m. For a graphical interpretation of the nonzero
pattern of the matrix G see De Bastiani et al. [2016].

The functions MRF() and MRFA() di↵er in the way the estimates of �2
e and �2

b are calculated.
Both functions use ”local’ maximum likelihood estimation as described in De Bastiani et al.
[2016] and should give identical estimates. The function MRF() maximizes numerically the log
likelihood of the marginal normal likelihood (called the Q function) in terms of parameters
log �2

e and log �2
b . Note that if the log-likelihood function is relatively flat implementing an

informative prior for log(�2
e) can help convergence (using the argument penalty). The function

MRFA() fits the same IAR model as MRF() but it uses an alternating algorithm described in
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Chapter 3 of Stasinopoulos et al. [2017] and a special case of the one described in Section 2 of
Rigby and Stasinopoulos [2013]. The estimates should be identical. The function MRF() needs
starting values for the parameters �2

e and �2
b , while MRFA() needs a starting value for �. Note

that while the function MRF() provides standard errors for the log �2
e ans log �2

b , the function
MRFA() does not.

The arguments of the function MRF() are:

y response variable

x a factor containing the areas

precision the (scaled) precision matrix G if known

neighbour an object containing the neighbour information for the areas

polys the polygon geographical information if known

area this argument is useful if we have more areas than levels of the factor x, (i.e. if there are
some areas with no observations in the data set) . This specifies a factor containing all
the areas.

weights vector of prior weights (the diagonal of W)

sig2e starting value for the error variance �2
e

sig2bs starting value for the random e↵ect variance �2
b

sig2e.fix whether �2
e is fixed in the fitting, default equals FALSE

sig2b.fix whether �2
b is fixed in the fitting, default equals FALSE

penalty whether an extra quadratic penalty is required to help convergence in case the like-
lihood function is flat. This is equivalent of putting a normal prior distribution for log(�2

e)
given by log(�2

e) ⇠ N(µs, 1/�)

delta the precision of the prior i.e. �

shift the mean of the prior i.e. µs

The function MRFA() has extra arguments:

lambda for fixing the smoothing parameter for MRFA() function

start starting value for the smoothing parameter � for MRFA() function

df for fixing the degrees of freedom

Note that both MRF() and MRFA() create an MRF object in R. There are several method to operate
on a MRF object i) fitted(), ii) coef() iii) residuals() iv) AIC() v) deviance() vi) plot() vii)
print() viii) summary() ix) logLik() x) predict().

1.2 Additional functions

First we explain 3 di↵erent ways in which the graphical information about the areas (or regions)
can be stored:
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i) a neighbour object is a R list comprising each region label followed by its neighbouring region
labels.

ii) a polygon object is a R list comprising the region label followed by coordinates of points in
two columns in matrix form defining the boundary for each area.

iii) a (scaled precision) matrix G is defined in Section 1.1 for the specific IAR model fitted by
the gamlss.spatial package which determines the prior distribution � ⇠ Nq(0,�2

bG
�1)

where G�1 is a generalized inverse of G.

There are several additional supporting functions in the package:

nb2nb() transforms an object with neighbour information in a shapefile format (geospatial
vector data format for geographic information system, written in R as a S4 object) to the
neighbour required form for functions MRF() and MRFA(). The single argument takes a S4
neighbour object.

polys2nb() creates the neighbour object from the geographical polygons. The single argument
takes a polygon object.

nb2prec() creates the matrix G from the neighbour information.There are three arguments
here:

neighbour is a neighbour object.

x is the area factor. This factor can have less levels than the number of areas defined in
the neighbour object. In such cases the third argument area has to be specified.

area all possible areas involved, with the number of areas is equal to the number of
neighbours in the neighbour object of the first argument.

polys2polys() transforms polygons in shapefile format (S4 object) to the polygons required
form for the MRF() and MRFA().

draw.polys() Plots the fitted values a fitted MRF object. This function has arguments:

polys An object containing the polygon information for the area.

object This can be either a fitted MRF object or a vector of values to plot. Note that
in later case the vector should also have names corresponding to the names of the
polys (see the example below for how this can be achieved.).

scheme The scheme of colours to use, it can be ”heat”, ”rainbow”, ”terrain”, ”topo”,
”cm” or any colour.

swapcolor To reverse the colours, it just works for ”heat”, ”rainbow”, ”terrain”, ”topo”,
”cm” options.

n.col A range for di↵erent colours.

1.3 Example using MRF() and MRFA()

R data file: columb in package mgcv of dimensions 49⇥ 8

var area : land area of district
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home.value : housing value in 1000USD

income : household income in 1000USD.

crime : residential burglaries and auto thefts per 1000 households (the response
variable)

open.space : measure of open space in district

district : code identifying district, and matching names(columb.polys)

x,y middle point area coordinates

purpose: to demonstrate spatial functions in GAMLSS

Note: in the above data set the variable district contains the names of the districts or regions
or areas (and should not be confused with the variable area which is quantitative).

First we bring the data frame columb and the polygons file columb.polys from themgcv package.
We also print the polygon information for the first district of the data called district "0".

library(gamlss.spatial)
library(mgcv)
# bring the data
data(columb)
names(columb)

## [1] "area" "home.value" "income" "crime" "open.space"
## [6] "district" "x" "y"

# getting the polygons file
data(columb.polys)
head(columb.polys,1)

## $�0�
## [,1] [,2]
## [1,] 8.624129 14.23698
## [2,] 8.559700 14.74245
## [3,] 8.809452 14.73443
## [4,] 8.808413 14.63652
## [5,] 8.919305 14.63850
## [6,] 9.087138 14.63049
## [7,] 9.099965 14.24483
## [8,] 9.015047 14.24184
## [9,] 9.008951 13.99506
## [10,] 8.818140 14.00205
## [11,] 8.653305 14.00809
## [12,] 8.642902 14.08971
## [13,] 8.632592 14.17059
## [14,] 8.625826 14.22367
## [15,] 8.624129 14.23698

Above are the first district name "0" and the (horizontal and vertical) coordinates of the polygon
defining the district. We now use the function polys2nb() to translate the information from
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polygons to neighbours:

# getting the neighbours object from the polygons object
vizinhos <- polys2nb(columb.polys)
vizinhos[[1]]["0"]

## $�0�
## [1] 2 3

For example the district "0" has as neighbours districts "2" and "3�.

The function nb2prec() is used to get the (scaled precision) matrix G from the neighbour
information. The created (scaled precision) matrix precisionC is an 49 ⇥ 49 matrix, but here
we plot only its first 10 rows and 20 columns.

# getting the precision matrix from the neighbours object
precisionC <- nb2prec(vizinhos,x=columb$district)
precisionC[1:10, 1:20]

## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## 0 2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 1 -1 3 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 -1 -1 4 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 -1 -1 4 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 -1 -1 8 -1 0 -1 -1 0 -1 0 0 0 -1 -1 0 0 0 0
## 5 0 0 0 0 -1 2 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 4 -1 0 0 0 -1 -1 -1 0 0 0 0 0 0
## 7 0 0 0 -1 -1 0 -1 6 0 0 -1 -1 -1 0 0 0 0 0 0 0
## 8 0 0 0 0 -1 -1 0 0 8 -1 0 0 0 0 -1 0 0 0 0 -1
## 9 0 0 0 0 0 0 0 0 -1 4 0 0 0 0 0 0 -1 0 0 -1

The first row indicates that region "0" has 2 neighbours regions "1" and "2".

Now we will fit the IAR model using the two di↵erent functions MRF() and MRFA(), but also
using di↵erent geographical information i) polygons ii) neighbours and iii) (scaled precision)
matrix G. The R function system.time() checks the speed of the procedures. The model
which used the (scaled precision) matrix G should be fastest, since all functions require matrix
G to be obtained for fitting.

# fit using the polygone information
# MRFA alternaing
system.time(m11<-MRFA(columb$crime, columb$district, polys=columb.polys))

## user system elapsed
## 0.46 0.00 0.46

# MRF Q-function
system.time(m21<-MRF(columb$crime, columb$district, polys=columb.polys))

## user system elapsed
## 0.25 0.00 0.25

# fit using the neighbour information
# MRFA alternaing
system.time(m12<-MRFA(columb$crime, columb$district, neighbour=vizinhos))
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## user system elapsed
## 0.26 0.00 0.26

# MRF Q-function
system.time(m22<-MRF(columb$crime, columb$district, neighbour=vizinhos))

## user system elapsed
## 0.25 0.00 0.25

# fit using the percision matrix
# MRFA alternaing
system.time(m13<-MRFA(columb$crime, columb$district, precision=precisionC))

## user system elapsed
## 0.13 0.00 0.13

# MRF Q-function
system.time(m23<-MRF(columb$crime, columb$district, precision=precisionC))

## user system elapsed
## 0.06 0.00 0.06

AIC(m11, m21, m12, m22, m13, m23, k=0)

## df AIC
## m21 24.46858 335.9114
## m22 24.46858 335.9114
## m23 24.46858 335.9114
## m11 24.46856 335.9115
## m12 24.46856 335.9115
## m13 24.46856 335.9115

All fitted models are identical, but note below the di↵erent information provided by object MRF
when it is fitted using the function MRF() and when fitted using MRFA(). The algorithm used in
MRFA(), while generally faster to converge, does not provides standard errors for the parameter
estimates. The function MRF() also provides in addition the marginal deviance of the fit.

summary(m11)

##
## Markov Random Fields fit
## Fitting method: "altenating"
##
## Call: "MRFA(columb$crime, columb$district, polys = columb.polys)"
##
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## log(sigeˆ2) 4.51682 NA NA NA
## log(sigbˆ2) 5.83251 NA NA NA
##
## Degrees of Freedom for the fit: 24.46856 Residual Deg. of Freedom 24.53144
## Global Deviance: 335.911
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## AIC: 386.849
## SBC: 435.031
## Marginal Devia.: 0

summary(m21)

##
## Markov Random Fields fit
## Fitting method: "Q-function"
##
## Call: "MRF(columb$crime, columb$district, polys = columb.polys)"
##
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## log(sigeˆ2) 4.516816 0.533713 8.4630 < 2.22e-16 ***
## log(sigbˆ2) 5.832515 0.534887 10.9042 < 2.22e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Degrees of Freedom for the fit: 24.46858 Residual Deg. of Freedom 24.53142
## Global Deviance: 335.911
## AIC: 386.849
## SBC: 435.031
## Marginal Devia.: 462.338

Next we plot both the observed and the fitted response variable values in maps by using the
function draw.polys(). Note that the first argument of the function is the polygon information,
while the second is either a vector (to plot the observed response variable value) or a fitted MRF
model (to plot fitted response variable values). In the former case the vector should contain
the observed response variable values together with their district labels stored as names. In
commands below we create the vector cr for the row crime figures and then we assign the
names of the districts as names for cr. [Note that if there were more than one observation in
the same district, the mean cr for each district has to be computed (with names as the district
labels) and replace cr with the computed mean cr.]

Figure 1
cr <- columb$crime
names(cr) <- as.character(columb$district)
draw.polys(columb.polys, cr, scheme="topo",swapcolors=TRUE)
title("(a) crime")
draw.polys(columb.polys, m11, scheme="topo",swapcolors=TRUE)
title("(b) smooth values")

Figure 1(a) shows that the range of the observed crime values is from 0 to 70, while from
Figure 1(b) the range for the fitted (mean) crime values is between 10 and 60. The ‘shrinking’
e↵ect, where fitted (mean) values for di↵erent areas shrink towards their neighbours, is a typical
behaviour in the IAR model.

It would be of interest to see what will happen if data from one of the areas defined in the
polygons is missing. In this case we will have less areas in the data than the number of polygons
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Figure 1: Showing (a) the actual crime figures and (b) the fitted values from the IAR model.

defined in the polygon file. We will remove district "4" from the columb data set (but also level
"4" for the factor district). In order to fit the model to the reduced data set we will need to
define a factor which has as many levels as the number of areas in the polygon information file.
Our original columb$district has this information and it will be used below, but in general we
can get this information from the polygon file, i.e. as.factor(names(columb.polys)).

# the dimension of the original data
dim(columb)

## [1] 49 8

# removing one area (district ��4��) from the data
columb2 <- columb[-5,]
# drop unused level from a factor
columb2$district <-droplevels(columb2$district)
dim(columb2)

## [1] 48 8

nlevels(columb2$district)

## [1] 48

# fitting the reduced data
# using polys
r1<-MRF(columb2$crime, columb2$district, polys=columb.polys,

area=columb$district)
# using neighbours
r2<-MRF(columb2$crime, columb2$district, neighbour=vizinhos,

area=columb$district)
# using the old precision
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r3<-MRF(columb2$crime, columb2$district, precision=precisionC,
area=columb$district)

# creating new precision matrix
precisionC2 <- nb2prec(vizinhos, x=columb2$district,

area=columb$district)
dim(precisionC2)

## [1] 49 49

# fitting using the new 49 x 49 precision
r4<-MRF(columb2$crime, columb2$district, precision=precisionC2,

area=columb$district)
# checking the results
AIC(r1,r2,r3,r4, k=0)

## df AIC
## r1 23.5671 330.9477
## r2 23.5671 330.9477
## r3 23.5671 330.9477
## r4 23.5671 330.9477

All fitted models produce identical results. Note that one consequence of having less areas (i.e.
districts in the above example) in the data than the actual areas in the polygons is that the �
has length equal to the areas of the polygons while the fitted values has less district values. For
instance in our example we have 49 areas defined by area=�columb$district�, but in the data
only 48 areas and with no repetition in areas. Therefore the estimated �̂ is of length 49, while
the fitted values of the model are of length 48. Next using the function plot.polys() we plot
the fitted (mean crime) values of model r1 and the estimated �̂ from the same model.

Figure 2
draw.polys(columb.polys, fitted(r1), scheme="heat", swapcolors=TRUE )
title("(a)")
draw.polys(columb.polys, r1, scheme="heat",swapcolors=TRUE )
title("(b)")

Note the white region in Figure 2(a) indicating the missing fitted value for area "4". The colour
of the same area in Figure 2(b) is filled with a colour (similar to its neighbours) representing
the estimated �̂ for area "4".

2 The GAMLSS additive function gmrf()

The function which can be used within GAMLSS to fit an IAR model is gmrf(). It has the
following arguments:

x a factor containing the areas

precision the (scaled) precision matrix G if set (the quickest way to fit the model),

polys the polygon information if set,

area this argument is here to allow more areas than the levels of the factor x, as was described
in Section 1.1,
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Figure 2: Showing (a) the fitted values of model r1 and (b) the fitted �̂ from the same model.

start starting value for the smoothing parameter �, only for method="A"

df degrees of freedom for fitting if required, only for method="A"

method "Q" for Q-function using MRF(), or "A" for alternating method using MRFA(),

adj.weight a value to adjust the iterative weight if necessary (to achieve convergence of the
algorithm).

[Note that some of the arguments of the functions MRF() and MRFA() can be used here (according
to the method selected).]

First we fit model g1, the IAR model fitted using gamlss(), and we compare the results with the
model m21 fitted by MRF(). Notice that in the output below the fitted values for the µ parameter
are identical, and so are the estimates (18.47) for the parameter �b. The estimates for the
parameter �e are di↵erent since the estimate (6.77) from the gamlss() model [see Rigby and
Stasinopoulos [2005] and Nelder [2005]] is a maximum likelihood a posteriori (MAP) or penalized
likelihood estimator, while the estimate (9.57) from MRF() is a REML estimator. Note that the
gamlss() MAP estimator of �e can be substantially negatively biased [i.e. underestimates �e

when, as here, the total e↵ective degrees of freedom used in the model for µ (23.47, including
the spatial smoother) is high relative to the sample size (49)]. This causes the deviances to
be di↵erent in the two fitted models. Note that gamlss() uses a normal distribution for the
response variable crime by default.

# fit the model
g1 <- gamlss(crime˜gmrf(district,precision=precisionC), data=columb)

## GAMLSS-RS iteration 1: Global Deviance = 326.4786
## GAMLSS-RS iteration 2: Global Deviance = 326.4786

# comparing the fitted values
head(cbind(fitted(m21),fitted(g1)))
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## [,1] [,2]
## 0 19.47122 19.47122
## 1 22.73844 22.73845
## 2 30.16383 30.16383
## 3 33.25372 33.25372
## 4 43.46635 43.46635
## 5 30.86439 30.86439

tail(cbind(fitted(m21),fitted(g1)))

## [,1] [,2]
## 43 31.07408 31.07408
## 44 31.57654 31.57654
## 45 16.95122 16.95122
## 46 25.43692 25.43692
## 47 29.06619 29.06619
## 48 26.12274 26.12274

# the log-sigma coefficients
coef(m21)

## log(sigeˆ2) log(sigbˆ2)
## 4.516816 5.832515
## attr(,"se")
## log(sigeˆ2) log(sigbˆ2)
## 0.5337131 0.5348875

coef(getSmo(g1))

## log(sigeˆ2) log(sigbˆ2)
## 7.599620 5.832515
## attr(,"se")
## log(sigeˆ2) log(sigbˆ2)
## 0.5337129 0.5348875

# get sigma_b
m21$sigb

## [1] 18.47203

getSmo(g1)$sigb

## [1] 18.47202

# get sigma_e
m21$sige

## [1] 9.567847

fitted(g1,"sigma")[1]

## 0
## 6.769828

# comparing the deviances
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deviance(g1)

## [1] 326.4786

deviance(m21)

## [1] 335.9114

# get degrees of freedom for mu
g1$mu.df

## [1] 23.46858

The nice thing about GAMLSS is its flexibility and the fact that you can check di↵erent models.
Up to now we have used only the geographical information to model the crime figures. From
Section 1.3, the dataset columb contains also other information like the available income, income,
the value of homes in the area, home.value, the open space of the area, open.space, the size of
the area, area and the coordinates of the middle points of the area. The latest two variables
can be used to fit a geostatistics type of model. Here we will use it to fit a two dimensional
smooth surface to the crime figures. To fit the model we are using the function ga() which is
an interface to the function gam() of Simon Wood’s package mgcv

library(gamlss.add)
g2 <- gamlss(crime˜ga(˜s(x,y)), data=columb)

## GAMLSS-RS iteration 1: Global Deviance = 307.3535
## GAMLSS-RS iteration 2: Global Deviance = 307.3535

AIC(g1,g2)

## df AIC
## g2 23.66369 354.6809
## g1 24.46858 375.4158

Figure 3

names(g1$mu.fv) <- names(g2$mu.fv) <- as.character(columb$district)
draw.polys(columb.polys, fitted(g2), scheme="terrain",swapcolors=TRUE )
title("(a) 2-d smoothing")
draw.polys(columb.polys, fitted(g1), scheme="terrain", swapcolors=TRUE )
title("(b) IAR")

One can combine the geographical information with the other available variables to built a
suitable model for modelling the crime figures. Unfortunately the number of observations in
the data, 49, is very small to do justice to such an analysis. Next we will build suitable models
using explanatory variables but no-geographical information and then we will compare those
models with the ones using only geographical information.

We start by selecting a suitable model using only linear terms. We are using the model selection
function stepGAIC(). We first transform the open.space variable by taking its log.

columb <- transform(columb, logos=log(open.space+1))
e0 <- gamlss(crime˜1, data=columb)

## GAMLSS-RS iteration 1: Global Deviance = 414.1438
## GAMLSS-RS iteration 2: Global Deviance = 414.1438
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Figure 3: Showing (a) the fitted values of the 2-dimensional smoothing model g2 and (b) the
fitted IAR model g1.

# linear
e1 <- stepGAIC(e0, scope=list(lower=˜1, upper=˜area+income+home.value+logos))

## Distribution parameter: mu
## Start: AIC= 418.14
## crime ˜ 1
##
## Df AIC
## + income 1 387.74
## + home.value 1 400.52
## + area 1 412.27
## + logos 1 417.02
## <none> 418.14
##
## Step: AIC= 387.74
## crime ˜ income
##
## Df AIC
## + home.value 1 382.75
## <none> 387.74
## + area 1 388.31
## + logos 1 389.72
## - income 1 418.14
##
## Step: AIC= 382.75
## crime ˜ income + home.value
##

14



## Df AIC
## <none> 382.75
## + area 1 383.57
## + logos 1 384.70
## - home.value 1 387.74
## - income 1 400.52

formula(e1)

## crime ˜ income + home.value

Linear terms for income and home.value were selected. Figure 4 shows a visual representation
of the model and how they e↵ect the mean, µ, of the response.

Figure 4

term.plot(e1)
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Figure 4: Showing term plots for the linear model e1.

Note that by fitting the linear terms in income and home.value the geographical GMRF terms
becomes redundant. As a result of this if you try to fit the following model it will fail.

ge1<- gamlss(crime˜income+home.value+gmrf(district,precision=precisionC),
data=columb)

We are trying now to select a model using smooth additive terms. We are using P-splines and
the function pb() as a smoother.

e2 <- stepGAIC(e0, scope=list(lower=˜1, upper=˜pb(area)+pb(income)+
pb(home.value)+pb(logos)))

## Distribution parameter: mu
## Start: AIC= 418.14
## crime ˜ 1
##
## Df AIC
## + pb(income) 1.0000 387.74
## + pb(home.value) 3.2053 395.15
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## + pb(area) 2.7543 399.20
## + pb(logos) 2.1472 414.86
## <none> 418.14
##
## Step: AIC= 387.74
## crime ˜ pb(income)
##
## Df AIC
## + pb(home.value) 1.0000 382.75
## + pb(area) 2.2756 384.95
## <none> 387.74
## + pb(logos) 1.0000 389.72
## - pb(income) 1.0000 418.14
##
## Step: AIC= 382.75
## crime ˜ pb(income) + pb(home.value)
##
## Df AIC
## + pb(area) 2.6400 380.74
## <none> 382.75
## + pb(logos) 2.1663 383.96
## - pb(home.value) 1.0000 387.74
## - pb(income) -1.2053 395.15
##
## Step: AIC= 380.74
## crime ˜ pb(income) + pb(home.value) + pb(area)
##
## Df AIC
## <none> 380.74
## - pb(income) -1.8038 382.50
## + pb(logos) 1.0117 382.71
## - pb(area) 2.6400 382.75
## - pb(home.value) 1.3644 384.95

formula(e2)

## crime ˜ pb(income) + pb(home.value) + pb(area)

Additive smoothing terms forincome, home.value and area were selected this time. Figure 4
shows their e↵ect on the mean, µ, of the response variable crime.

Figure 5
term.plot(e2)

The GAMLSS framework allows the fitting of a neural network model for one or more of the
distribution parameters of the model. This is done by the interface function nn() which calls
the nnet() function of Brian Ripley’s package nnet. We fit a neural network model for the
mean of the response (i.e. parameter µ).

Figure 6
e3 <- gamlss(crime˜nn(˜income+home.value+logos+area, decay=0.1), data=columb)

## GAMLSS-RS iteration 1: Global Deviance = 194.0747
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Figure 5: Showing term plots for additive model e2.

## GAMLSS-RS iteration 2: Global Deviance = 121.519
## GAMLSS-RS iteration 3: Global Deviance = 121.4659
## GAMLSS-RS iteration 4: Global Deviance = 121.4659

term.plot(e3)

[Note in the above neural network fitting it may be better to rescale the explanatory variables
to interval [0, 1], as recommended by Ripley [1996][page 157].] While the neural network model
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home.value

logos

area
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H3

O1 η

B1 B2

R code on

page 16

Figure 6: Showing a graphical interpretation of the neural network model e3.

can take into account interactions between the explanatory variables, unfortunately it is very
di�cult to interpret and usually over-fits the data. Figure 6 shows how the explanatory variables
are connected with three hidden variables (H1, H2, H3), where the thickness of the lines reflects
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how large the coe�cients are.

Finally we fit a decision tree model to the parameter µ of the model.

Figure 7
e4 <- gamlss(crime˜tr(˜income+home.value+logos+area), data=columb)

## GAMLSS-RS iteration 1: Global Deviance = 97.9616
## GAMLSS-RS iteration 2: Global Deviance = 97.9616

term.plot(e4)
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Figure 7: Showing a term plot for the mean µ of the decision tree model e4.

Decision trees are easy to interpret as Figure 7 shows, where the parameter µ is a function of
income, area and home.value. In each split of the decision tree (e.g. income>=11.76) the left
branch is YES (i.e. income>=11.76) and the right branch is NO (i.e. income<11.76).

We can compare the di↵erent models fitted here using AIC and SBC/BIC.

AIC(g1,g2, e1, e2, e3, e4)

## df AIC
## e4 7.000000 111.9616
## e3 21.000000 163.4659
## g2 23.663691 354.6809
## g1 24.468577 375.4158
## e2 6.639968 380.7350
## e1 4.000000 382.7545

AIC(g1,g2, e1, e2, e3, e4, k=log(49))
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## df AIC
## e4 7.000000 125.2043
## e3 21.000000 203.1941
## e1 4.000000 390.3218
## e2 6.639968 393.2966
## g2 23.663691 399.4484
## g1 24.468577 421.7059

The decision tree and neural network models using explanatory variables, i.e. models e4 and
e3, respectively, do better that the models using only geographical information, g1 and g2, in
this case. Of course in a larger data set both may be needed as we show in the next section
where we analyse the Munich rent data.

We finish our analysis by showing in Figure 8 the fitted values for each of our four models on
a map.

Figure 8

names(e4$mu.fv) <- names(e3$mu.fv) <- names(e2$mu.fv) <-
as.character(columb$district)

draw.polys(columb.polys, fitted(g1), scheme="terrain", swapcolors=TRUE )
title("(a) IAR")
draw.polys(columb.polys, fitted(e2), scheme="terrain",swapcolors=TRUE )
title("(b) Additive Smooth")
draw.polys(columb.polys, fitted(e3), scheme="terrain",swapcolors=TRUE )
title("(c) neural network")
draw.polys(columb.polys, fitted(e2), scheme="terrain",swapcolors=TRUE )
title("(d) decision tree")

3 The rent99 data analysis

3.1 The 1999s Munich rent data

The rent data come from a survey conducted in 1999, a random sample of accommodation
with new tenancy agreements or increases of rents. The data are in the package gamlss.data
(which is automatically loaded when gamlss is loaded). There are 3081 observations on nine
variables. The data were analyzed by De Bastiani et al. [2016] but here we reproduce the results
to demonstrate how the package gamlss.spatial is working in R.

R data file: rent99 in package gamlss.data of dimensions 3081⇥ 9

var rent : the response variable which is the monthly net rent per month (in Euro)

rentsqm : the net rent per month per square meter (in Euro)

area : living area in square meters.

yearc : the year of construction

location : the quality of location as a factor indicating whether the location is
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Figure 8: Showing the fitted values for µ in four of our fitted models (a) the IAR/GMRF model
g2 and (b) the additive smoothing terms model e2, (c) neural network model e3 and (d) decision
tree model e4.
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average, 1, good, 2, and top location, 3.

bath : the quality of bathroom: as a factor indicating whether the bath facilities are
standard, 0, or premium, 1

kitchen : the quality of the kitchen: 0 standard, 1 premium

cheating : central heating as a factor with two levels, 0, without central heating, 1
with central heating

district : the district in Munich.

purpose: to demonstrate fitting IAR models using gamlss.spatial R package

We input the data and create a few new variables to take into account suitable interactions
later.

library(gamlss.spatial)
data(rent99)
data(rent99.polys)
rent99$cheating<-relevel(rent99$cheating,"1")
# creating new variables for interactions
# heating and years interaction
cy<-(as.numeric(rent99$cheating)-1)*rent99$yearc
# kitchen and years interation
ky<-(as.numeric(rent99$kitchen)-1)*rent99$yearc
# kitchen and area interation
ka<-(as.numeric(rent99$kitchen)-1)*rent99$area
# heating has its relevant level changed from 0 to 1
heating<-relevel(rent99$cheating,"1")
rent99 <- transform(rent99,heating=heating, cy=cy, ky=ky, ka=ka)

Figure 9 shows a histogram and a box-plot of the response variable rent which shows asymmetry
and positive skewness.

Figure 9
hist(rent99$rent,ylab="f(y)",main="Histogram of rent", xlab="rent")
boxplot(rent99$rent)

The complexity of the relationship between the response and the explanatory variables is shown
in Figure 10. Note that those plots are bivariate exploratory plots and take no account of the
interactions between the explanatory variables.

Figure 10
plot(rent99$rent˜rent99$area, data=rent, col=gray(0.7),

pch = 15, cex = 0.5, xlab="area", ylab="rent")
plot(rent99$rent˜rent99$yearc, data=rent, col=gray(0.7),

pch = 15, cex = 0.5, xlab="yearc", ylab="rent")
plot(rent99$rent˜rent99$location, data=rent, col=gray(0.7),

pch = 15, cex = 0.5, xlab="location", ylab="rent")
plot(rent99$rent˜rent99$bath, data=rent, col=gray(0.7),

pch = 15, cex = 0.5, xlab="bath", ylab="rent")
plot(rent99$rent˜rent99$kitchen, data=rent, col=gray(0.7),

pch = 15, cex = 0.5, xlab="kitchen", ylab="rent")
plot(rent99$rent˜rent99$cheating, data=rent, col=gray(0.7),
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Figure 9: A marginal histogram and box plot for response variable rent.

pch = 15, cex = 0.5, xlab="cheating", ylab="rent")

Here we use the strategy described in De Bastiani et al. [2016] where appropriate models for µ,
� and ⌫ are selected first without taking into account the spatial structure of the data. We first
fit a basic model m0 and then we use the stepGAICALL.A() function to select models for all the
distribution parameters µ,� and ⌫. The selection takes several minutes and the output (which
is omitted below) gives the steps to selecting the final model m1.

m0<-gamlss(rent˜location+bath+kitchen+cheating+area+yearc+pb(area)+pb(yearc),
sigma.fo=˜area + yearc + pb(area) + pb(yearc),
nu.fo=˜area + yearc + pb(area) + pb(yearc), family=BCCGo,
data=rent99)

m1 <- stepGAICAll.A(m0, scope=list(lower=˜location+bath+kitchen+cheating+area+
yearc+pb(area)+pb(yearc), upper=˜(location+bath+kitchen+cheating+
area+yearc)ˆ2+pb(area)+pb(yearc)), sigma.scope=list(lower=˜area+yearc,
upper=˜location+bath+kitchen+cheating+area+yearc+pb(area)+pb(yearc)),
nu.scope=list(lower=˜area+yearc, upper=˜location+bath+kitchen+
cheating+area+yearc+pb(area)+pb(yearc)),k=4)

Preparing to fit the IAR model for µ [using the interaction variables cy, ky and ka, so that
the linear and smoothing (pb) e↵ects for each continuous variable are combined together in the
term plot for µ].

fd<-as.factor(rent99$district)
farea<-as.factor(names(rent99.polys))
vizinhos <- polys2nb(rent99.polys)
#creating the precision matrix
precision <- nb2prec(vizinhos,fd,area=farea)
#adding spatial effect for mu
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Figure 10: A response rent against the explanatory variables.
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Fitting the reparametrized model m1 with the additional IAR spatial model for µ

m2<- gamlss(formula = rent ˜ location + bath + kitchen + cheating +
pb(area) + pb(yearc) + cy + ky + ka +
gmrf(fd, area = farea, precision = precision, method="A"),
sigma.formula = ˜area + pb(yearc) + cheating,
nu.formula = ˜pb(area) + pb(yearc) +
kitchen, family = BCCGo, data = rent99, start.from=m1)

Using AIC:

AIC(m1,m2, k=2)

## df AIC
## m2 86.31527 38083.46
## m1 32.96566 38128.37

Refitting the final model with mean centred variables (nyearc and narea) in the interactions,
so that the term plots for the factors are easier to interpret.

rent99$nyearc<-rent99$yearc-mean(rent99$yearc)
rent99$narea<-rent99$area-mean(rent99$area)
m2final<- gamlss(formula = rent ˜ location + bath +

cheating*nyearc + kitchen*nyearc +
kitchen*narea + pb(area) + pb(yearc) +
gmrf(fd, area = farea, precision = precision),
sigma.formula = ˜area + cheating + pb(yearc),
nu.formula = ˜ kitchen + pb(area) + pb(yearc),
family = BCCGo, data = rent99, start.from=m2)

Note that Figure 11 combines the term plots for µ for the explanatory factors obtained from
m2final, with the term plots for µ for the explanatory continuous variables obtained from m2.

To plot the term plots for µ. (Interactions are automatically omitted from the plots and also
no spatial e↵ect is plotted with this function).

Figure 11
#to get the termplot for the factors (without interaction)
term.plot(m2final, what="mu", ylim="free")

#to get the termplot for the continuous variables
term.plot(m2, what="mu", ylim="free")

[Note that the term plots for µ gives the contribution from the explanatory variables to the
predictor of µ, i.e. logµ, for the BCCGo distribution.]

To plot the term plot for the interactions we used an extra function called int.term, available
at the website www.gamlss.org.

Figure 12
source("int-term-plot.R")
#to find out the position of the interaction terms
head(lpred(m2final, type="terms"))

## location bath cheating nyearc kitchen narea
## 1 0.04283594 -0.004178144 -0.22838175 -0.2163778 -0.006215623 -0.4315904
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Figure 11: Term plots for µ.
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## 2 0.04283594 -0.004178144 0.02655217 -0.2163778 -0.006215623 -0.4107279
## 3 -0.03647352 -0.004178144 0.02655217 -0.2163778 -0.006215623 -0.3898654
## 4 0.04283594 -0.004178144 -0.22838175 -0.2163778 -0.006215623 -0.3898654
## 5 0.04283594 -0.004178144 0.02655217 -0.2163778 -0.006215623 -0.3898654
## 6 0.04283594 -0.004178144 0.02655217 -0.2163778 -0.006215623 -0.3898654
## pb(area) pb(yearc) gmrf(fd, area = farea, precision = precision)
## 1 -0.08792058 0.1402521 -0.022470371
## 2 -0.07926578 0.1402521 0.006771048
## 3 -0.07065139 0.1402521 0.001981685
## 4 -0.07065139 0.1402521 -0.005860875
## 5 -0.07065139 0.1402521 0.027865816
## 6 -0.07065139 0.1402521 0.007908263
## cheating:nyearc nyearc:kitchen kitchen:narea
## 1 -0.136217579 0.001698891 -0.0004707379
## 2 0.009470226 0.001698891 -0.0004707379
## 3 0.009470226 0.001698891 -0.0004707379
## 4 -0.136217579 0.001698891 -0.0004707379
## 5 0.009470226 0.001698891 -0.0004707379
## 6 0.009470226 0.001698891 -0.0004707379

int.term(object=m2final, xvar=rent99$yearc, position=10,
fac=rent99$cheating, factor.plots=TRUE, xlabel="yearc",
ylabel="cheating", which.lev="0")

int.term(object=m2final, xvar=rent99$yearc, position=11,
fac=rent99$kitchen, factor.plots=TRUE,
xlabel="yearc", ylabel="kitchen", which.lev="1")

int.term(object=m2final, xvar=rent99$area, position=12,
fac=rent99$kitchen, factor.plots=TRUE,
xlabel="area", ylabel="kitchen", which.lev="1")

To plot the term plot for the spatial e↵ect for µ.

Figure 13
draw.polys(rent99.polys,getSmo(m2final, what="mu", which=3),

scheme="heat")

[Note that which=3 is used in order to choose the third smoothing term for µ, which corresponds
to the spatial term in the m2final model.]

To plot the term plots for � and ⌫ (which give the contributions from the explanatory variables
to the predictor of � and ⌫, i.e. log � and ⌫, respectively).

Figure 14

term.plot(m2final, what="sigma", ylim="free")

Figure 15

term.plot(m2final, what="nu", ylim="free")

The fitted model is given by:

summary(m2final)

## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
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Figure 12: Term plots of the interactions for µ.
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Figure 13: The fitted spatial e↵ect for µ for the chosen model with spatial e↵ect.
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Figure 14: Term plots for �.
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Figure 15: Term plots for ⌫.
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## Call: gamlss(formula = rent ˜ location + bath + cheating *
## nyearc + kitchen * nyearc + kitchen * narea + pb(area) +
## pb(yearc) + gmrf(fd, area = farea, precision = precision),
## sigma.formula = ˜area + cheating + pb(yearc), nu.formula = ˜kitchen +
## pb(area) + pb(yearc), family = BCCGo, data = rent99,
## start.from = m2)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0607879 0.0067821 893.644 < 2e-16 ***
## location2 0.0793095 0.0090845 8.730 < 2e-16 ***
## location3 0.2108582 0.0288719 7.303 3.58e-13 ***
## bath1 0.0674191 0.0173826 3.879 0.000107 ***
## cheating0 -0.2549339 0.0282578 -9.022 < 2e-16 ***
## nyearc 0.0056486 0.0002598 21.745 < 2e-16 ***
## kitchen1 0.1462332 0.0190100 7.692 1.95e-14 ***
## narea 0.0104312 0.0002254 46.269 < 2e-16 ***
## cheating0:nyearc 0.0038032 0.0009652 3.941 8.32e-05 ***
## nyearc:kitchen1 -0.0034371 0.0006572 -5.230 1.81e-07 ***
## kitchen1:narea 0.0023216 0.0007850 2.958 0.003124 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.182e+01 2.994e-01 39.465 < 2e-16 ***
## area 1.649e-03 5.947e-04 2.773 0.0056 **
## cheating0 2.313e-01 4.699e-02 4.922 9.04e-07 ***
## pb(yearc) -6.788e-03 2.276e-05 -298.203 < 2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.225e+01 1.373e-01 -89.210 < 2e-16 ***
## kitchen1 2.381e+00 5.413e-01 4.399 1.12e-05 ***
## pb(area) -4.411e-03 1.815e-03 -2.430 0.0152 *
## pb(yearc) 6.813e-03 2.560e-06 2661.869 < 2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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##
## ------------------------------------------------------------------
## NOTE: Additive smoothing terms exist in the formulas:
## i) Std. Error for smoothers are for the linear effect only.
## ii) Std. Error for the linear terms maybe are not accurate.
## ------------------------------------------------------------------
## No. of observations in the fit: 3082
## Degrees of Freedom for the fit: 86.3153
## Residual Deg. of Freedom: 2995.685
## at cycle: 1
##
## Global Deviance: 37910.83
## AIC: 38083.46
## SBC: 38604.23
## ******************************************************************

The residual diagnostics plot, the worm plot, for the final model.

Figure 16
wp(m2final, ylim.all=0.7)
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Figure 16: Worm plot of the residuals for the chosen final model m2final.

Worm plots for cases in each of the 16 joint intervals for di↵erent combinations of the two
continuous explanatory variables yearc and area.
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Figure 17

wp(m2final, xvar=˜yearc+area, n.inter=4, ylim.worm=1)
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Figure 17: Worm plot of the residuals split by the yearc and area variables for the final model.

4 Conclusions

We have shown that the GAMLSS framework provides a platform to fit, compare and check
spatial models for the parameters of the distribution of a response variable which may be non
exponential family. For more details about GMRF (and in particular IAR models) in GAMLSS
see De Bastiani et al. [2016].
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