
Flexible Regression and Smoothing

The GAMLSS packages in R

Mikis Stasinopoulos, Bob Rigby,
Vlasios Voudouris, Gillian Heller

and Fernanda De Bastiani

July 23, 2015

2

Contents

I Introduction to models and packages 23

1 Why GAMLSS? 27
1.1 Introduction . 27
1.2 The 1980’s Munich rent data . 27
1.3 The linear regression model . 29
1.4 The generalised linear model (GLM) . 33
1.5 The generalised additive model (GAM) . 36
1.6 Modelling the scale parameter . 40
1.7 The generalised additive model for location shape and scale. 42

2 Introduction to the gamlss packages 47
2.1 Introduction . 47
2.2 The GAMLSS packages . 47
2.3 A simple example using the gamlss packages . 49

2.3.1 Fitting a parametric model . 50
2.3.2 Fitting a non-parametric smoothing model 55
2.3.3 Extracting the fitted values for σ . 60
2.3.4 Modelling both µ and σ . 60
2.3.5 Diagnostic plots . 61
2.3.6 Fitting different distributions . 63
2.3.7 Selection between models . 63
2.3.8 Chosen Model . 64

II The R implementation: algorithms and functions 67

3 The Algorithms 69
3.1 Introduction . 69
3.2 Estimating β and γ for fixed λ . 71

3.2.1 The RS algorithm . 72
3.2.2 The CG algorithm . 79

3.3 Estimating λ . 79
3.4 Remarks on the GAMLSS algorithms . 81

4 The gamlss() function 83
4.1 Introduction to the gamlss() function . 83
4.2 The arguments of the gamlss() function . 83

3

4 CONTENTS

4.2.1 The method argument of the gamlss() function 85
4.2.2 The algorithmic control functions . 86
4.2.3 Weighting out observations, the weights and data=subset() arguments . 89

4.3 The refit and update functions . 92
4.3.1 refit() . 92
4.3.2 update() . 93

5 Methods for fitted gamlss objects 97
5.1 Introduction . 97
5.2 The gamlss object . 98
5.3 The predict(), predictAll() and lpred() functions 103
5.4 The gen.likelihood() function . 110
5.5 The vcov() and rvcov() functions . 112
5.6 The summary() and confint() functions . 114
5.7 The prof.dev() and prof.term() functions . 117

5.7.1 prof.dev() . 117
5.7.2 prof.term() . 120

III Distributions 125

6 The gamlss.family of distributions 127
6.1 Introduction . 127
6.2 Types of distribution within the GAMLSS family 129

6.2.1 Explicit GAMLSS family distributions . 129
6.2.2 Extending GAMLSS family distributions 134

6.3 Displaying GAMLSS family distributions . 139
6.3.1 Using the distribution demos . 140
6.3.2 Using the pdf.plot() function . 140
6.3.3 Plotting the d, p, q and r functions of a distribution 142

6.4 Amending and constructing a new distribution 143
6.5 The link functions . 149

7 Finite mixture distributions 153
7.1 Introduction to finite mixtures . 153
7.2 Finite mixtures with no parameters in common 154

7.2.1 The likelihood function . 154
7.2.2 Maximizing the likelihood function using the EM algorithm 154
7.2.3 Modelling the mixing probabilities . 156
7.2.4 Zero components . 156

7.3 The gamlssMX() function . 156
7.4 Examples using the gamlssMX() function . 157

7.4.1 The Old Faithful geyser data . 157
7.5 Finite mixtures with parameters in common . 168

7.5.1 Maximizing the likelihood using the EM algorithm 168
7.6 The gamlssNP() function . 169
7.7 Examples using the gamlssNP() function . 170

7.7.1 The animal brain data . 170

CONTENTS 5

IV Additive terms 177

8 Linear parametric additive terms 179
8.1 Introduction to linear and additive terms . 179
8.2 Linear terms . 180

8.2.1 Additive linear terms . 182
8.2.2 Linear interactions . 183

8.3 Polynomials . 186
8.4 Fractional Polynomials . 188
8.5 Piecewise Polynomials and Regression Splines . 188
8.6 B-Splines basis . 192
8.7 Free knots break point models . 197
8.8 Example: the CD4 data . 198

8.8.1 Orthogonal polynomials . 199
8.8.2 Fractional polynomials . 201
8.8.3 Piecewise polynomials . 204
8.8.4 Free knots . 205

9 Additive Smoothing Terms 209
9.1 Introduction . 209
9.2 What is a scatterplot smoother . 210
9.3 Local regression smoothers . 213
9.4 Penalised smoothers: univariate. 217

9.4.1 Demos on penalised smoothers . 219
9.4.2 The pb(), pbo() and the ps() functions for fitting a P-splines smoother . 220
9.4.3 The pbm() function for fitting a monotonic smooth functions 222
9.4.4 The cy() function for fitting a cycle smooth functions 222
9.4.5 The cs() and scs() functions for fitting cubic splines 224
9.4.6 The ri() function for fitting ridge and lasso regression terms 227

9.5 Penalised smoothers: multivariate . 229
9.5.1 The pvc() function for fitting varying coefficient models 229
9.5.2 Interfacing with gam(), the ga() function 234

9.6 Other smoothers . 238
9.6.1 Interfacing with nnet(), the nn() function 238
9.6.2 Interfacing with rpart(), the tr() function 242
9.6.3 Interfacing with loess(), the lo() function 244

9.7 How to add new smooth functions in gamlss() 246

10 Random effects 247
10.1 Introduction . 247
10.2 Random effects models for µ at the observational level 247

10.2.1 Fitting an explicit continuous mixture distributions 248
10.2.2 Fitting non-explicit continuous mixture distributions using Gaussian quadra-

ture . 249
10.2.3 Non parametric random effects models . 250
10.2.4 Non parametric random coefficients in the predictor for all distribution

parameters . 251
10.3 Random effects models for µ at the factor level 252

6 CONTENTS

V Model selection and diagnostics 253

11 Model selection techniques 255
11.1 Introduction: Statistical model selection . 255
11.2 GAMLSS model selection . 257

11.2.1 Component D: Selection of the distribution 258
11.2.2 Component G: Selection of the link functions 258
11.2.3 Component T : Selection of the additive terms in the model 258
11.2.4 Component Λ: Selection of the smoothing parameters 259
11.2.5 Selection of all components using a validation data set 260
11.2.6 Summary of the GAMLSS functions for model selection 261

11.3 The addterm() and dropterm() functions . 261
11.3.1 drop1() . 263
11.3.2 add1() . 266

11.4 The stepGAIC() function . 268
11.4.1 Selecting model for µ . 269
11.4.2 Selecting model for σ . 272

11.5 Strategy A: the stepGAICAll.A() function . 273
11.6 Strategy B: the stepGAICAll.B() function . 275
11.7 Boosting . 277
11.8 K-fold Cross Validation . 277
11.9 Validation, and test data . 278

11.9.1 The gamlssVGD() and VGD() functions . 278
11.9.2 The getTGD() and TGD() functions . 280
11.9.3 The stepTGD() function . 281

11.10The find.hyper() function . 283

12 Diagnostics 287
12.1 Introduction . 287
12.2 Normalised (randomised) quantile residuals . 288
12.3 The plot() function . 291
12.4 The wp() function . 295
12.5 the Q.stats() function . 300
12.6 the rqres.plot() function . 305

VI Applications 307

13 Centile Estimation 309
13.1 Introduction . 309
13.2 Quantile regression . 310
13.3 The LMS method and extensions . 311

13.3.1 Model selection procedures for the LMS method 313
13.4 The Dutch boys BMI data . 314
13.5 The lms() function . 315
13.6 Plotting fitted values against the x variable using fittedPlot() 320
13.7 Plotting centiles curves using centiles() and calibration() 321

13.7.1 The function centiles() . 321
13.7.2 The function calibration() . 327

CONTENTS 7

13.7.3 The function centiles.fan() . 327
13.8 The function centiles.split() . 327
13.9 The function centiles.com() . 331
13.10The functions centiles.pred() and z.scores() 333
13.11Quantile Sheets using the function quantSheet() 336

14 Further Applications 345
14.1 Count data: the fish species data . 345
14.2 Binomial data example: the hospital stay data 354
14.3 Continuous distribution example: The 1990’s film data 359

14.3.1 Preliminary analysis . 360
14.3.2 Modelling the data using the normal distrbution 360
14.3.3 Modelling the data using the BCPE distrbution 364

Index 375

8 CONTENTS

List of Figures

1.1 Plot of the rent R against explanatory variables Fl, A, H and loc. 28
1.2 A residual plot of the linear model r1 . 32
1.3 A residual plot of the generalised linear model r2 36
1.4 A plot of the fitted terms for model r3 . 39
1.5 A plot of the fitted terms for model r3 . 40
1.6 A plot of the fitted terms for σ for model r4 . 42
1.7 A plot of the fitted terms for model r4 . 43
1.8 A residual plot of the linear model r1 . 45

2.1 A plot of the film90 revenues . 50
2.2 A plot of the film90 data together with the fitted linear model for the mean . . 51
2.3 A plot of the film90 data together with the fitted polynomial model for the mean 53
2.4 A plot of the correlation coefficient matrices for models m00 on the left and m0

on the right . 55
2.5 P-splines fit: a plot of the film90 data together with the fitted smooth mean

function fitted using the function pb() . 56
2.6 Cubic splines fit: a plot of the film90 data together with the fitted smooth mean

functions of model m1 fitted by pb() (black continuous line) and model m2 fitted
by cs() (red dashed line). 58

2.7 Neural network fit: a plot of the film90 data together with the fitted smooth
mean functions of model m1 fitted by pb() (black continuous line) and the neural
network model mnt fitted by nn() (red dashed line). 59

2.8 Fitted mean and variance model: a plot of the film90 data together with the
fitted smooth mean function of the model m3 where both the mean and variance
models are fitted using pb(). 61

2.9 Residual plot from the fitted normal model m2 with model pb(x) for both µ and
log σ. 62

2.10 Worm plot from model m2. 63
2.11 A plot of the smooth fitted values for all the parameters (a) µ, (b) σ, (c) ν and

(d) τ from models m5 and m6. 65
2.12 A centile fan plot for the fitted m6 model showing the 3, 10, 25, 50, 75, 90 and

97 centiles for the fitted BCPE distribution. 65
2.13 A plot showing how the fitted conditional distribution of the response variable

lborev1 changes for different values of the explanatory variable lboopen. 66

3.1 Showing how the two GAMLSS algorithms (a) RS and (b) CG reach the maximum. 71

9

10 LIST OF FIGURES

3.2 Diagram showing the outer-iteration within the GAMLSS RS algorithm 73

3.3 Diagram showing the inner iteration (or GLIM iteration) within the GAMLSS
RS algorithm. 75

3.4 Diagram showing how the modified backfitting is working within the GAMLSS
RS algorithm . 77

3.5 Diagram showing the outer and inner iterations within the GAMLSS CG algo-
rithm . 78

4.1 A linear interaction model for gas consumption against the average outside tem-
perature in degrees Celsius for before or after insulation 95

5.1 Profile deviance for ν from a t-family fitted model h using abdom data with
µ = pb(x) and log(σ) = pb()/ The left panel has 7 evaluation of the function
while the right panel has 20. 119

5.2 The profile deviance for ν plotted using curve(). 120

5.3 The profile deviance for the coefficint of x. 121

5.4 The profile deviance for the break point parameter of x. 122

5.5 Profile GAIC with penalty 2.5 for the degrees of freedom in the model gamlss(y
cs(x,df=this) + qrt, data = aids, family = NBI). 123

6.1 A histogram of the Turkish stock exchange returns. 128

6.2 A histogram of the Turkish stock exchange returns together with a fitted t distri-
bution. 129

6.3 Different type of distributions in GAMLSS (s) continuous, (b) discrete, (c) mixed 130

6.4 A fitted log-t to 200 simulated observations . 135

6.5 A fitted truncated t distribution defined on 0, 100, fitted to simulated 1000 ob-
servations . 136

6.6 Showing a fitted reverse Gumbel finite mixture with two components distribution
to the enzyme data (continuous line) together with fitted non-parametric density
estimate (dash line) . 139

6.7 Showing a screen shot demonstrating the logit Normal distribution, LOGITNO . . 140

6.8 Plotting the Poison distribution using the pdf.plot() function 141

6.9 Plotting the fitted distribution for observations 100 and 200 142

6.10 Plotting the d, p, q and r functions of a continuous distribution 143

6.11 Plotting the d, p, q and r functions of a discrete distribution 144

7.1 A histogram of variable waiting time (to next eruption from the Old Faithful
geyser data), together with a non-parametric density estimator (− −−) and the
fitted two component IG model () . 159

7.2 The residual plot from the fitted two component IG model for waiting time from
the Old Faithful geyser data . 160

7.3 (a) A scatter plot of the waiting time (to next eruption)against the previous
eruption duration from the Old Faithful geyser data together with the fitted
values from the two components, (dotted and dashed for component 1 and 2
respectively) (b) a plot of the probability of belonging to component 1 as a
function of duration, estimated from model mIG4 164

7.4 Fitted conditional probability density function (f1) for waiting time to the next
eruption given the previous eruption duration for model mIG4 165

LIST OF FIGURES 11

7.5 Comparison of the fitted values for µ for models mIG4 (dashed and dotted lines)
and mIG6 (solid line) . 166

7.6 Levelplot of the fitted conditional probability density function of the waiting time
given the previous eruption time for models (a) mIG4 and model (b) mIG6 167

7.7 A plot of the brain size data . 171

7.8 A plot of the brain size data together with a plot of the three component fitted
means of log brain size (lbrain) against log body size (lbody), (solid, dashed
and dotted for component 1,2 and 3 respectively) 174

7.9 The residual plot of model br.3 for the animal brain size data 175

8.1 Diagram showing the different additve terms in GAMLSS 181

8.2 The five different models in the simple analysis of covariance 185

8.3 Polynomial for aids data: (a) standard polynomials basis, (b) orthogonal poly-
nomial basis, (c) the fitted values are a linear function of the basis vectors i.e.

ŷ = Xβ̂. 187

8.4 Showing the fractional polynomial basis used within GAMLSS that is polynomi-
als with power (−2,−1,−0.5, 0, 0.5, 1, 2, 3) where 0 corresponds to a log function. 189

8.5 Piecewise linear, (a) continuous and (b) discontinuous lines. 190

8.6 Piecewise quadratic, (a) discontinuous and discontinuous first derivative, (b) con-
tinuous with discontinuous first derivative and (c) continuous with continuous
first derivative. 191

8.7 Showing truncated piecewise polynomials basis functions for different degrees a)
constant, b) linear, c) quadratic and d) cubic, The x variable is defined from zero
to one having break points at (0.2, 0.4, 0.5, 0.6, 0.8). 193

8.8 Showing B-spline basis for different degrees a) constant, b) linear, c) quadratic
and d) cubic, The x variable is defined from zero to one having unequal spaced
knots (break points) at (0.2, 0.4, 0.5, 0.6, 0.8). 195

8.9 Showing B-splines fit of y (the number of aids cases) against x (time) for the
aids data using 8 equal space knots. a) Showing the B-splines basis for x, and
b) showing the fitted values for y in black plus the B-splines basis functions

weighted by their coefficients β̂. 196

8.10 The cd4 data. 198

8.11 The CD4 data with various transformations for cd4 and age 200

8.12 The CD4 data and the fitted values using polynomial of degree 7 in age 201

8.13 The CD4 data and the fitted values using fractional polynomial of degree 1 (solid),
2 (dashed), 3 (dotted) in age . 203

8.14 The CD4 data and the fitted values using piecewise polynomial with degrees of
freedom 5 (dashed line) and 7 (solid line) for age 205

8.15 The CD4 data and the fitted values using piecewise linear fit with the knot
estimated from the data . 207

9.1 Diagram showing the different additive smoothing terms in GAMLSS 210

9.2 The Munich 90’s rent data set: a) rent prices against floor space b) rent places
against age of the building with smooth curves fitted 211

9.3 Whether crime was reported in the media (1 =yes, 0 =no) against the age of the
victim, together with smooth curve of the fitted probability crime was reported
in the media. 213

12 LIST OF FIGURES

9.4 Showing different aspects of fitted local polynomial regression: i) Plots (a) and
(b) show unweighed local regression fits with span = 0.5 while plots (c) and (d)
show a weighted fit using a normal kernel with smoothing parameter σ = 0.25.
Plot (a) uses a constant fit (i.e. a moving average), plot (b) uses a local linear
fit, plot (c) a local quadratic fit and plot (d) a local cubic fit. 216

9.5 Different fitted curves using different methods of estimating the smoothing pa-
rameters in pb(). 221

9.6 Monotone fitted curves using the functionpbm(). 223

9.7 Fitted curves ending in the same value they started using the function cy(). . . 223

9.8 Fitted curves using the function cs() (cubic splines). 225

9.9 Fitted additive curves surface using (a) cs() and (b) scs() for the rent data.
The fitted surfaces are almost identical. 226

9.10 Three dimensional additive surfaces using cs() and scs() for the rent data. . . . 227

9.11 Plotting the fitted linear coefficients using three different shrinkage approaches:
i) ridge (top plot) ii) lasso (middle plot) and iii) best subset (bottom plot). . . . 230

9.12 The term plot for the varying coefficient interaction model m2. 232

9.13 The fitted surface plot of the varying coefficient interaction model m2 232

9.14 The term plot figures from model g1 . 233

9.15 Plotting the individual fitted smooth curves from model g1 234

9.16 The plotting of terms of a Gamma distribution models fitted using alternative
methods: i) Top rows: using gam() ii) Middle row: using gam() within gamlss()

and iii) bottom row: Using pb() within gamlss(). 236

9.17 Surface fitting of the Gamma distribution models fitted using: i) left: gam() ii)
right: gam() within gamlss() . 237

9.18 Contour plot for a gam() model fitted within gamlss(). 238

9.19 Contour plot for a gam() model fitted within gamlss(). 239

9.20 Visual representation of the neural network model fitted for µ in model mr3. . . . 241

9.21 Visual representation of the neural network model fitted for µ in model mr3. . . . 241

9.22 Visual representation of the neural network model fitted for µ and σ in model mr4.243

9.23 Visual representation for the µ parameters of the decision tree model r2. 244

9.24 Visual representation for the µ parameters of the decision tree model r2. 245

10.1 Plot showing an example of non-parametric (discrete) distribution. 250

10.2 Plot showing how the continuous distribution NO(0, 1) is approximated by Gaus-
sian quadrature with K = 10 . 251

10.3 Plot showing a non parametric mixture distribution in two dimensions with K = 10252

12.1 A description of how a (normalised quantile) residual r is obtained for continuous
a distribution. The functions plotted are the model probability density function
f(y), the cumulative distribution function F (y) and cumulative distribution func-
tion of a standard normal random variable Φ(z), using which y is transformed to
u and then from u to r. The residual r is the z-score for the specific observation
and has a standard normal distribution if the model is correct. 289

12.2 A description of how a (normalised randomised quantile) residual r is obtained
for a discrete distribution. The observed y is transformed to u, a random value
between u1 and u2, then u is transformed to r. The residual r is a z-score for the
specific observation and has a standard normal distribution if the model is correct.290

12.3 Residual plots from the BCT model abd10 . 292

LIST OF FIGURES 13

12.4 Residual plots from the BCT model abd10, where the xvar and par options have
been modified . 293

12.5 Residual plots from the NBI model fitted to the aids data 294
12.6 Worm plot from the BCT model abd10 at default values 296
12.7 Different type of model failures indicated by the worm plot: i) plots (a) and (b)

indicates failure for fitting correctly the location parameter with points falling
below and above the horizontal (red) dotted line. ii) plots (c) and (d) indicates
failure for fitting correctly the scale parameter. iii) plots (e) and (f) indicate
failure for modelling the skewness in the data correctly and iv) plots (g) and (h)
indicate failure for modelling the kurtosis . 297

12.8 Worm plot from the BCT model abd10 . 299
12.9 A visual presentation of the the Z statistics for the abdom model for easy identi-

fication of misfits in the data . 303
12.10A visual presentation of the Z statistics for the aids model 304
12.11Residual plots from the NBI model fitted to the aids data 305
12.12Residual plots from the NBI model fitted to the aids data 306

13.1 BMI against the age of the Dutch boys data . 314
13.2 Sample of BMI against the age of the Dutch boys data 316
13.3 A plot of Q-statistics for the fitted lms object m0 318
13.4 A worm plot for the fitted lms object mo . 319
13.5 The fitted values for all four parameters against age, from a Box-Cox Colen Green

(BCCGo) distribution fitted using the BMI data, i.e. fitted values of (a) µ (b) σ
and (c) ν . 320

13.6 Comparing the fitted values for all parameters against the transformed age, for
models the BBCGo model m0, solid line, and the BCPEo model m1, dash line:
(a) µ (b) σ (c) ν (d) τ . 322

13.7 Centiles curves (a) and calibration curves (b) using Box-Cox Colen Green (BC-
CGo) distribution for the BMI data . 324

13.8 Centile curves using Box-Cox t (BCT) distribution for the BMI data 325
13.9 Centile curves using Box-Cox Cole and Green distribution to fit BMI at rounded

aged 10 for the Dutch boys data . 326
13.10A fan-chart (centile) curves using Box-Cox Cole and Green distribution for the

sampled 1000 observation from the dbbmi data 328
13.11Two centiles curves using Box-Cox Cole and Green distribution to the sample of

1000 observations from the BMI data . 329
13.12Centiles curves for four age ranges using Box-Cox Cole and Green distribution

for the BMI data . 330
13.13Comparison of centiles curves using the BCCGo (Box-Cox Cole and Green) and

SHASH (Sinh-Arcsinh) distributions . 332
13.14A plot of centiles curves in the age range 0 to 2 using selected % centiles 334
13.15A plot of prediction centiles curves using selected standard normalized deviates

(i.e. Z values) . 335
13.16Quantile sheet curves fitted to the the sample of the dbmbi data using smoothing

parameters x.lambda = 1 and p.lambda = 10 338
13.17Worm plots from the Quantile sheet curves fitted to the sample of dbmbi using

smoothing parameters x.lambda = 1 and p.lambda = 10 339
13.18Quantile sheet curves fitted to the sample of dbmbi data using smoothing pa-

rameters x.lambda = 1 and p.lambda = .05 341

14 LIST OF FIGURES

13.19Worm plots from the fitted quantile sheet to the sample of the dbmbi data using
smoothing parameters x.lambda = 1 and p.lambda = 0.05 342

13.20Q-statistics plots from the two fitted quantile sheets models to the sample of the
dbmbi data using smoothing parameters: i) x.lambda = 1 and p.lambda =

10 left plot and ii) x.lambda = 1 and p.lambda = 0.05 respectively 343

14.1 The fish species data . 346
14.2 Fitted µ (the mean number of fish species) against log lake area 350
14.3 Fitted Sichel distributions for observations (a) 40 and (b) 67 350
14.4 Worm plots for the two ‘best’ model m9 and m17 353
14.5 The rate of appropriateness against age, sex, ward and year 355
14.6 The fitted terms for µ in model IV . 358
14.7 The fitted terms for σ in model IV . 358
14.8 Six instances of the normalized randomised quantile residuals for model 359
14.9 Showing (a) lborev1 against lnosc (b) lborev1 against lboopen, with inde-

pendent distributors represented by red color while the major distributors by
green . 361

14.10The worm plot from the normal distribution model g4 where a fitted surfaced
was used for µ . 362

14.11The fitted surface contour plot from model g4 . 363
14.12The fitted surfaced from model g4 . 364
14.13The worm plot from the normal distribution model g42 where a fitted surfaced

was used for both µ and σ . 365
14.14The worm plots from the BCPE distribution models mB on the top and mB1 on

the botton . 366
14.15The worm plot for model mB for explanatory variables lboopen and lnosc 367
14.16The fitted smooth surfaces for µ, σ, ν and τ of model mB1 368

List of Tables

1 Notation for the random and systematic part of a model used 20

3.1 Showing references for the different approaches of choosing the smoothing pa-
rameters . 80

6.1 Continuous distributions implemented within the gamlss.dist package(with de-
fault link functions) . 132

6.2 Discrete distributions implemented within the gamlss packages (with default link
functions) . 133

6.3 Mixed distributions implemented within the gamlss packages (with default link
functions) . 133

6.4 The usual link functions available within the gamlss packages according to the
range of the distribution parameters . 149

7.1 Table showing the expansion of data use in M-step of the EM algorithm for fitting
the common parameter mixture model . 169

7.2 Possible alternative models for the animal brain data 175

9.1 Showing different ways of using local regression smoothers 215
9.2 Additive terms implemented within the gamlss packages 246

11.1 Showing references for the different approaching of choosing the smoothing pa-
rameters . 260

11.2 Showing the different model selection functions described in this Chapter accord-
ing to which part of a GAMLSS model used and according to different data set
up. Functions with asterisk are not covered in this Chapter 261

11.3 Showing a possible result from a selection of variables using strategy A. Among
all available variables x1, x2 . . . , x6, some were chosen for µ, some for σ, some for
ν and some for τ . 274

11.4 Showing a possible result from a selection of variables using strategy B. Among
all available variables x1, x2 . . . , x6, the selected terms are selected for all the
parameters of the distribution. 276

12.1 The different shapes for the worm plot of the residuals (first column) and the
corresponding deficiency in the residuals (second column) and deficiency in the
response variable distribution (third column). 296

14.1 Comparison of models for the fish species data 354

15

16 LIST OF TABLES

14.2 Models for the AEP data . 357

Preface

Regression analysis is one of the most popular and powerful statistical techniques for exploring
the relationship between a response variable and explanatory variables of interest. Like all
models, regression models are based on assumptions which need to be true (or approximately
true) for the model to have valid conclusions. Practitioners who use the standard linear regres-
sion model soon find that the classical assumptions about normality and constant variance of
the errors terms and linearity of the relationship between response variable and the explana-
tory variables very seldom hold. Generalised Linear Models (GLM) and Generalised Additive
models (GAM), were introduced by Nelder and Wedderburn [1972] and Hastie and Tibshirani
[1990] respectively to overcome some of the limitations of the standard linear model. These
days the GLM’s and (to a less extent) the GAM’s are textbook material and are very popular
with practitioners.

Unfortunately, especially with larger data sets, those models are found to have inadequate fits
or to be inappropriate in a lot of practical situations. In this book we are dealing with the
Generalised Additive Models for Location, Scale and Shape, (GAMLSS), a framework which
corrects some of the problems of GLM’s and GAM’s. A GAMLSS model is a general regression
model which assumes that the response (dependent) variable has any parametric distribution.
In addition all the parameters of the distribution of the response variable can be modelled
as functions of the available explanatory variables. This is in contrast to GLM’s and GAM’s
where the distribution of the response variable is restricted to the exponential family of distri-
butions and only the mean (a location parameter) of the distributions is modelled. So the main
characteristic of GAMLSS models is the ability to allow the location, scale and shape of the
distribution of the response variable to vary according to the values of explanatory variables.

This is a book about Generalised Additive Models for Location, Scale and Shape, (GAMLSS),
and its implementation in R. The GAMLSS model is implemented through a series of R pack-
ages.

The aim of the book is:

to introduce the basic ideas of the GAMLSS models,

to show how the models can be fitted in R,

to demonstrate the capabilities (and limitations) of R GAMLSS packages,

to provide a sufficiently wide range of examples in order to demonstrate the usefulness of the
GAMLSS models,

to help practitioners to understand the ideas behind the GAMLSS models,

17

18 LIST OF TABLES

to provide information about the GAMLSS implementation in R.

This book is written for:

practitioners who wish to understand and use the GAMLSS models

students who wish to learn GAMLSS through practical examples and

for us the authors who often forget what we have done in the past and require documentation
to remember it.

We assume that practitioners and students are familiar with the basic concepts of regression
and have a minimum experience with R. All R commands are available within the text and the
reader is encouraged to learn by actually repeating the examples given within the book. Matrix
algebra is used for describing the models, so some knowledge of matrices will be useful.

This book is not designed to be read necessarily from the beginning to the end. What we are
hoping to achieve is an easy going introduction to the GAMLSS models, and something which
practitioners could refer to, describing the different functionalities of the GAMLSS R packages.
With this in mind we divide the book in several district parts dealing with different aspects of
the statistical ‘regression type’ of modelling:

part I Introduction to models and packages: This part provides an explanation of why
GAMLSS models are needed and information about the GAMLSS R packages using two
practical examples.

part II The R implementation, algorithms and functions: This part is designed to help
users to familiarise with the GAMLSS algorithms as well as the few basic functions of the
main gamlss package and the created gamlss R objects.

part III Distributions: This part describes the different available distributions for the re-
sponse variable. They are the distributions available in the package gamlss.dist but also
distributions which can be generated by transforming, truncating and finite mixing. The
comprise continuous, discrete and mixed (i.e. continuous-discrete) distributions, which
can be highly skewed (positively or negatively) ans/or highly platykurtotic or leptokur-
totic (i.e. light or heavy tails).

part IV Additive terms: This part shows the different ways additive terms can be used
within a GAMLSS model. In particular it explains linear and non-linear parametric
terms and non-linear smoothing terms which can be used to explain how the different
explanatory variables effect specific distribution parameter. This part also gives examples
of other possible terms which can be used (for example neural networks).

part V Model selection and diagnostics: Model selection is crucial in statistical modelling.
This part explains the different methods and tools within the GAMLSS packages model
for model selection and diagnostics

part VI Applications: Some interesting applications of the GAMLSS models are shown in
this part.

part VII Appendix GAMLSS reference card: this part shows all the available functions
within the different GAMLSS R package for reference.

LIST OF TABLES 19

Notation used in this book

In this book we would like to district between statistical models, R packages and R functions.
We will use capital letters for models, bold characters for packages and code type characters
(with extra brackets) for functions. For example

• GAMLSS : refers to the statistical model,

• gamlss : refers to R package and

• gamlss() to the R function.

Vectors in general will be represented in a lower case bold letters, e.g. x = (x1, x2, . . . , xn) while
matrices in an upper case bold letter, for example X. Scalar random variables are represented
by upper case, for example Y . The observed value of a random variable is represented by lower
case, for example y.

Tables 1 shows the notation that will be used throughout this book.

Systematic part
Y : a univariate response variable
y : the vector of observed values of the response variable, i.e. (y1, y2, . . . , yn)>

n : total number of observations
K : the total number of parameters in the distribution of Y
k : a parameters number k = 1, . . . ,K
pk : the number of columns in the design matrix Xk

Jk : the total number of smoothers for the kth distribution parameter, θk
qkj : the dimension of the random effect vector γkj
xkj : the jthe explanatory variable vector for the kth parameter, θk
Xk : an n× pk fixed effects design matrix for the kth parameter, θk
βk : a vector of fixed effect parameters for the kth parameter, θk, i.e. (β1, β2, . . . , βpk)>

γkj : the j random effect parameter vector for the kth parameter, θk, of length qkj
Zkj : an n× qkj random effect design matrix for the jth smoother of the kthe parameter, θk
Gkj : an qkj × qkj matrix of penalties for γkj
ηk : the predictor for the kth distribution parameter i.e. ηk = gk(θk)
Hk : the hat matrix for the kth parameter
zk : the adjusted dependent variable for the kth parameter

gk() : link function applied to model the kth distribution parameter
skj() : the jth non-parametric or non-linear function (in the predictor ηk)

W : a n× n diagonal matrix of weights
w : a n dimensional vector of weights (the diagonal elements of W)

Skj : the jth smoothing matrix for the kth parameter
Distributions

f() : theoretical probability (density) function of the random variable Y 1, (d function)
D() : a general probability (density) function, equivalent to f()
F () : cumulative distribution function of the random variable Y (p function)
Q() : inverse cumulative distribution function of the random variable Y (q function), i.e. F−1Y ()
E() : Expectation of random variable Y

1Occasionally the subscript Y is added if more than one random variables are involved for clarification i.e.
fY ().

20 LIST OF TABLES

V ar() : Variance of random variable Y
fY/X() : conditional probability of the random variable Y given X

φ() : probability density function of a standard normal distribution
Φ() : cumulative probability density function of a standard normal distribution
π() : prior probability density function in a finite mixtures
π : vector of prior (or mixing) probabilities in a finite mixtures π = (π1, π2 . . . , πk)>

Distributions parameters
θk : the kth distribution parameter, where θ1 = µ, θ2 = σ, θ3 = ν and θ4 = τ
θk : a vector of length n of the kth distribution parameter, e.g. θ2 = σ
θ : the vector of all the parameters of the distribution, e.g. θ = (µ, σ, ν, τ)>

µ : the first parameter of the distribution (usually location)
σ : the second parameter of the distribution (usually scale)
ν : the third parameter of the distribution (usually shape, e.g. skewness)
τ : the fourth parameter of the distribution (usually shape, e.g. kurtosis)
λ : a hyper-parameter
λ : the vector of all hyper-parameters in the model
σb : standard deviation of a normal random effect term for a parameter θk
Z : standard normal random variable, NO(0, 1)
z : standard normal (Gaussian) quadrature mass point

Likelihood and information criteria
L : likelihood function
` : log likelihood function
Λ : generalized likelihood ratio test statistic

i() : Fisher’s expected information matrix
I() : observed information matrix
GD : global deviance, i.e. minus twice the fitted log-likelihood

GAIC : generalized Akaike information criterion [(]i.e. GD + (k × df)]
df : total (effective) degrees of freedom used in the model
k : penalty for each degree of freedom in the model

Residuals
u: vector of (randomised) quantile residuals
r: vector of normalised (randomised) quantile residuals
ε: vector of (partial) residuals
Q: Q statistic calculated from the residuals
Z: Z-statistic calculated from the residuals

GAMLSS model components
M: a GAMLSS model containing {D,G, T ,Λ}
D: the specification of the distribution of the response variable
G: the different link functions, e.g. gk() where gk(θk) = ηk
T : the explanatory variables terms influencing the distribution of Y
Λ: the specification of the smoothing parameters

vector operators
•: the Hadamard element by element product i.e . let y> = (y1, y2, y3)> and

x> = (x1, x2, x3)> then (y • x)
>

= (y1x1, y2x2, y3x3)

Table 1: Notation for the random and systematic part of a model used

LIST OF TABLES 21

22 LIST OF TABLES

Part I

Introduction to models and
packages

23

25

This part contains two Chapters. The first explains why the GAMLSS models are needed while
the second one can be seen as an introduction to GAMLSS implementation in R. Chapter 1
assumes some previous knowledge on linear regression and generalised linear models, as well
as their representation using matrix algebra. Minimal knowledge of R is assumed at this stage
since all commands needed are displayed.

26

Chapter 1

Why GAMLSS?

This chapter shows the evolution of statistical modelling from the linear model (LM)
through the generalised linear model, GLM, the generalised additive model, GAM, to the
generalised additive models foe location scale and shape, GAMLSS. It provides an

1. a discussion on the historical evolution of GAMLSS through a simple example

2. an introduction to the the GAMLSS models in R,

3. the definition of a GAMLSS model.

This chapter is the starting point for using GAMLSS in R.

1.1 Introduction

This chapter serves as an introduction to generalised additive models for location, scale and
shape (GAMLSS). It builds up the GAMLSS model using ideas from its predecessors, in par-
ticular, from the linear regression models, the generalised linear models and the generalised
additive models. It uses a relative simple example, the Munich rent data, to demonstrate why
someone needs to use GAMLSS.

1.2 The 1980’s Munich rent data

The rent data come from a survey conducted in April 1993 by Infratest Sozialforschung, where
a random sample of accommodation with new tenancy agreements or increases of rents within
the last four years in Munich was selected including: i) single rooms, ii) small apartments, iii)
flats, iv) two-family houses. The data were analysed extensively, by Fahrmeir et al. (1994,
1995), and they are in the package gamlss.data which is automatically loaded when the gamlss
package is loaded using the command library(gamlss). There are 1967 observations and 9
variables in the data set but for the purpose of demonstrating GAMLSS, we will use only the
following variables:

27

28 CHAPTER 1. WHY GAMLSS?

R : the response variable which is the monthly net rent in DM, i.e. the monthly rent minus
calculated or estimated utility cost.

Fl : the floor space in square meters

A : the year of construction

H : a two level factor indicating whether there is central heating, (0), or not, (1).

loc : a factor indicating whether the location is below average, (1), average, (2), or above
average, (3).

Figure 1.1 PPP <- par(mfrow=c(2,2))

plot(R~Fl, data=rent, col=gray(0.7), pch = 15, cex = 0.5)

plot(R~A, data=rent, col=gray(0.7), pch = 15, cex = 0.5)

plot(R~H, data=rent, col=gray(0.7), pch = 15, cex = 0.5)

plot(R~loc, data=rent, col=gray(0.7), pch = 15, cex = 0.5)

par(PPP)

40 60 80 100 120

0
50

0
15

00
25

00

Fl

R

1900 1920 1940 1960 1980

0
50

0
15

00
25

00

A

R

0 1

0
50

0
15

00
25

00

H

R

1 2 3

0
50

0
15

00
25

00

loc

RR code on

page 28

Figure 1.1: Plot of the rent R against explanatory variables Fl, A, H and loc.

Figure 1.1 shows plots of the net rent R against each of the above explanatory variables. Al-
though these are bivariate exploratory plots and take no account of the interplay between the
explanatory variables, they give an indication of the complexity of this data. The first two
explanatory variables, Fl and A, are continuous. The plot of rent, R, against floor space, Fl,
suggests a positive relationship with an increased variation for larger floor spaces. The assump-
tion of homogeneity in the variance of the rent variable appears to be violated here. There is
also some indication of positive skewness in the distribution of the rent variable. The peculiarity
of the plot of rent, R, against year of construction, A, is due to the method of data collection.

1.3. THE LINEAR REGRESSION MODEL 29

Many of the observations of A were collected on an interval scale and assigned the value of
the interval midpoint, while for the rest the actual year of construction was recorded. The
plot suggests that for houses up to 1960 the median rent price is roughly constant but for flats
constructed after that year there is an increasing trend in the median rent price. The remaining
box and whisker plots display how the rent price varies according to the explanatory factors.
The median rent price increases if the flat has central heating and increases as the location
changes from below average to average and then to above average. There are no surprises in
the plots here but again the problem of skewness is prominent with non symmetrical boxes
about the median and longer upper than lower whiskers.

In summary, any statistical model used for the analysis of the above data should be able to deal
with the following statistical problems:

Problem I : The complexity of the relationship between net rent and the explana-
tory variables. The dependence of the median of the response variable rent on floor
space and age of construction is non-linear and non-parametric smoothing functions may
be needed. Median rent may also depend on non-linear interactions between the explana-
tory variables.

Problem II : Non-homogeneity of variance of rent. There is clear indication of non-
homogeneity of the variance of rent. The variance of the response variable rent may
depend on its mean and/or explanatory variables e.g. floor space. A statistical model is
needed where this dependence can be modelled explicitly.

Problem III : Skewness in the distribution of the response variable rent. There is
clear indication of skewness in the distribution of net rent and this has to be accounted
for within the statistical model.

1.3 The linear regression model

A simple but effective model, (which served the statistical community well for the main part of
the last century), is the linear regression model

Yi = β0 + β1x1i + . . .+ βrxri + εi where εi
ind∼ N(0, σ2) (1.1)

for i = 1, 2, . . . , n. It assumes that the error terms, εi for i = 1, . . . , n, are independently

distributed normal variables (that is the meaning of the notation
ind∼) with zero mean and

constant variance σ2. This specification is equivalent to

Yi
ind∼ N(µi, σ

2)

µi = β0 + β1x1i + . . .+ βrxri,

(1.2)

for i = 1, 2, . . . , n. To avoid subscript problems later on we rewrite the model in (1.2) in matrix
form as:

y
ind∼ N(µ, σ2). (1.3)

µ = Xβ

30 CHAPTER 1. WHY GAMLSS?

where X is an n×p design matrix (p = r+1) containing all the appropriate explanatory variable
columns (plus a column of ones if the the constant is required) and β is the vector unknown

vector of p coefficients to be estimated using the data. The notation y
ind∼ N(µ, σ2), represents

Yi
ind∼ N(µi, σ

2) for i = 1, . . . , n. Note that in order for the model to be fitted both β and σ2

have to be estimated from the data. The usual practice is to estimate the β using the least
square estimator

β̂ = (X>X)−1X>y (1.4)

which can be shown to be the maximum likelihood estimator, MLE, for β.

Let ŷ = Xβ̂ be the fitted values of the model and ε̂ = y − ŷ be the standard residuals of the
model. Then a maximum likelihood estimator for σ2 is

σ̂2 =
ε̂>ε̂

n
(1.5)

The MLE σ̂2 for is a biased estimator of σ2 , i.e. E
[
σ̂2
]
6= σ2, so an unbiased estimator of σ2 ,

given by

s2 =
ε̂>ε̂

n− p
(1.6)

with E
[
s2
]

= σ2, is often used instead, where p is the rank of the matrix X. Sometimes the
unbiased estimator in (1.6) is referred as the REML estimator of σ2.

A linear regression model can be fitted in R using the function lm(). Here we compare the
results from lm() to the ones obtained by the function gamlss() of the package gamlss.

r1 <- gamlss(R ~ Fl+A+H+loc, family=NO, data=rent)

GAMLSS-RS iteration 1: Global Deviance = 28159

GAMLSS-RS iteration 2: Global Deviance = 28159

l1 <- lm(R ~ Fl+A+H+loc,data=rent)

coef(r1)

(Intercept) Fl A H1 loc2

-2775.038803 8.839445 1.480755 -204.759562 134.052349

loc3

209.581472

coef(l1)

(Intercept) Fl A H1 loc2

-2775.038803 8.839445 1.480755 -204.759562 134.052349

loc3

209.581472

The fitted beta coefficients of the two fits are identical. Note that the two factors of the rent

data, H and loc are fitted as dummy variables as explained in more detail in Section 8.2.1.

The fitted objects r1 and l1 use the methods fitted() and resid() to obtained the fitted
values and the residuals respectively for their models. Note though that the gamlss object
residuals are not simply the ε̂ = y − ŷ residuals but are the normalised (randomised) quantile

1.3. THE LINEAR REGRESSION MODEL 31

residuals as explained in section 12.2 of Chapter 12. Randomisation happens only for discrete
or interval response variables.

Important: GAMLSS uses normalised (randomised) quantile residuals.

The ML estimate of σ (not σ2) can be obtained with gamlss using the command fitted(r1, "sigma)[1]

while summary() will show the standard errors and t-test for the estimates.

fitted(r1, "sigma")[1]

1

308.4768

summary(r1)

Family: c("NO", "Normal")

##

Call: gamlss(formula = R ~ Fl + A + H + loc, family = NO, data = rent)

##

Fitting method: RS()

##

Mu link function: identity

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2775.0388 470.1352 -5.903 4.20e-09 ***

Fl 8.8394 0.3370 26.228 < 2e-16 ***

A 1.4808 0.2385 6.208 6.55e-10 ***

H1 -204.7596 18.9858 -10.785 < 2e-16 ***

loc2 134.0523 25.1430 5.332 1.09e-07 ***

loc3 209.5815 27.1286 7.725 1.76e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.73165 0.01594 359.7 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 1969

Degrees of Freedom for the fit: 7

Residual Deg. of Freedom: 1962

at cycle: 2

##

Global Deviance: 28159

32 CHAPTER 1. WHY GAMLSS?

AIC: 28173

SBC: 28212.1

Note that σ is fitted in the log scale so in order to get its fitted value from the coefficient of σ

we have to exponentiate, i.e. σ̂ = exp
(
β̂σ

)
= exp(5.7316465) = 308.4767579. Note that if you

want R2 from your gamlss output you can still get it using Rsq(r1).

One way of checking the adequacy of your model is to look at the residuals.
Figure 1.2

plot(r1)

Summary of the Quantile Residuals

mean = 4.959549e-13

variance = 1.000508

coef. of skewness = 0.7470097

coef. of kurtosis = 4.844416

Filliben correlation coefficient = 0.9859819

200 400 600 800 1000 1200 1400

−
2

0
2

4
6

Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

0 500 1000 1500 2000

−
2

0
2

4
6

Against index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density Estimate

Quantile. Residuals

D
en

si
ty

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

R code on

page 32

Figure 1.2: A residual plot of the linear model r1

More about the interpretation of the four plots in Figure 1.2 can be found in Section ?? of
Chapter 12. But the important thing here is that distributional assumption that the data
comes from a normal distribution is easily rejected by looking at the QQ-normal plot at the
bottom right of Figure 1.2. We are moving next to the generalised linear model (GLM).

1.4. THE GENERALISED LINEAR MODEL (GLM) 33

1.4 The generalised linear model (GLM)

The generalised linear model, (GLM), was introduced by Nelder and Wedderburn [1972] and
further developed in McCullagh and Nelder [1989]. There are three major innovations in their
approach: i) the normal distribution for the response variable y is replaced by the exponential
family of distribution (denoted here as ExpFamily), ii) a monotonic link function g(.) is used in
modelling the relationship between µi and the explanatory variables and finally iii) in order to
find the MLE for the beta parameters it uses an iteratively reweighed least squares algorithm
which can be implemented easily on any statistical package having a good weighted least squares
algorithm. The GLM model can be written as:

y
ind∼ ExpFamily(µ, φ) (1.7)

g(µ) = Xβ.

The exponential family distribution ExpFamily(µ, φ) is defined by the probability (density)
function fY (y;µ, φ) of Y having the form:

fY (y;µ, σ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
(1.8)

where E(Y) = µ = b
′
(θ) and V (Y) = φV (µ) where the variance function V (µ) = b

′′
[θ(µ)].

The form of (1.8) includes many important distributions including the normal, Poisson, gamma,
inverse Gaussian and Tweedie, (Tweedie, 1984), distributions having variance functions V (µ) =
1, µ, µ2, µ3 and µp for p < 0 or p > 1, respectively, and also the binomial with variance function

V (µ) = µ(1−µ)
N . Within the GLM framework the Gaussian distribution, used in the previous

section to fit the rent data, can be replaced by a gamma or inverse Gaussian distribution. We
first fit the gamma distribution specified, using the family argument, as GA and Gamma respec-
tively for GAMLSS and GLM models using functions gamlss and glm respectively. GAMLSS
uses a log link function as default for µ and σ, since the range of both parameters is (0,∞). Link
functions are used, in general within the package gamlss.dist, (which is automatically loaded
if the gamlss package is loaded), to ensure that the parameters of the distributions are within
their proper range. All available distributions within the package gamlss.dist together with their
appropriate link functions for their parameters are shown in Tables 6.1, 6.2, 6.3 of Chapter ??.
The glm(() function has as default the canonical link function for µ which is different for each
distribution and for the Gamma is the ”inverse”.

Important: The GAMLSS model as implemented in the the package gamlss does not use
canonical links as default for µ as in the glm() function but generally uses links reflecting
the range of the parameter values, i.e. ”identity” for (−∞,∞), ”log” for (0,∞), ”logit” for
(0, 1) etc.

Next we fit a gamma distribution model with ”log” link for µ using the glm() function in R and
the gamlss() function. A ”log” link assumes that the relationship between µ and the predictor
variables is multiplicative.

l2 <- glm(R ~ Fl+A+H+loc, family=Gamma(link="log"), data=rent)

r2 <- gamlss(R ~ Fl+A+H+loc, family=GA, data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27764.59

GAMLSS-RS iteration 2: Global Deviance = 27764.59

34 CHAPTER 1. WHY GAMLSS?

coef(l2)

(Intercept) Fl A H1 loc2

2.864943806 0.010623194 0.001510066 -0.300074001 0.190764594

loc3

0.264083376

deviance(l2)

[1] 282.5747

coef(r2)

(Intercept) Fl A H1 loc2 loc3

2.86497701 0.01062319 0.00151005 -0.30007446 0.19076406 0.26408285

deviance(r2)

[1] 27764.59

The fitted coefficients from the two models are identical, but their correspondent deviances are
not because they are defined differently. The GML deviance is defined as

DGLM = −2 log

(
L̂c

L̂s

)

where L̂c is the fitted likelihood of the current fitted model and L̂s is the fitted likelihood of the
saturated model (the model where in modelling µ a parameter is fitted for each observation, i.e.
zero degrees of freedom left). The GAMLSS deviance is just

DGAMLSS = −2 log L̂c

and we refer to it as the global deviance or GDEV.

To get the coefficients with their standard errors use:

summary(r2)

Family: c("GA", "Gamma")

##

Call: gamlss(formula = R ~ Fl + A + H + loc, family = GA, data = rent)

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8649770 0.5688561 5.036 5.18e-07 ***

Fl 0.0106232 0.0004128 25.733 < 2e-16 ***

A 0.0015100 0.0002890 5.226 1.92e-07 ***

H1 -0.3000745 0.0231287 -12.974 < 2e-16 ***

loc2 0.1907641 0.0305204 6.250 5.01e-10 ***

1.4. THE GENERALISED LINEAR MODEL (GLM) 35

loc3 0.2640828 0.0329211 8.022 1.78e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.98220 0.01558 -63.05 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 1969

Degrees of Freedom for the fit: 7

Residual Deg. of Freedom: 1962

at cycle: 2

##

Global Deviance: 27764.59

AIC: 27778.59

SBC: 27817.69

To check whether the normal, gamma or the inverse Gaussian distribution is better for the data
compare the three models using the Generalised Akaike Criterion (GAIC):

r22 <- gamlss(R ~ Fl+A+H+loc, family=IG, data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27991.56

GAMLSS-RS iteration 2: Global Deviance = 27991.56

GAIC(r1, r2, r22) # AIC

df AIC

r2 7 27778.59

r22 7 28005.56

r1 7 28173.00

GAIC(r1, r2, r22, k=log(length(rent$R))) # SBC or BIC

df AIC

r2 7 27817.69

r22 7 28044.66

r1 7 28212.10

The conclusion is that according to both AIC or SBC the gamma fits better. no definition of
GAIC is given yet Now we check the residuals:

Figure 1.3
plot(r2)

Summary of the Quantile Residuals

mean = 0.0004795675

36 CHAPTER 1. WHY GAMLSS?

variance = 1.000657

coef. of skewness = -0.1079453

coef. of kurtosis = 3.255464

Filliben correlation coefficient = 0.9990857

400 600 800 1000 1200 1400 1600

−
4

−
2

0
2

Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

0 500 1000 1500 2000

−
4

−
2

0
2

Against index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Density Estimate

Quantile. Residuals

D
en

si
ty

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
R code on

page 35

Figure 1.3: A residual plot of the generalised linear model r2

The residuals at this stage look a lot better than the normal distribution residuals of Figure 1.2
in that at least some of heterogeneity in the residuals has disappeared.

We next introduce the generalised additive model which allow more flexible modelling between
the distribution parameter µ and the continuous explanatory variables.

1.5 The generalised additive model (GAM)

Smoothing techniques become popular in the late 1980’s. Hastie and Tibshirani [1990] were the
first to introduce them within the GLM framework and they give the name generalised additive
models, GAM. Wood [2006] has contributed extensively to the GAM theory and popularity by
allowing, in his implementation of GAM in R (package mgcv), the automatic calculation of the
smoothing parameters in the model. (In the original implementation of GAM in S-plus and R
the smoothing parameters λ or equivalently the effective degrees of freedom have to be fixed).
The GAM model can be written as:

y
ind∼ ExpFamily(µ, φ) (1.9)

g (µ) = Xβ + s1(x1) + . . .+ sJ(xJ) (1.10)

where s() stands for smoothing non-parametric functions applied to some of the continuous
explanatory variables. The idea is to let the data determine the relationship between the linear

1.5. THE GENERALISED ADDITIVE MODEL (GAM) 37

predictor η = g(µ) and the explanatory variables rather than enforcing a linear (or polynomial)
relationship. Next chapter, Chapter 2, gives few examples of different smoothers. More detail
about different smoothers within the gamlss package can be found in Chapter 9. Here we will use
the smoothing function pb() which is an implementation of a P-splines smoother in GAMLSS,
Eilers and Marx [1996]. Next we model the rent parameter µ using a smooth function for floor
space Fl and age A and we compare the model using AIC with the simple GLM fitted in the
previous section.

r3 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc, family=GA, data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27683.22

GAMLSS-RS iteration 2: Global Deviance = 27683.22

GAMLSS-RS iteration 3: Global Deviance = 27683.22

AIC(r2,r3)

df AIC

r3 11.21547 27705.65

r2 7.00000 27778.59

According to the AIC the GAM model with smoothers is better than the simple GLM with
only linear terms for Fl and age A. The summary of fit is shown below:

summary(r3)

Family: c("GA", "Gamma")

##

Call:

gamlss(formula = R ~ pb(Fl) + pb(A) + H + loc, family = GA, data = rent)

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0851197 0.5666171 5.445 5.84e-08 ***

pb(Fl) 0.0103084 0.0004030 25.578 < 2e-16 ***

pb(A) 0.0014062 0.0002879 4.884 1.12e-06 ***

H1 -0.3008111 0.0225705 -13.328 < 2e-16 ***

loc2 0.1886692 0.0299153 6.307 3.51e-10 ***

loc3 0.2719856 0.0322699 8.428 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.00196 0.01559 -64.27 <2e-16 ***

38 CHAPTER 1. WHY GAMLSS?

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

NOTE: Additive smoothing terms exist in the formulas:

i) Std. Error for smoothers are for the linear effect only.

ii) Std. Error for the linear terms maybe are not accurate.

No. of observations in the fit: 1969

Degrees of Freedom for the fit: 11.21547

Residual Deg. of Freedom: 1957.785

at cycle: 3

##

Global Deviance: 27683.22

AIC: 27705.65

SBC: 27768.29

There is a ”Note” on the output warning the users that because smoothers are fitted into the
model the standard errors given should be treated with care. There are two issues associated
with the output given by the summary.gamlss() function. The first is that the resulting
coefficients of the smoothers and their standard errors refer only to the linear part of the
smoother and not of the smoother’s contribution as a whole which is decomposed into a linear
plus a non-linear smoothing part. To test the contribution of the smoother as a whole (including
the linear term) use the function drop1() as shown below. The second issue has to do with the
standard errors of the linear part of the model that is of the terms H and loc. Those standard
errors are estimated assuming that the smoother terms are fixed in their fitted values and
therefore do not take into the account the uncertainty introduced by estimating the smoothing
terms. Some suggestions for correcting this are given in Section ??.

Important: When smoothers are fitted all standard errors shown should be treated with
caution.

Now we use drop1() to check for the significance of the contribution of the smoothers (including
the linear term).

drop1(r3)

Single term deletions for

mu

##

Model:

R ~ pb(Fl) + pb(A) + H + loc

Df AIC LRT Pr(Chi)

<none> 27706

pb(Fl) 1.4680 28261 558.59 < 2.2e-16 ***

pb(A) 4.3149 27798 101.14 < 2.2e-16 ***

H 1.8445 27862 160.39 < 2.2e-16 ***

loc 2.0346 27770 68.02 1.825e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.5. THE GENERALISED ADDITIVE MODEL (GAM) 39

All terms contributed significantly to modelling the predictor log µ. Note that drop1() can
be very slow for large data sets and with a lot of smoother terms in the model. One of the
properties of the fitted non-parametric smooth functions is that they can not simply be described
in a mathematical form as for example parametric terms. However they can be displayed. Here
we plot them using the the function term.plot():

Figure 1.4term.plot(r3, pages=1, ask=FALSE)

40 60 80 100 120

−
0

.4
0

.0
0

.2
0

.4
0

.6

Fl

P
a

rt
ia

l
fo

r
p

b
(F

l)

1900 1920 1940 1960 1980

−
0

.4
0

.0
0

.2
0

.4
0

.6
A

P
a

rt
ia

l
fo

r
p

b
(A

)

−
0

.4
0

.0
0

.2
0

.4
0

.6

H

P
a

rt
ia

l
fo

r
H

0 1

−
0

.4
0

.0
0

.2
0

.4
0

.6

loc

P
a

rt
ia

l
fo

r
lo

c

1 2 3

R code on

page 39

Figure 1.4: A plot of the fitted terms for model r3

The plot shows that rent rises almost linearly with floor space Fl, but non-linearly with age D

remaining stable if the flat was built before the 1960’s and rising after that. For the two factors
H and loc their contribution to rent is what we would expect, decrease if the flat does not have
central heating (i.e. H=) and increasing as the location of the flat changes from below average
to average and then to above average (i.e. log=,1,2 and 3 respectively). The shaded areas are
the point-wise confidence bands for the smoothing curves and factor levels. The GAM models
in general allow for a flexible specification of the dependence of the parameter predictors on
different explanatory terms. To check the adequacy of the fitted GAM model we used a worm
plot which is a de-trended QQ-plot of the residuals, van Buuren and Fredriks [2001].

Figure 1.5
wp(r3, ylim.all=.6)

Chapter 12 explain how to interpret a worm plot in detail. Here it is sufficient to say that for
an adequate fitted model we would expect the dots (which appear like a little worm) to be close
to the middle horizontal line and between the upper and lower dotted curves which act as 95%
point wise confidence intervals. This does not appear to be the case for the fitted GAM model
where the worm is well below of the lower curve in the left of the figure. Multiple worm plots

40 CHAPTER 1. WHY GAMLSS?

−4 −2 0 2 4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Unit normal quantile

D
ev

ia
tio

n

R code on

page 39

Figure 1.5: A plot of the fitted terms for model r3

allow investigation of the adequacy of the model within ranges of the explanatory variables.
We shall next try to model the parameter σ of the Gamma distribution as a function of the
explanatory variables.

1.6 Modelling the scale parameter

The gamma distribution has two parameters: i) µ which is the mean of the distribution and
ii) σ which is a scale parameter and is related to the variance by the equation V (Y) = σ2µ2.
Up to now we have modelled only µ as a function of explanatory variables, but there are
occasions (as for the Munich rent data) in which the assumption of a constant scale parameter
is not appropriate. On those occasions modelling σ as a function of explanatory variables could
solve the problem. Modelling σ started in the 1970-1980’s. Harvey [1976] and Aitkin [1987]
were the first to model the variance of the normal distribution as a function of explanatory
variables. Engle [1982, 1995] was the first to propose a time series model for σ (volatility) for
financial data, trying to solve the problem of heteroscedasticity. The model, which he called
the ARCH (Autoregressive Conditional Heteroscedastic) model has created a whole industry
of related models in finance. Modelling the dispersion parameter, φ = σ2, within GLM was
done by Nelder and Pregibon [1987], Smyth [1989] and Verbyla [1993]. Rigby and Stasinopoulos
[1996a,b] introduced smooth function for modelling both µ and σ and they call the mean and
dispersion additive model (MADAM). In the original MADAM formulation the distribution has
to be in the exponential family but the mode of fitting was Quasi-likelihood rather than full
maximum likelihood used in GAMLSS.

Here we consider the following model:

y
ind∼ D(µ,σ)

g1 (µ) = X1β1 + s11(x11) + . . .+ s1J1(x1J1)

g2 (σ) = X2β2 + s21(x21) + . . .+ s2J2(x2J2) (1.11)

1.6. MODELLING THE SCALE PARAMETER 41

where D(µ,σ) denotes any two parameter distribution in which both µ and σ are linear/smooth
functions of the explanatory variables. Next we model the Munich rent data using the Gamma
and the inverse Gaussian distributions in model (1.11):

r4 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc, sigma.fo=~pb(Fl)+pb(A)+H+loc, family=GA,

data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27572.14

GAMLSS-RS iteration 2: Global Deviance = 27570.29

GAMLSS-RS iteration 3: Global Deviance = 27570.28

GAMLSS-RS iteration 4: Global Deviance = 27570.28

r5 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc, sigma.fo=~pb(Fl)+pb(A)+H+loc, family=IG,

data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27675.74

GAMLSS-RS iteration 2: Global Deviance = 27672.97

GAMLSS-RS iteration 3: Global Deviance = 27673

GAMLSS-RS iteration 4: Global Deviance = 27673.01

GAMLSS-RS iteration 5: Global Deviance = 27673.01

GAMLSS-RS iteration 6: Global Deviance = 27673.02

AIC(r3, r4, r5)

df AIC

r4 22.25035 27614.78

r3 11.21547 27705.65

r5 21.82318 27716.66

The default link function for µ and σ in the gamma distribution (GA) in gamlss are g1(µ) = logµ
and g2(σ) = log σ. The model for the predictor for µ (i.e. logµ) is specified after R∼, while
the model for the predictor for the parameter σ (i.e. log σ) is specified after sigma.fo=∼. It
is clear that the gamma distribution fits better than the inverse Gaussian as far as the AIC is
concerns. To plot the fitted terms for σ use:

Figure 1.6
term.plot(r4, pages=1, what="sigma", ask=FALSE)

The significance of the terms can be tested using the drop1() function,

drop1(r4, what="sigma")

Single term deletions for

sigma

##

Model:

~pb(Fl) + pb(A) + H + loc

Df AIC LRT Pr(Chi)

<none> 27615

pb(Fl) 4.02694 27631 24.683 5.997e-05 ***

pb(A) 3.87807 27659 52.167 1.067e-10 ***

H 0.88335 27615 1.866 0.14788

loc 2.03694 27619 8.036 0.01872 *

42 CHAPTER 1. WHY GAMLSS?

40 60 80 100 120

−
0

.4
−

0
.2

0
.0

0
.2

Fl

P
a

rt
ia

l
fo

r
p

b
(F

l)

1900 1920 1940 1960 1980

−
0

.4
−

0
.2

0
.0

0
.2

A

P
a

rt
ia

l
fo

r
p

b
(A

)

−
0

.4
−

0
.2

0
.0

0
.2

H

P
a

rt
ia

l
fo

r
H

0 1

−
0

.4
−

0
.2

0
.0

0
.2

loc

P
a

rt
ia

l
fo

r
lo

c
1 2 3

R code on

page 41

Figure 1.6: A plot of the fitted terms for σ for model r4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Every term apart from H seems to contribute significantly to explaining the behaviour of the σ
parameter. To check the adequacy of the distribution use the wp() function.

Figure 1.7
wp(r4, ylim.all=.6)

There are a few points of the worm plot falling outside 95% point-wise confidence intervals,
indicating that the distribution may be inadequate.

1.7 The generalised additive model for location shape and
scale.

One of the problems of a two parameter distribution is the fact that the skewness and kurtosis
of the distribution are fixed for fixed µ and σ. With a relatively large set of data we would like
to have the option of a more flexible skewness or kurtosis model. In this cases the model in
(1.11) can be extended as follows:

y
ind∼ D(µ,σ,ν, τ)

g1 (µ) = X1β1 + s11(x11) + . . .+ s1J1(x1J1)

g2 (σ) = X2β2 + s21(x21) + . . .+ s2J2(x2J2)

g3 (ν) = X3β3 + s31(x31) + . . .+ s3J3(x3J3)

g4 (τ) = X4β4 + s41(x41) + . . .+ s4J4(x4J4) (1.12)

1.7. THE GENERALISED ADDITIVE MODEL FOR LOCATION SHAPE AND SCALE.43

−4 −2 0 2 4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Unit normal quantile

D
ev

ia
tio

n

R code on

page 42

Figure 1.7: A plot of the fitted terms for model r4

where now D(µ,σ,ν, τ) is a four parameter distribution and where ν and τ are shape param-
eters of the distribution which are often related to the skewness and the kurtosis aspects of
the distribution. Equation (1.12) defines the generalised additive model for location scale and
shape (GAMLSS) first introduced by Rigby and Stasinopoulos [2005] and the main subject of
this book. This book is about the GAMLSS implementation in R. The following comments
related to model (1.12) are appropriate here:

Distributions The form of the distribution D(µ,σ,ν, τ) is general and only implies that
the distribution should be in parametric form. In the current implementation there are
around 100 discrete, continuous and mixed distributions implemented as gamlss.family
including highly skew and kurtotic distributions. In addition:

• creating a new distribution is relatively easy see section ??,

• any distribution in gamlss.family can be left, right or both sides truncated,

• a censored version of any gamlss.family distribution can be created allowing mod-
elling of censored and interval response variables,

• any distribution in gamlss.family can be mixed to create a new finite mixture
distribution as described in Chapter ??,

• Discretised continuous distributions can be created for modelling discrete response
variables see for example ??.

• Any continuous gamlss.family distribution in (−∞,∞) can be transformed to a
distribution in (0,∞) or (0, 1) using the arguments type with options log or logit
respectively of the function gen.Family().

Additive terms Explanatory variables can effect the parameters of the specified distribution
in different ways. GAMLSS models allow this to be a linear or a non-linear parametric
function or non-parametric smoothing functions. The gamlss package allows the following
smooth additive terms: i) P-splines (Penalised B-splines) ii) monotone P-splines iii) cycle

44 CHAPTER 1. WHY GAMLSS?

P-splines iv) varying coefficient P-splines v) cubic smoothing splines vi) loess curve fit-
ting vii) fractional polynomials viii) random effects ix) ridge regression and x) non-linear
parametric fits. In addition through appropriate interfaces the software allows fitting of i)
neural networks, via package nnet ii) decision trees, via package rpar() iii) random effects,
via package nlme, iv) two dimensional smoothers, via package mgcv.

Fitting methods and Algorithms A parametric GAMLSS model [i.e. (1.12) without smooth-
ing functions] is fitted by maximum likelihood estimation. The more general model is
generally fitted my maximum penalised likelihood estimation. Chapter ???? shows that
most of the smoothers used within GAMLSS can be written as s(x) = Zγ where Z is a
basis matrix depending on values of x, and γ is a set of coefficients satisfying the quadratic
penalty λγ>Gγ where λ is a smoothing parameter. Rigby and Stasinopoulos [2005] have
shown that the algorithm used for fitting the GAMLSS model for fixed values of the
smoothing parameters λjk is maximising a penalized likelihood function `p given by

`p = `− 1

2

4∑
k=1

Jk∑
j=1

λkjγ
>
kjGkjγkj (1.13)

where ` =
∑n
i=1 log f(yi|µi, σi, νi, τi) is the log likelihood function. Rigby and Stasinopou-

los [2005] suggested two basic algorithms for fitting GAMLSS model (1.12). The first,
the CG algorithm, is a generalization of the Cole and Green [1992] algorithm and uses
the first derivatives and the (exact or approximate) expected values of the second and
cross derivatives of the likelihood function with respect to θ = (µ, σ, ν, τ). However for
many population probability (density) functions f(yi|µi, σi, νi, τi) the parameters are in-
formation orthogonal (since the expected values of the cross derivatives of the likelihood
function are zero), e.g. location and scale models and dispersion family models, or ap-
proximately so. In this case the second, the RS algorithm, which is a generalization of the
algorithm used by Rigby and Stasinopoulos [1996a,b] for fitting the MADAM models, is
more suited. (The RS algorithm does not use the expected values of the cross derivatives.)

We now return to the Munich data to see if we can improve the model by fitting a three
parameter distribution. We will use here the BCCG distribution which is based on Cole and
Green [1992] who were the first to fit a single smoothing term to each of the three parameters
of the distribution. They called their model ”the LMS method” and it is widely used for centile
estimation, see Chapter ??. The first model fits a constant ν while the second fits the same
model for ν as was fitted for µ and σ.

r6 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc, sigma.fo=~pb(Fl)+pb(A)+H+loc,

nu.fo=~1, family=BCCGo, data=rent)

GAMLSS-RS iteration 1: Global Deviance = 27628.31

GAMLSS-RS iteration 2: Global Deviance = 27568.64

GAMLSS-RS iteration 3: Global Deviance = 27566.3

GAMLSS-RS iteration 4: Global Deviance = 27566.09

GAMLSS-RS iteration 5: Global Deviance = 27566.06

GAMLSS-RS iteration 6: Global Deviance = 27566.06

GAMLSS-RS iteration 7: Global Deviance = 27566.06

GAMLSS-RS iteration 8: Global Deviance = 27566.06

r7 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc,sigma.fo=~pb(Fl)+pb(A)+H+loc,

nu.fo=~pb(Fl)+pb(A)+H+loc, family=BCCGo, data=rent)

1.7. THE GENERALISED ADDITIVE MODEL FOR LOCATION SHAPE AND SCALE.45

GAMLSS-RS iteration 1: Global Deviance = 27616.6

GAMLSS-RS iteration 2: Global Deviance = 27553.71

GAMLSS-RS iteration 3: Global Deviance = 27551.5

GAMLSS-RS iteration 4: Global Deviance = 27551.32

GAMLSS-RS iteration 5: Global Deviance = 27551.32

GAMLSS-RS iteration 6: Global Deviance = 27551.32

GAMLSS-RS iteration 7: Global Deviance = 27551.32

AIC(r4, r6, r7)

df AIC

r7 28.41391 27608.15

r6 22.48092 27611.02

r4 22.25035 27614.78

It look that the BCCG distribution provides a superior fit compared to the gamma distribution
and that modelling the ν parameters as a function of the explanatory variables improves the
fit. To check the adequacy of the fitted distribution we use the worm plots.

Figure 1.8
op <- par(mfrow=c(1,2))

wp(r6, ylim.all=.6) ; title(" (c) BCCG(mu, sigma)")

wp(r7, ylim.all=.6); title(" (d) BCCG(mu, sigma, nu)")

par(op)

−4 −2 0 2 4

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Unit normal quantile

D
e
v
ia

ti
o

n

 (c) BCCG(mu, sigma)

−4 −2 0 2 4

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Unit normal quantile

D
e
v
ia

ti
o

n

 (d) BCCG(mu, sigma, nu)

R code on

page 45

Figure 1.8: A residual plot of the linear model r1

46 CHAPTER 1. WHY GAMLSS?

Both worm plots show an adequate fit, so we finish our demonstration here.

We have used the Munich rent data to demonstrate how GAMLSS can be used to model the
data and we arrived at a more sophisticated model than using only GLM or GAM. In particular
modelling both µ and σ parameter of a gamma GA(µ, σ) distribution in model r4 provide a
a substantial improved fit to the rent response variable as compared to the GAM model r3.
Also a three parameter distribution model using the BCCG(µ, σ, ν) distribution improves also
the fit. GAMLSS provides greater flexibility in modelling regression type model but with this
flexibility comes more responsibility for the statistician. This is not a bad thing. The philosophy
of GAMLSS is to allow the practitioner to have a wider choice when trying to fit adequately a
response variable.

We conclude this Chapter with some of the basic properties of GAMLSS:

• GAMLSS is a very flexible unifying framework for univariate regression type models.

• It allows any distribution for the response variable where all the parameters of the distri-
bution can be modelled as a functions of explanatory variables.

• It allows a variety of (penalised) additive terms in the models for the distribution param-
eters.

• The fitted algorithm is modular, where different components can be added easily.

• It extends basic statistical models allowing flexible modelling of over-dispersion, excess of
zeros, skewness and kurtosis in the data.

Chapter 2

Introduction to the gamlss
packages

This chapter provides:

1. an introduction to GAMLSS package in R,

2. an introduction to some of the facilities of the gamlss packages using a simple regres-
sion model (with one explanatory variable).

2.1 Introduction

This Chapter uses a simple example of a continuous response variable against a continuous
explanatory variable to demonstrate some of the facilities that the R gamlss packages provide.
Section 2.2 describes the different GAMLSS packages in R. Section ?? provides a basic introduc-
tion of the gamlss package. Chapter 2.3 shows demonstrate the gamlss() function and other
facilities in the gamlss package.

2.2 The GAMLSS packages

The GAMLSS framework comprise of several different packages written in the free software R,
i.e. the original gamlss package and other add-on packages, i.e.

1. The original gamlss package for fitting a GAMLSS model. This packages depends on the
gamlss.dist and gamlss.data packages. It contains the main function gamlss() for fitting a
GAMLSS model and methods for dealing with fitted gamlss objects. Chapter 3 describes
the algorithms use by the function gamlss(). Chapter 4 describes the arguments and
how the gamlss() function can be used. Chapter 5 describes the different methods, (R
functions), available for manipulating gamlss fitted objects.

47

48 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

2. The gamlss.add package for fitting extra additive terms. This package provides extra
additive terms for fitting a parameter of the distribution of the response variable. This
is mainly achieved by providing interfaces with other R packages. For example, neural
networks, decision trees and multidimensional smoothers can be fitted within gamlss() by
using the packages nnet, rpart and mgcv respectively. The use of those terms is explained
in Chapter ??,

3. The gamlss.cens package for fitting censored (left, right or interval) response variables.
This package generates gamlss.family distributions suitable for fitting censored data
within a GAMLSS model. By censoring we mean that the response variable is an interval
response variable, that is, when the exact value of the event is not observed but only an
interval of when the event happens. (An example is needed.)

4. The gamlss.data package for data used in this book. This package is automatically loaded
if the gamlss package is loaded.

5. The gamlss.demo package for teaching purpose demos. The purpose of this package is
twofold. Firstly, it provides a visual presentation to all gamlss.family distributions.
That is, the user can visualise how the shape of the distribution is changing when any of the
parameters of the distributions are changing. Secondly, it provides a visual presentation of
some of the smoothing and P-splines ideas. Smoothing terms are used within a GAMLSS
model to explored non linearities in the data.

6. The gamlss.dist package for gamlss.family distributions. This package contains all the
distributions available in GAMLSS models and it is automatically loaded if the gamlss
package is loaded. More information about the distribution available can be found in
Chapter 6 and in the book Distributions for Location Scale and Shape.

7. The gamlss.mx package for fitting finite mixture distributions and non parametric ran-
dom effects. This package provides two main functions: i) gamlssMX() for fitting finite
mixture distributions appropriate for multimodal data and ii) gamlssPN() for fitting non-
parametric random effects. The later function also provides a way of fitting finite mix-
tures when some of the parameters of the distributions are common within the mixtures.
Chapter ?? provides examples for fitting finite mixtures to data while Chapter ?? provides
information for fitting non-parametric random effects.

8. The gamlss.nl package for fitting non-linear parametric models within the GAMLSS frame-
work. Chapter ?? provides information how to do that.

9. The gamlss.spatial package for spatial models. This package provides facilities so Markov
Random Fields (MRF) terms can be fitted within a GAMLSS models. MRF are appro-
priate when a factor in the data provides a geographical information, for example areas
in a region, and when we want to take the neighbourhood information into about when
we build a model. (An example is needed)

10. The gamlss.tr package for fitting truncated distributions. This package can take any
gamlss.family distribution and truncated it, (left, right or both), so it can be used as a
response variable distribution within a GAMLSS models. (An example is needed)

The R and the GAMLSS framework packages can be downloaded and installed from CRAN,
the R library at http://www.r-project.org/.

http://www.r-project.org/

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 49

Help files are provided for all functions in the gamlss package in the usual way. For example
using

help(package="gamlss")

?gamlss

will bring you information for the package gamlss and the function gamlss() respectively.

2.3 A simple example using the gamlss packages

The function gamlss() of the package gamlss is similar to the gam() functions in the R packages
gam, Hastie [2006], and mgcv, Wood [2006], respectively but can fit more distributions (not
only the ones belonging to the exponential family) and can model all the parameters of the
distribution as functions of the explanatory variables. The function gamlss() also can be used
to fit models which can be fitted using the functions glm() of R and parametric models gamlss
and glm() should give identical results as far as the fitted values and the fitted coefficients
for the mean are concerned (given that the same distribution from the exponential family
is fitted). However for generalised linear models, the dispersion parameters φ is fitted by a
moment estimator, while the gamlss scale parameter σ = φ1/2 is fitted by maximum likelihood
estimation. For smoothing models the gamlss fitted mean model results should be identical to
the gam() results of package gam, if the gamlss additive cubic spline function cs() is used and
for fixed degrees of freedom, although note that the degrees of freedom specified by the user in
the function cs() in the package gamlss are on the top of the constant and linear terms, while in
gam the degrees of freedom are on top of the constant. Also the convergence criterion may need
to be reduced for proper convergence in gam(). For smoothing models where the additive gamlss
function pb() is used, gamlss() and gam() of package mgcv should produce similar but not
necessarily identical results, if the same method of estimating the smoothing parameter is used.
Note, however, that by default pb() in gamlss() uses local maximum likelihood estimation of
the smoothing parameter, while gam() by default uses generalized cross-validation.

This implementation of gamlss() allows modelling of up to four parameters in a distribution
family, which are conventionally called mu, sigma, nu and tau. Here we will try to give a simple
demonstration of the gamlss package.

Data summary:
R data file: film90 in package gamlss.data of dimensions 4015× 14 but only two variables

are used here.
variables

lborev1 : the log of box office revenues after the first week calculated in 1987 prices
(the response variable)

lboopen : the log of box office opening week revenues calculated in 1987 prices
purpose: to demonstrate the fitting of a simple regression type model in the gamlss package.

The data are analysed in Voudouris et al. [2012] where more information about the data and
the purpose of the original analysis can be found. We use the data here for demonstrating some
of the features of GAMLSS. The data contain several variables, but here we restrict only to
two.

Figure 2.1

50 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

library(gamlss)

data(film90)

plot(lborev1~lboopen, data=film90, col="blue", xlab="log opening revenue",

ylab="log extra revenue")

4 6 8 10 12 14 16 18

5
10

15
20

log opening revenue

lo
g

ex
tr

a
re

ve
nu

e

R code on

page 50

Figure 2.1: A plot of the film90 revenues

The data are plotted in Figure 2.1.

2.3.1 Fitting a parametric model

First a simple linear regression model with normal errors is fitted to the data but it becomes
obvious from Figure 2.2 that such a model does not fit well.

m0 <- gamlss(lborev1~lboopen, data=film90)

GAMLSS-RS iteration 1: Global Deviance = 15078.88

GAMLSS-RS iteration 2: Global Deviance = 15078.88

plot(lborev1~lboopen, data=film90, col = "lightgray", lty=4)

lines(fitted(m0)~film90$lboopen)

Next a normal distribution is fitted with the mean of Y modelled as a cubic polynomial in x,
i.e. poly(x,3):

m0 <- gamlss(lborev1~poly(lboopen,3), data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14517.65

GAMLSS-RS iteration 2: Global Deviance = 14517.65

Since the normal distribution NO is also the default value we could omit the family argument.
To get a summary of the results use:

summary(m0)

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 51

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 50

Figure 2.2: A plot of the film90 data together with the fitted linear model for the mean

Family: c("NO", "Normal")

##

Call:

gamlss(formula = lborev1 ~ poly(lboopen, 3), family = NO, data = film90)

##

Fitting method: RS()

##

Mu link function: identity

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.29257 0.02307 576.10 <2e-16 ***

poly(lboopen, 3)1 180.61569 1.46494 123.29 <2e-16 ***

poly(lboopen, 3)2 -29.66307 1.46494 -20.25 <2e-16 ***

poly(lboopen, 3)3 20.30788 1.46494 13.86 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.38181 0.01114 34.28 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 4031

Degrees of Freedom for the fit: 5

Residual Deg. of Freedom: 4026

52 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

at cycle: 2

##

Global Deviance: 14517.65

AIC: 14527.65

SBC: 14559.15

The R function poly() is used to fit orthogonal polynomials (see section 8.3), but we could
have fitted the same model using the I() function, i.e.

m00 <- gamlss(lborev1~lboopen+I(lboopen^2)+I(lboopen^3), data=film90,

family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14517.65

GAMLSS-RS iteration 2: Global Deviance = 14517.65

summary(m00)

Family: c("NO", "Normal")

##

Call: gamlss(formula = lborev1 ~ lboopen + I(lboopen^2) + I(lboopen^3),

family = NO, data = film90)

##

Fitting method: RS()

##

Mu link function: identity

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.244e+01 1.278e+00 -17.55 <2e-16 ***

lboopen 7.174e+00 3.537e-01 20.28 <2e-16 ***

I(lboopen^2) -4.985e-01 3.171e-02 -15.72 <2e-16 ***

I(lboopen^3) 1.275e-02 9.195e-04 13.86 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.38181 0.01114 34.28 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 4031

Degrees of Freedom for the fit: 5

Residual Deg. of Freedom: 4026

at cycle: 2

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 53

##

Global Deviance: 14517.65

AIC: 14527.65

SBC: 14559.15

Note that for large data sets it could be more efficient (and may be essential) to calculate the
polynomial terms in advance prior to using the gamlss() function, e.g.

x2<-x^2; x3<-x^3

and then use them within the gamlss() function, since the evaluation is then done only once.

The fitted model is displayed in Figure 2.3. The polynomial line did not fit well in the lower
part of the explanatory variable lboopen. This behaviour, that is, the fit to be erratic in the
lower or the upper end of the explanatory variable, is very common in polynomial fitting curves.

plot(lborev1~lboopen,col = hcl(210), data=film90)

lines(fitted(m0)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)])

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 53

Figure 2.3: A plot of the film90 data together with the fitted polynomial model for the mean

f

The fitted model is given by Y ∼ NO(µ̂, σ̂) where µ̂ = β̂01 + β̂11x+ β̂21x
2 + β̂31x

3, i.e.

µ̂ = −22.437 + 7.174x− 0.499x2 + 0.013x3

and
log(σ̂) = β̂02 = 0.3818

so σ̂ = exp(0.3818) = 1.465 (since σ has a default log link function), where Y = lborev1 and
x = lboopen.

The summary function (used after convergence of the gamlss() function) has two ways of pro-
ducing standard errors i) ”vcov” and ii) ”qr”. The default value is type="vcov". This uses the

54 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

vcov method for gamlss objects which (starting from the fitted beta parameters values given
by the gamlss() function) defines the likelihood function (using gen.likelihood()) and uses
this to obtain the full Hessian matrix of all the beta parameters in the model (from all the
distribution parameters), i.e. β01, β11, β21, β31 and β02 in the above model. Standard errors
are obtained from the observed information matrix (the inverse of the Hessian). The standard
errors obtained this way are more reliable, since they take into account the information about
the interrelationship between the distribution parameters, i.e. µ and σ in the above case. On
occasions, when the above procedure fails, the standard errors are obtained from type= "qr",
which uses the individual fits of the distribution parameters (used in the gamlss() algorithms)
and therefore should be used with caution. The summary() output gives a warning when this
happens. The standard errors produced this way do not take into the account the correlation
between the estimates of the distribution parameters µ, σ, ν and τ, [although in the exam-
ple above the estimates of the distribution parameters µ and σ of the normal distribution are
asymptotically uncorrelated]

Robust (sandwich or ”Huber sandwich”) standard errors can be obtained using the argument
robust=TRUE of the summary() function. Robust standard errors introduced by Huber [1967]
and White [1980], are, in general, more reliable than the usual standard errors when the variance
model is suspected not to be correct (assuming the mean model is correct). The sandwich
standard errors are usually (but not always) bigger that the usual ones. Next we demonstrate
how the function vcov() can be used to obtain the variance-covariance matrix, the correlation
matrix and the (usual and robust) standard errors of the estimated parameters:

the variance-covariance

print(vcov(m00), digit=3)

(Intercept) lboopen I(lboopen^2) I(lboopen^3) (Intercept)

(Intercept) 1.63e+00 -4.49e-01 3.95e-02 -1.12e-03 -2.32e-11

lboopen -4.49e-01 1.25e-01 -1.11e-02 3.18e-04 6.38e-12

I(lboopen^2) 3.95e-02 -1.11e-02 1.01e-03 -2.90e-05 -5.61e-13

I(lboopen^3) -1.12e-03 3.18e-04 -2.90e-05 8.46e-07 1.59e-14

(Intercept) -2.32e-11 6.38e-12 -5.61e-13 1.59e-14 1.24e-04

the correlation matrix

print(vcov(m00, type="cor"), digit=3)

(Intercept) lboopen I(lboopen^2) I(lboopen^3) (Intercept)

(Intercept) 1.00e+00 -9.93e-01 9.74e-01 -9.49e-01 -1.63e-09

lboopen -9.93e-01 1.00e+00 -9.94e-01 9.79e-01 1.62e-09

I(lboopen^2) 9.74e-01 -9.94e-01 1.00e+00 -9.95e-01 -1.59e-09

I(lboopen^3) -9.49e-01 9.79e-01 -9.95e-01 1.00e+00 1.55e-09

(Intercept) -1.63e-09 1.62e-09 -1.59e-09 1.55e-09 1.00e+00

standard errors

print(vcov(m00, type="se"), digits=2)

(Intercept) lboopen I(lboopen^2) I(lboopen^3) (Intercept)

1.27840 0.35369 0.03171 0.00092 0.01114

print(vcov(m00, type="se", robust=TRUE), digits=2)

(Intercept) lboopen I(lboopen^2) I(lboopen^3) (Intercept)

2.0171 0.5336 0.0455 0.0013 0.0135

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 55

Note that in the final row and/or column of the above output ‘intercept’ refers to β̂02 intercept

of the predictor model for σ, while the first row and/or column ‘intercept’ refers to β̂01 the
intercept of the predictor for µ.

Visual representation of the correlation coefficients can be obtain using the package corrplot

and it is of some interest to compare the two fitted models with and without the poly() function.

library(corrplot)

op<-par(mfrow=c(1,2))

corrplot(vcov(m00, type="cor"))

corrplot(vcov(m0, type="cor"))

par(op)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(I
nt

er
ce

pt
)

lb
oo

pe
n

I(
lb

oo
pe

n^
2)

I(
lb

oo
pe

n^
3)

(I
nt

er
ce

pt
)

(Intercept)

lboopen

I(lboopen^2)

I(lboopen^3)

(Intercept)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(I
nt

er
ce

pt
)

po
ly

(lb
oo

pe
n,

 3
)1

po
ly

(lb
oo

pe
n,

 3
)2

po
ly

(lb
oo

pe
n,

 3
)3

(I
nt

er
ce

pt
)

(Intercept)

poly(lboopen, 3)1

poly(lboopen, 3)2

poly(lboopen, 3)3

(Intercept)

R code on

page 55

Figure 2.4: A plot of the correlation coefficient matrices for models m00 on the left and m0 on
the right

Figure 2.4 shows the resulting plot. Because the µ and σ parameters in the normal distribution
are information independent (i.e. asymptotically uncorrelated) the first four estimated param-
eters, of the model for µ are effectively not correlated with the fifth, the constant for σ, in both
model m0 and m00. In addition all the parameters of the µ model for m0 are actually uncor-
related because we used orthogonal polynomials (for a model with normal errors and constant
variance), but for m00 they are highly correlated.

2.3.2 Fitting a non-parametric smoothing model

P-splines

Model m0 is a linear parametric GAMLSS model. In order to fit µ the mean of lborevl with a
semi-parametric model in lboopen using a non-parametric smoothing P-spline, Eilers and Marx
[1996], use:

56 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

m1<-gamlss(lborev1~pb(lboopen), data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14085.78

GAMLSS-RS iteration 2: Global Deviance = 14085.78

In the smoothing function pb() the smoothing parameter (and therefore the effective degrees
of freedom) are estimated automatically using the default local maximum likelihood method
described in Rigby and Stasinopoulos [2013]. Within the pb() function there are also alternative
ways of estimating the smoothing parameter, such as the local Generalised AIC (GAIC), and
the Generalised Cross Validation (GCV).

The fitted model is displayed in Figure 2.5:

plot(lborev1~lboopen,col = hcl(210), data=film90)

lines(fitted(m1)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)])

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 56

Figure 2.5: P-splines fit: a plot of the film90 data together with the fitted smooth mean
function fitted using the function pb()

The effective degrees of freedom fitted by the pb() can be obtained using the function edf():

edf(m1, "mu")

Effective df for mu model

pb(lboopen)

12.46241

summary(m1)

Family: c("NO", "Normal")

##

Call:

gamlss(formula = lborev1 ~ pb(lboopen), family = NO, data = film90)

##

Fitting method: RS()

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 57

##

Mu link function: identity

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.352834 0.086899 27.08 <2e-16 ***

pb(lboopen) 0.928404 0.007137 130.08 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.32824 0.01114 29.47 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

NOTE: Additive smoothing terms exist in the formulas:

i) Std. Error for smoothers are for the linear effect only.

ii) Std. Error for the linear terms maybe are not accurate.

No. of observations in the fit: 4031

Degrees of Freedom for the fit: 13.46241

Residual Deg. of Freedom: 4017.538

at cycle: 2

##

Global Deviance: 14085.78

AIC: 14112.7

SBC: 14197.54

One of the important things to remember when fitting smooth non-parametric terms in gamlss()

is the fact that the resulting coefficients of the smoothing term and their standard errors refer
only to the linear term. For example the coefficient 0.93 and its s.e. 0.007137 in the above
output should be interpreted with care. They are an artefact of the way the fitting algorithm
works with the pb() function. It is because the linear part of the smoothing is fitted separately
together with all other linear terms (in the above case with only the constant). One should try
to interpret the whole smoothing function which can be obtained using term.plot(). Signifi-
cance of smoothing terms can be obtained using the function drop1() but maybe be slow for
large data set with a lot of fitted smoothing terms.

Important: Do not try to interpret the linear coefficients or the standard errors of the
smoothing terms.

Note also that when smoothing additive terms are involved in the fitting, both methods (default
and robust), used in summary to obtained standard errors, are questionable. The reason is be-
cause the way the function vcov is implemented effectively assumes that the estimated smooth-

58 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

ing terms were fixed at their estimated values. The functions prof.dev() and prof.term()

can be used for obtaining more reliable individual parameter confidence intervals, by fixing the
smoothing degrees of freedom at their previously selected values.

Cubic Splines

Other smoothers are also available. In order to fit a non-parametric smoothing cubic spline
with 10 effective degrees of freedom on top of the constant and linear terms use

m2<-gamlss(lborev1~cs(lboopen,df=10), data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14087.15

. . .

GAMLSS-RS iteration 2: Global Deviance = 14087.15

The effective degrees of freedom used in the fitting of the mu parameter in the above model are
12 (one for the constant, one for the linear and 10 for smoothing). Note that the gamlss()

notation is different to the gam() notation in S-PLUS where the equivalent model is fitted using
s(x,11).

The total degrees of freedom used for the above model m2 is thirteen, i.e. 12 for mu the mean, and
1 for the constant scale parameter sigma the standard deviation of the fitted normal distribution
model. The fitted values of model m2 together with the fitted values of m1 are displayed in Figure
2.6:

plot(lborev1~lboopen,col = hcl(210), data=film90)

lines(fitted(m1)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)])

lines(fitted(m2)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)],

col="red", lty=2, lwd=2)

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 58

Figure 2.6: Cubic splines fit: a plot of the film90 data together with the fitted smooth mean
functions of model m1 fitted by pb() (black continuous line) and model m2 fitted by cs() (red
dashed line).

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 59

Neural Networks

Neural networks can be considered as another type of smoother. Here a neural network smoother
is fitted using an interface of the gamlss package with the nnet of Brian Ripley. The additive
function to be used with gamlss() is called nn() and it is part of the package gamlss.add which
has to be download. Here is how it works.

library(gamlss.add)

mnt <- gamlss(lborev1~nn(~lboopen,size=20, decay=0.1), data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14166.07

. . .

GAMLSS-RS iteration 2: Global Deviance = 14108.85

The fitted values of model mnt together with the fitted values of m1 are displayed in Figure 2.7:

plot(lborev1~lboopen,col = hcl(210), data=film90)

lines(fitted(m1)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)])

lines(fitted(mnt)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)],

col="red", lty=2, lwd=2)

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 59

Figure 2.7: Neural network fit: a plot of the film90 data together with the fitted smooth mean
functions of model m1 fitted by pb() (black continuous line) and the neural network model mnt
fitted by nn() (red dashed line).

To get more information about the fitted neural network model use the function getSmo().
This function retrieves the last fitted object within the backfitting GAMLSS algorithm (in this
case a "nnet" object). Reserved methods for the object, like print(), summary() or coef(),
can be used to get information for the objects. Here we retrieve its 61 coefficients.

coef(getSmo(mnt))

b->h1 i1->h1 b->h2 i1->h2 b->h3

0.514977039 -0.122071942 0.499045016 -0.120679890 -0.528418846

60 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

. . .

2.3.3 Extracting the fitted values for σ

Fitted values of the parameters of the object can be obtained using the fitted() function.
For example plot(lboopen, fitted(m1,"mu")) will plot the fitted values of mu against x
(=lboopen). The constant estimated scale parameter (the standard deviation of the normal
distribution in this case) can be obtained:

fitted(m1,"sigma")[1]

1

1.388527

where [1] indicates the first value of the vector. The same values can be obtained using the
more general function predict():

predict(m1,what="sigma", type="response")[1]

1

1.388527

The function predict() can also be used to predict the response variable distribution param-
eters for both old and new data values of the explanatory variables.

2.3.4 Modelling both µ and σ

To model the predictors of both the mean, µ, and the scale parameter, σ (i.e. µ and log σ),
as non-parametric smoothing cubic spline functions of x (with a normal distribution for the
response Y) use:

m3 <- gamlss(lborev1~pb(lboopen),sigma.formula=~pb(lboopen),

data=film90, family=NO)

edfAll(m3)

GAMLSS-RS iteration 1: Global Deviance = 12224

. . .

GAMLSS-RS iteration 4: Global Deviance = 12227

$mu

pb(lboopen)

12.41

##

$sigma

pb(lboopen)

10.96

This time we used the function edfAll() to obtain the effective degrees of freedom for all
parameters. The estimated total degrees of freedom for smoothing are 12.41 and 10.96 for µ
and σ respectively.

The fitted model for µ, the mean of the response variable lborev1, is displayed in Figure 2.8:

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 61

plot(lborev1~lboopen,col = hcl(210), data=film90)

lines(fitted(m3)[order(film90$lboopen)]~film90$lboopen[order(film90$lboopen)])

4 6 8 10 12 14 16 18

5
10

15
20

lboopen

lb
or

ev
1

R code on

page 61

Figure 2.8: Fitted mean and variance model: a plot of the film90 data together with the fitted
smooth mean function of the model m3 where both the mean and variance models are fitted
using pb().

loess

If you wish to use loess curves, see Cleveland and Devlin [1988], instead of cubic or penalised
splines use:

m4 <- gamlss(lborev1~lo(~lboopen,span=.4), sigma.formula=~lo(~lboopen,span=.4),

data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 12250

. . .

GAMLSS-RS iteration 4: Global Deviance = 12250

2.3.5 Diagnostic plots

The function resid(abd2) (an abbreviation of residuals()) can be used to obtain the fit-
ted (normalized randomized quantile) residuals of a model, subsequently just called residuals
throughout this introduction. The residuals only need to be randomized for discrete distribu-
tions, see Dunn and Smyth [1996] and the Chapter 12 for more details. Residuals plots can be
obtained using plot().

plot(m2)

Summary of the Quantile Residuals

mean = 4.585806e-06

62 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

variance = 1.000248

coef. of skewness = 0.3662528

coef. of kurtosis = 4.376454

Filliben correlation coefficient = 0.9877495

6 8 10 12 14 16 18

−
2

0
2

4
6

Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

0 1000 2000 3000 4000

−
2

0
2

4
6

Against index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

Density Estimate

Quantile. Residuals

D
en

si
ty

−2 0 2

−
2

0
2

4
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

R code on

page 62

Figure 2.9: Residual plot from the fitted normal model m2 with model pb(x) for both µ and
log σ.

See Figure 2.9 for the plot. Figure 2.9 shows plots of the (normalized quantile) residuals: i)
against the fitted values ii) against a index iii) a non-parametric kernel density estimate iv) a
normal Q-Q plot.

Note that the plot() function does not produce additive term plots [as it does for example
in the gam() function of the package mgcv] in R. The function which does this in the gamlss
package is term.plot().

A worm plot of the residuals, see van Buuren and Fredriks [2001], can be obtained by using the
wp() function:

wp(m2)

Warning in wp(m2): Some points are missed out

increase the y limits using ylim.all

See Figure 2.10(a) for the plot. To include all points in the worm plot change the ‘Deviation’
axis range by increasing the value of ylim.all:

wp(m2, ylim.all=2.2)

Since there is no warning message, all points have been included in the worm plot. See Figure
2.10(b) for the plot. The default worm plot above is a de-trended normal Q-Q plot of the
residuals, and indicates a inadequacy in modelling the distribution, since many points plotted
lie outside the (dotted) pointwise 95% confidence bands.

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 63

−4 −2 0 2 4

−0
.2

−0
.1

0.
0

0.
1

0.
2

Unit normal quantile

De
via

tio
n

(a)

−4 −2 0 2 4

−2
−1

0
1

2

Unit normal quantile

De
via

tio
n

(b)

Figure 2.10: Worm plot from model m2.

R code on

page ??

2.3.6 Fitting different distributions

If you wish to use a different distribution instead of the normal, use the option family of
the function gamlss(). For example to fit the Box-Cox-Cole-Green (BCCG) a 3-parameter
distribution use:

m5 <-gamlss(lborev1~pb(lboopen), sigma.formula=~pb(lboopen),

nu.formula=~pb(lboopen),

data=film90, family=BCCG)

GAMLSS-RS iteration 1: Global Deviance = 11845

. . .

GAMLSS-RS iteration 17: Global Deviance = 11769

To fit the Box-Cox Power Exponential (BCPE) a 4-parameter distribution) try:

m6 <-gamlss(lborev1~pb(lboopen), sigma.formula=~pb(lboopen),

nu.formula=~pb(lboopen), tau.formula=~pb(lboopen),

data=film90, start.from=m5, family=BCPE)

GAMLSS-RS iteration 1: Global Deviance = 11699

. . .

GAMLSS-RS iteration 19: Global Deviance = 11696

Note that we have used the gamlss() argument start.from=m5 to start the iterations from the
previous fitted m5 model. The details of all the distributions currently available in gamlss()

are given in the book “Distribution for Location scale and shape”.

2.3.7 Selection between models

Different models can be compared using their global deviances, GD = −2ˆ̀, (if they are

nested) or using a generalised Akaike information criterion, GAIC = −2ˆ̀ + (k.df), where
ˆ̀ =

∑n
i=1 log f(yi|µ̂i, σ̂i, ν̂i, τ̂i) is the fitted log-likelihood function and k is a required penalty,

64 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

e.g. k = 2 for the usual Akaike information criterion or k = log(n) for the Schwartz Bayesian
criterion or k = 3.84 (corresponding to a Chi-squared test with one degree of freedom for a
single parameter, since χ2

1,0.05 = 3.84). The function deviance() provides the global deviance
of the model. Note that the GAMLSS global deviance is different from the deviance that is
provided by the functions glm() and gam() in R. The global deviance is exactly minus twice
the fitted log likelihood function, including all constant terms in the log-likelihood. The glm()

deviance is calculated as a deviation from the saturated model and it does not include ’constant’
terms (which do not depend on the mean of distribution but depend in scale parameter) in the
fitted log likelihood and so cannot be used to compare different distributions. To obtain the
generalised Akaike information criterion use the functions AIC() or GAIC(). The functions are
identical. For example to compare the models m0 to m6 use:

AIC(m0,m1,m2,m3,m4,m5,m6)

df AIC

m6 45.82525 11787.30

m5 36.84390 11842.87

m3 23.37377 12273.40

m4 18.04177 12286.01

m1 13.46241 14112.70

m2 13.00200 14113.16

m0 5.00000 14527.65

The GAIC function uses default penalty k = 2, giving the usual Akaike information criterion
(AIC). Hence the usual AIC [equivalent to GAIC(k = 2)] selects model m6 as the best model
(since it has the smallest value of AIC). If you wish to change the penalty in GAIC() use the
argument k.

AIC(m0,m1,m2,m3,m4,m5,m6, k=log(4031))

df AIC

m5 36.84390 12075.05

m6 45.82525 12076.08

m4 18.04177 12399.71

m3 23.37377 12420.69

m2 13.00200 14195.09

m1 13.46241 14197.54

m0 5.00000 14559.15

In this case with GAIC(k = log(n)) we have the Bayesian Information Criterion (BIC). Models
selected using BIC are generallly simpler that models selected using AIC. This is the case here
where model m5 is selected.

Other criteria based on training, validation and test samples are discussed on Chapter 11.

2.3.8 Chosen Model

Using the criterion GAIC with k = 2 (i.e. the usual AIC criterion), model m6 is selected with
Y = lborev ∼ BCPE(µ, σ, ν, τ) where each of µ, σ, ν and τ are modelled as smooth functions
of the explanatory variable x = lboopen. The fitted smooth functions for both m5 and m6

models are shown in Figure 2.11.

2.3. A SIMPLE EXAMPLE USING THE GAMLSS PACKAGES 65

fittedPlot(m5, m6, x=film90$lboopen)

4 6 8 10 12 14 16 18

6
8

10
12

14
16

18

(a)

film90$lboopen

m
u

4 6 8 10 12 14 16 18

0.
05

0.
10

0.
15

0.
20

0.
25

(b)

film90$lboopen

si
gm

a

4 6 8 10 12 14 16 18

−
8

−
6

−
4

−
2

0
2

(c)

film90$lboopen

nu

4 6 8 10 12 14 16 18

2
3

4
5

6

(d)

film90$lboopen

ta
u

R code on

page 65

Figure 2.11: A plot of the smooth fitted values for all the parameters (a) µ, (b) σ, (c) ν and
(d) τ from models m5 and m6.

Since, in this example, only one explanatory variable is used in the fit, centiles estimates for
the fitted distribution can be shown using the functions centiles() or centiles.fan().

centiles.fan(m6, xvar=film90$lboopen, cent=c(3,10,25,50,75,90,97),

colors="terrain")

4 6 8 10 12 14 16 18

5
10

15
20

x

y

Centile curves using BCPE

R code on

page 65

Figure 2.12: A centile fan plot for the fitted m6 model showing the 3, 10, 25, 50, 75, 90 and 97
centiles for the fitted BCPE distribution.

The next plot is also showing how the fitted conditional distribution for the response variable
lborev1 changes according to variable lboopen. The function plotSimpleGamlss() from the
package gamlss.util is used here.

66 CHAPTER 2. INTRODUCTION TO THE GAMLSS PACKAGES

library(gamlss.util)

library(colorspace)

plotSimpleGamlss(lborev1,lboopen, model=m6, data=film90, x.val=seq(6,16,2),

val=5, N=1000, ylim=c(0,25), cols=heat_hcl(100))

new prediction

new prediction

Warning in predict.gamlss(object, newdata = newdata, what = "nu", type = type,

: There is a discrepancy between the original and the re-fit

used to achieve ’safe’ predictions

##

new prediction

new prediction

6 8 10 12 14 16 18

0
5

10
15

20
25

x

y

R code on

page 66

Figure 2.13: A plot showing how the fitted conditional distribution of the response variable
lborev1 changes for different values of the explanatory variable lboopen.

The resulting plot is shown in Figure 2.13.This plot highlighted how the fitted conditional
distribution of lborev1 changes with lboopen. That is the essence of the GAMLSS modelling.

Important: Within GAMLSS the shape of conditional distribution of the response variable
can vary according to the values of the explanatory variables.

Part II

The R implementation:
algorithms and functions

67

Chapter 3

The Algorithms

This chapter:

• redefines the GAMLSS models and

• describes the two algorithms for maximising the penalised log-likelihood function.

The material provided here will help the user to get an inside view of how the fitting
algorithms of GAMLSS are working.

3.1 Introduction

The GAMLSS model was first introduced in Section 1.7 of Chapter 1 as

y
ind∼ D(µ,σ,ν, τ)

g1 (µ) = X1β1 + s11(x11) + . . .+ s1J1(x1J1)

g2 (σ) = X2β2 + s21(x21) + . . .+ s2J2(x2J2)

g3 (ν) = X3β3 + s31(x31) + . . .+ s3J3(x3J3)

g4 (τ) = X4β4 + s41(x41) + . . .+ s4J4(x4J4) (3.1)

where D(µ,σ,ν, τ) is the distribution of the response variable y, Xk for k = 1, 2, 3, 4 are the
design matrices incorporating the linear additive terms in the model (see Chapter 8), βk for
k = 1, 2, 3, 4 are the linear parameters and skj(xkj) represent different smoothing functions for
different explanatory variables xkj for k = 1, 2, 3, 4 and j = 1, . . . , Jk.

It turns out that most of a smooth functions used within GAMLSS can be written in the form
of s(x) = Zγ where Z is the basis matrix which depends on the explanatory variable x, (see
Chapter ??). The γ is a parameter vector to be estimated, subject to a quadratic a penalty of
the form λγ>Gγ, for a known matrix G = D>D and where the hyper-parameter λ regulates
the amount of smoothing needed for the fit. We shall refer to functions in this form as penalised
smooth functions (or penalised smoothers). Penalised smoothers are the subject of Chapter ??
where it is shown that different formulations for the Z’s and for the D’s lead to different types

69

70 CHAPTER 3. THE ALGORITHMS

of smoothing functions with different statistical properties. We can now rewrite the GAMLSS
model in equation (3.1) as:

y
ind∼ D(µ,σ,ν, τ)

g1 (µ) = X1β1 + Z11γ11 + . . .+ Z1k1γ1J1

g2 (σ) = X2β2 + Z21γ21 + . . .+ Z2k2γ2J2

g3 (ν) = X3β3 + Z31γ31 + . . .+ Z3k3γ3J3

g4 (τ) = X4β4 + Z41γ41 + . . .+ Z4k4γ4J4 , (3.2)

subject to the penalty

4∑
k=1

Jk∑
j=1

λkjγ
>
kjGkjγkj . (3.3)

If there are no smooth functions in the model, the model is simplified to:

y
ind∼ D(µ,σ,ν, τ)

g1 (µ) = X1β1

g2 (σ) = X2β2

g3 (ν) = X3β3

g4 (τ) = X4β4. (3.4)

We refer to model (3.4) as the parametric GAMLSS models while the model defined by equations
(3.2) and (3.3) as the non-parametric GAMLSS model. Within the R implementation, the
parametric GAMLSS model (3.4) is fitted by maximum likelihood estimation, while the more
general non-parametric model of (3.2) and (3.3) is fitted by maximum penalised likelihood
estimation. The log likelihood function for the GAMLSS model (3.4) under the assumption
that observations in the response variables are independent is given by

` =

n∑
i=1

log f(yi|µi, σi, νi, τi) (3.5)

where f() represent the probability (density) function of the response variable. The penalised
log-likelihood function for models (3.2) and (3.3) is given by

`p = `− 1

2

4∑
k=1

Jk∑
j=1

λkjγ
>
kjGkjγkj (3.6)

Note we will need estimates for the ‘betas’,

β = (β1,β2,β3,β4)

the ‘gammas’,
γ = (γ11, . . . ,γ1J1 ,γ21, . . . ,γ4J4),

and the ‘lambdas’
λ = (λ11, . . . ,λ1J1 ,λ21, . . . ,λ4J4).

There are two basic algorithms for fitting the parametric model (3.4) or the non-parametric
model GAMLSS model of equations (3.2) and (3.3), the RS and the CG algorithms. The two
algorithms will be explained in the next section.

3.2. ESTIMATING β AND γ FOR FIXED λ 71

3.2 Estimating β and γ for fixed λ

Rigby and Stasinopoulos [2005] provided two basic algorithms for maximising the penalised log
likelihood given in (3.6) with respect to β and γ for a given λ:

• The CG algorithm which is a generalisation of the Cole and Green [1992] algorithm. This
algorithm requires information about the first and (expected or approximated) second and
cross derivatives of the log-likelihood function with respect to the distribution parameters
θ = (µ, σ, ν, τ) for a four parameter distribution.

• The RS algorithm which is a generalisation of the the algorithm used by Rigby and
Stasinopoulos [1996a,b] for fitting a mean and dispersion additive models, (MADAM).
This algorithm does not use the cross derivatives of the log-likelihood.

Appendix C of Rigby and Stasinopoulos [2005] shows that both algorithms lead, for given λ
hyper-parameters, to the maximum penalised log likelihood estimates for the betas and the
gammas, i.e. β̂ and γ̂.

(a) RS

µ

σ 255

 260

 265

 270

 270

 275

 275

 280

 280

 285

 285

 290

 290

 295

 295

 300

 300

 305

 305

 310

 310

 315

 315

 320

 320

 325

 325

 330

 330

 335

 335

 340

 340

 345

 345

 350

 350

 355

 355

 360

 365

 365

 370

 375

 375

 380

 385

 390

 390

 395

 405

 410

 420

 420

0.15 0.25 0.35 0.45

1.0
1.5

2.0
2.5

(b) CG

µ

σ 255

 260

 265

 270

 270

 275

 275

 280

 280

 285

 285

 290

 290

 295

 295

 300

 300

 305

 305

 310

 310

 315

 315

 320

 320

 325

 325

 330

 330

 335

 335

 340

 340

 345

 345

 350

 350

 355

 355

 360

 365

 365

 370

 375

 375

 380

 385

 390

 390

 395

 405

 410

 420

 420

0.15 0.25 0.35 0.45

1.0
1.5

2.0
2.5

Figure 3.1: Showing how the two GAMLSS algorithms (a) RS and (b) CG reach the maximum.

Figure 3.1 demonstrates the different ways in which the two algorithms reach the maximum
log likelihood parameter estimates. The contours are equal global deviance (GD) contours
(equal to minus twice the log likelihood). Hence maximising the log likelihood is equivalent to
minimising the global deviance. The two figures are generated using a random sample from a
Weibull, WEI(µ, σ), distribution. The RS algorithm maximizes the (penalized) likelihood over
each of µ, σ, ν and τ in turn, cycling until convergence. For example in Figure 3.1(a) the global
deviance is minimized (and hence the likelihood is maximized) over each of µ and σ in turn,
alternating until convergence. The CG algorithm has the ability, since it uses the information
about the cross derivatives, to jointly update (µ, σ) as demonstrated in Figure 3.1(b). On the

72 CHAPTER 3. THE ALGORITHMS

basis of the evidence in Figure 3.1 it sems that the CG algorithm should be preferable, but in
practice this is not the case. The CG algorithm is rather unstable especially at the beginning of
the iterations and diverges easily. The RS algorithm is generally a lot more stable and in most
cases faster, so it is used as the default. Note though that for highly correlated distribution
parameters the RS algorithm can be slower and may converge early before reaching the maximum
log likelihood.

The RS and CG algorithms are implemented in the option method in the function gamlss()

where a combination of both algorithms is also allowed using the mixed() function, see 4.2.1.
The mixed() function uses the RS algorithm for the early iterations but later switches to the
CG algorithm. This is recommended for highly correlated distribution parameters.

Next we describe the two algorithms in more detail.

3.2.1 The RS algorithm

The RS algorithm can be described using the following three nested components:

• the outer iteration, described in Figure 3.2, which calls

• the inner iteration (or local scoring or GLIM algorithm), described in Figure 3.3, which
calls

• the modified backfitting algorithm, described in Figure 3.4.

The outer iteration calls repeatedly the inner iteration, which in turn calls repeatedly the
modified backfitting algorithm. Convergence occurs when all three algorithms have converged.

The outer iteration (called the GAMLSS iteration)

Figure 3.2 describes the outer iteration diagrammatically. After some initialization for the
parameter vectors of length n say µ0, σ0, ν0 and τ 0 for µ, σ, ν and τ , the outer iteration
proceeds as follows:

1. fit a model for µ [i.e. maximise the (penalised) log likelihood over µ] given the latest
estimates σ̂, ν̂ and τ̂ , then

2. fit a model for σ given the latest estimates µ̂, ν̂ and τ̂ , then

3. fit a model for ν given the latest estimates µ̂, σ̂ and τ̂ , and finally

4. fit a model for τ given the latest estimates µ̂, σ̂ and ν̂.

Then it calculates the global deviance (equal to minus twice the current fitted log likelihood).
If the global deviance has converged then the algorithm stops, otherwise it repeats the process.

Note that the algorithm only needs initial values for the distribution parameters, θ = (θ1, θ3, θ3, θ4) =
(µ, σ, ν, τ) rather than for the β parameters. The algorithm has generally been found to be sta-
ble and fast using very simple starting values (e.g. constants) for the θ parameters. Default
values can be changed by the user if necessary (see the arguments of the gamlss() function).

3.2. ESTIMATING β AND γ FOR FIXED λ 73

initialise

fit µ given σ̂, ν̂, τ̂
using inner iter.

fit σ given µ̂, ν̂, τ̂
using inner iter.

fit ν given µ̂, σ̂, τ̂
using inner iter.

fit τ given µ̂, σ̂, ν̂
using inner iter.

global
deviance

converged

finish

No

Yes

Figure 3.2: Diagram showing the outer-iteration within the GAMLSS RS algorithm

74 CHAPTER 3. THE ALGORITHMS

The inner iteration (called the GLM or GLIM iteration)

Now for each fitting of a distribuion parameter, θk for k = 1, 2, 3, 4, the inner iteration is used.
The inner iteration is a local scoring algorithm very similar to the one used to fit generalised
lineal models (GLM). This explains also the name ‘GLIM algorithm’. GLIM was a computer
package belonging to the Royal Statistical Society suitable of fitting GLM’s. The first ever
version of GAMLSS in the late 90’s was written in GLIM which by now is almost an extinct
species.

The idea of the local scoring algorithm is repeated weighted fits to a modified response variable
using modified weights until convergence when the maximum is reached. This procedure within
the GLM literature is also known as Iterative Reweighted Least Squares (IRLS).

The modified (iterative) response variable (sometimes called the working variable) for fitting
the parameter θk is given by

zk = ηk + w−1k • uk (3.7)

where zk, ηk, wk and uk are all vectors of length n, e.g. wk = (wk1, wk2, . . . , wkn)>, and w−1k •
uk = (wk1uk1, wk2uk2, . . . , wknukn)> is the Hadamard element by element product, and ηk =
gk(θk) is the predictor of the kth parameter θk for k = 1, 2, 3, 4, corresponding to parameters
µ, σ, ν and τ respectively, and

uk =
∂`

∂ηk
=

(
∂`

∂θk

)
•
(
dθk
dηk

)
is the score function (the first derivative of the log-likelihood with respect to the predictor).
Note dθk/dηk is a vector of length n with elements dθki/dηki for i = 1, . . . , n. The wk are the
iterative weights for k = 1, 2, 3, 4 defined in one of the three different ways:

wk = −fk •
(
dθk
dηk

)
•
(
dθk
dηk

)
, (3.8)

where there are three different ways to define fk depending on the information available for the
specific distribution:

fk =



E

[
∂2`

∂θ2

k

]
, if the expectation exists, leading to a Fisher’s scoring algorithm,

where ∂
2`

∂θ2

k

is a vector of lengthnwith elements ∂2`

∂θki

2
for i = 1, 2, . . . , n

∂2`

∂θ2

k

, leading to the standard Newton-Raphson scoring algorithm

−
(

∂`

∂θk

)
•
(

∂`

∂θk

)
leading to a quasi Newton-Raphson scoring algorithm.

Occasionally numerical derivatives are used to define f , but this, in general, slows down the

algorithm and can make it more unstable. [Note that ∂2`

∂θk∂θ
>
k

is not used in the current

implementation of the algorithm in gamlss() because it can give negative weights which is not
allowed in the backfitting].

Figure 3.3 describes the local scoring algorithm. Given the current estimates for all the parame-
ters µ̂, σ̂, ν̂ and τ̂ the iterative weights and iterative working variable for the current distribution

3.2. ESTIMATING β AND γ FOR FIXED λ 75

given the current µ̂, σ̂, ν̂, τ̂

calculate zk and wk

fit the linear explana-
tory variables and

smoothers to zk with
weights wk using mod-

ified backfitting and
recalculate η̂k and θ̂k

global
deviance

converged

finish

No

Yes

Figure 3.3: Diagram showing the inner iteration (or GLIM iteration) within the GAMLSS RS
algorithm.

76 CHAPTER 3. THE ALGORITHMS

parameter θ are recalculated and used in a weighted fit against all the explanatory variables
needed for this parameter. This is repeated until there is no change in the global deviance.
(Note that other parameters are fixed at their current values throughout the inner iteration).

There are two tuning method within the inner iteration algorithm to avoid over jumping (i.e.
going further away from the maximum). Both of them adjust the predictor η. The first is based
on the step parameter 0 < φ ≤ 1 which can be specified by an argument eg mu.step in the
gamlss functions. To demonstrate how it works let ηo, ηf and ηn be the predictor from the
previous iteration fit, from the current iteration fit and the proposed new predictor respectively,
then ηn = φηf + (1− φ)ηo. The default value for each step parameter is 1. The second method
automatically halvex the step (up to 5 runs) η to ηn = (ηf + ηo)/2 if the deviance increases.

The modified backfitting algorithm

The estimation of the beta and gamma parameters is done within the modified backfitting part
of the algorithm. The backfitting algorithm is a version of the Gauss-Seidel algorithm Hastie
and Tibshirani [1990]. (Some people can say that the whole RS algorithm is a Gauss-Seidel
algorithm). The modification is that for most penalised smoothers the design matrix X used
for the linear relationships contains the linear part of the relevant x-variable. That helps the
convergence of the algorithm. The components that the backfitting algorithm needs are i) a
good Weighted Least Squares (WLS) algorithm and ii) a good Weighted Penalised Least Squares
(WPLS) algorithm. [In section ??? we do show that all the smoothers with a quadratic penalty
can be fitted by least squares using an augmented data model.]

The backfitting algorithm works as follows. We wish to fit linear explanatory variables and
smoothers to zk with working weights wk using backfitting (within the inner iteration for
updating distribution parameter θk). How the process works within the RS algorithm is demon-
strated in Figure 3.4 where Xk represents the design matrix for the linear part of the model
with coefficients βk and for simplicity we assume only two smoothers with parameter sets γk1
and γk2 and with basis matrices Zk1 and Zk2 respectively.

For given iterative weights wk and working response variable zk and previously initialised or
estimated values for the coefficients of the two smoothers γ̂k1 and γ̂k2 calculate the partial
residuals for the beta parameters βk (equivalently offsetting for γ̂k1 and γ̂k2) and fit a WLS

to the residuals to obtain a new estimate for β̂k. Now obtain the partial residual with respect
to the first smoother and use PWLS to obtain a new estimate of γ̂k1. Then obtain the partial
residual with respect to the second smoother and used PWLS to obtain a new estimate of γ̂k2.

Repeat the process until the β̂k, γ̂k1 and γ̂k2 are not changing.

The question arise here why we do used backfitting and not trying to fit both linear and smoother
components simultaneously in one go. This is, for example, what the gam() function in package
mgcv does. The answer to this is that while this will work with penalised smoothers (that
is smoother using a quadratic penalty) and probably will speed up the algorithm, backfitting
gives us the opportunity to try other smoothers like loess, cubic smoothing splines and neural
networks.

3.2. ESTIMATING β AND γ FOR FIXED λ 77

given current zk wk γ̂k1 and γ̂k2 for parameter θk

calculate r = zk −
Zk1γ̂k1 − Zk2γ̂k2

fit WLS to r against
Xk using weights
wk, to get β̂k

calculate r = zk −
Xkβ̂k − Zk2γ̂k2

fit PWLS to r against
Zk1 using weights
wk to get new γ̂k1

calculate r = zk −
Xkβ̂k − Zk1γ̂k1

fit PWLS to r against
Zk2 using weights
wk to get new γ̂k2

do the pa-
rameters
β̂k, γ̂k1,
γ̂k2

change?

finish

Yes

No

Figure 3.4: Diagram showing how the modified backfitting is working within the GAMLSS RS
algorithm

78 CHAPTER 3. THE ALGORITHMS

initialise

define/update zk,
wks and η0k for
k, s = 1, 2, 3, 4

fit a model for µ
using z′1 = z1 + za1
with weights w11

and update η1

fit a model for σ
using z′2 = z2 + za2
with weights w22

and update η2

fit a model for ν
using z′3 = z3 + za3
with weights w33

and update η3

fit a model for τ
using z′4 = z4 + za4
with weights w44

and update η4

global
deviance

converged

global
deviance

converged

finish

No

Yes

No

Yes

Figure 3.5: Diagram showing the outer and inner iterations within the GAMLSS CG algorithm

3.3. ESTIMATING λ 79

3.2.2 The CG algorithm

The CG algorithm is a local scoring algorithm performed within an outer and an inner iteration.
Unlike the RS algorithm this algorithm needs the cross derivatives of the log likelihood with
respect to each pair of parameters of the distribution. Rigby and Stasinopoulos [2005] Appendix
C shows that the CG algorithm, described below, maximises the penalised likelihood (3.1) with
respect to the betas, β and gammas, γ for fixed λ.

In the outer iteration of the CG algorithm, the working variable and the iterative weights for
the parameters µ, σ, ν and τ are defined by:

zk = ηk + w−1kk • uk.

The wks vectors contain the elements of iterative weights, for k = 1, 2, 3, 4 and s = 1, 2, 3, 4,
defined by wks = −fks•(∂θk/∂ηk)•(∂θs/∂ηs) in one of three ways depending on the information
available for the specific distribution:

fks =



−E
[
∂2`
∂θ2k

]
∂2`
∂θ2k

−
(

) ∂`
∂θk

)
•
(
∂`
∂θs

) (3.9)

The inner iteration process is as follows: First it defines a new working variable as

zk = zk + zak

where zak is a combination the ’cross derivatives’ multiplied by the difference in the relevant
predictors defined for four parameters as:

µ : za1 = −w−111 • [w12 • (η2 − ηo2) + w13 • (η3 − ηo3) + w14 • (η4 − ηo4)]

σ : za2 = −w−122 • [w12 • (η1 − ηo1) + w23 • (η3 − ηo3) + w24 • (η4 − ηo4)]

ν : za3 = −w−133 • [w13 • (η1 − ηo1) + w23 • (η2 − ηo2) + w34 • (η4 − ηo4)]

τ : za4 = −w−144 • [w14 • (η1 − ηo1) + w24 • (η2 − ηo2) + w34 • (η3 − ηo3)]

Now given the new adjusted working variables a model for each parameter is fitted using the
modified backfitting algorithm. The inner iteration is continued until the global deviance does
not change. Them the algorithm returns to the outer iteration which recalculates the quantities

zk, wks and η
(o)
k and starts the inner iteration again. The process is described at Figure 3.5.

The outer iteration stops when there is no more change in the global deviance.

3.3 Estimating λ

What we have shown up to now is two algorithms, RS and CG, for estimating the parameters β
and γ given the hyper-parameters λ. For fixed λ both methods lead to (penalised) maximum
likelihood estimators for β and γ. More generally it is desirable to estimate the smoothing
hyper-parameters λ automatically. The problem now is how to estimate λ? There are different
ways of estimating the hyper-parameters λ. Estimation can be done:

80 CHAPTER 3. THE ALGORITHMS

locally: when the method of estimation of each λkj is applied each time within the backfitting
algorithm of the RS or CG GAMLSS algorithm

globally: when the method is applied outside the RS or CG GAMLSS algorithm.

In addition there are (at least) three different methodologies for estimating the smoothing
hyper-parameters:

• Generalised cross validation (GCV),

• Generalised Akaike information criterion (GAIC), and

• Maximum likelihood based methods (ML/REML).

Table 11.1 shows where information about the different methods can be obtained.

Global Method Reference
Global ML /REML Rigby and Stasinopoulos [2005]

(e.g. Laplace)
Global GAIC Rigby and Stasinopoulos [2004, 2006a]

(e.g. AIC, SBC)
Global Validation Global Stasinopoulos and Rigby [2007]

Deviance (VGD)
Local ML Rigby and Stasinopoulos [2013]
Local GAIC Rigby and Stasinopoulos [2013]
Local Generalized Cross Wood [2006]

Validation (GCV)

Table 3.1: Showing references for the different approaches of choosing the smoothing parameters

In our experience the local methods are much faster and often produce similar results to the
global methods. The global methods can sometimes be more reliable but they are computa-
tionally intensive. The current facilities within the GAMLSS packages allows only the global
GAIC through the function find.hyper() and the local methods through different options
when smoothers are used. For example, pb(x) and pb(x, method="GAIC") will allow using a
local ML and GAIC method respectively to estimate the smoothing parameter when P-splines
is used for smoothing x. See also Chapter ??? for more details.

All local methods assume that locally (close to the maximum) the current partial residuals, ε,
behave like a normally distributed random variable. Note that the ‘current’ refers to the fact
that the partial residuals are calculated within the backfitting algorithm.

Local maximum likelihood

On the predictor scale in the γ fitting part of the backfitting algorithm the following (approx-
imate) internal random effects model is assumed in order to estimate the current smoothing
parameter λ:

ε = Zγ + e

e ∼ N(0, σ2
eW)

γ ∼ N(0, σ2
bG
−1) (3.10)

3.4. REMARKS ON THE GAMLSS ALGORITHMS 81

Let and where S be the smoothing matrix so ε̂ = Sε.

where ε, are the partial residuals (within backfitting), Z is the basis for smoothing the current x-
variable, the matrix W is a diagonal matrix having as values the iterative weights W = diag(w)
and where G is a known precision matrix depending on which method for smoothing is used
(see Chapter ?? for the definition of G). The simple random effect model of equation (3.10)
has the following unknown parameters to be estimated by fitting the model: σ2

e , σ2
b and γ.

The smoothing parameter λ, for smoothing the explanatory variable x, is the ratio of the two
variances, i.e. λ = σ2

e/σ
2
b . The parameters σ2

e , σ2
b and γ of model (3.10) can be estimated, see

for example Rigby and Stasinopoulos [2013], using the following simple algorithm.

step 1 given the current λ estimate the γ parameters using a penalised least squares procedure,

γ̂ =
(
Z>WZ + λG

)−1
Z>Wε

step 2 given the latest γ̂ calculate ε̂ = Zγ̂ = Sε where S = Z
(
Z>WZ + λG

)−1
Z>W and

compute

σ2
e = (ε− ε̂)> (ε− ε̂) / (n− tr(S))

σ2
b = γ̂>γ̂/tr(S) and therefore a new

λ̂ = σ̂2
e/σ̂

2
b

step 3 stop if there is no change in λ otherwise go back to step 1.

Local generalised Akaike information criterion

The local generalised Akaike information criterion (GAIC) minimises with respect to λ and for
given penalty k the quantity:

GAIC =
∣∣∣∣√w • (ε− Zγ̂)

∣∣∣∣2 + k × tr(S)

Hence k = 2 gives the local AIC and k = log(n) gives the local BIC/SBC.

Local generalised cross validation

The generalised cross validation minimise with respect to λ the quantity:

Vg =
n
∣∣∣∣√w • (ε− Zγ̂)

∣∣∣∣2
[n− tr(S)]

2

Note that by using any of the above methods to calculate locally the smoothing parameters,
the RS or CG algorithms are not necessarily optimum in the the sense that will lead to the global
solution. In practice though the algorithm generally work well and leads to sensible results.

3.4 Remarks on the GAMLSS algorithms

The following are general comments related to the fitting algorithms RS and CG in GAMLSS:

82 CHAPTER 3. THE ALGORITHMS

1. Both RS and CG algorithms can be easily implemented in any computer program which
has a good weighted linear least squares algorithm.

2. The fitting procedure is a modular fitting making checking easy.

3. Additional distributions can be added easily since their contribution comes through the
first and second (and optionally the cross) derivatives and therefore is orthogonal to the
main algorithm.

4. The modified backfitting (Gauss-Seidel) algorithm can be easily adapted to fit any extra
additive terms including terms which are not necessarily based on quadratic penalties as
long as the algorithm or method used has weights.

5. Easily found starting values, requiring initial values for the θ = (µ, σ, ν, τ) rather than for
the β parameters. The algorithms have generally been found to be stable and fast using
very simple starting values (e.g. constants) for the θ parameters. Default values can be
changed by the user if necessary.

6. The function nlgamlss() in the package gamlss.nl provides a third algorithm for fitting
parametric linear or non-linear GAMLSS models. However the algorithm needs starting
values for all the β parameters, rather than θ = (µ, σ, ν, τ), which can be difficult for the
user to choose. This method uses the nlm() R function for maximization of the likelihood,
which uses numerical derivatives (if the actual derivatives are not provided).

7. For a specific data set and model, the (penalized) likelihood can potentially have multiple
local maxima. This can be investigated using different starting values and has generally
not been found to be a problem in the data sets analysed, possibly due to the relatively
large sample sizes used.

8. Singularities in the likelihood function similar to the ones reported by Crisp and Burridge
[1994] can potentially occur in specific cases within the GAMLSS framework, especially
when the sample size is small. For example occasionally the scale parameter σ can go
towards zero. The problem can be alleviated by appropriate restrictions on the scale
parameter. For example, the link function logS, a shifted log link from 0.00001, does not
allows values less than 0.00001 to occur.

9. Introducing local methods for estimating the smoothing hyper-parameters can sometimes
make RS and CG more unstable and occasionally the global deviance increases.

Having explained how the GAMLSS algorithms are working we proceed in describing the
gamlss() function and the objects created by its use.

Chapter 4

The gamlss() function

This chapter:

• provides an introduction to the gamlss() function,

• shows how the information stored in a gamlss class model can be explored and

• explores some of the function associated with gamlss class objects.

4.1 Introduction to the gamlss() function

The function gamlss() is the main function of the package gamlss. It fits a Generalized
Additive Model for Location, Scale and Shape (GAMLSS). Chapters ?? and ?? shown how he
function can be used. In the following sections more explanation is given on how the function
can be used. Section 4.2 explains the arguments of the function and Section 4.3 shows how the
functions refit and update can be used. Section 5.2 of Chapter ?? describes the components
of a gamlss object (i.e. a fitted GAMLSS model) The profiling functions prof.dev and and
prof.term are described in Section ?? of Chapter ??.

4.2 The arguments of the gamlss() function

The usage of the function is

gamlss(formula = formula(data), sigma.formula = ~1,

nu.formula = ~1, tau.formula = ~1, family = NO(),

data = sys.parent(), weights = NULL,

contrasts = NULL, method = RS(), start.from = NULL,

mu.start = NULL, sigma.start = NULL,

nu.start = NULL, tau.start = NULL,

mu.fix = FALSE, sigma.fix = FALSE, nu.fix = FALSE,

tau.fix = FALSE, control = gamlss.control(...),

83

84 CHAPTER 4. THE GAMLSS() FUNCTION

i.control = glim.control(...), ...)

where the arguments of the function are defined as follows

formula This is a standard R model specification formula for the µ parameter of the
distribution and it is compulsory, e.g. y ∼ x. Note that the formula includes
in the left the response variable y.

sigma.formula a model formula object for the σ parameter of the distribution, e.g. ∼x.

nu.formula a model formula for the ν parameter of the distribution, e.g. ∼x.

tau.formula a model formula formula for the τ parameter of the distribution, e.g. ∼x.

family a gamlss.family object which defines the (conditional) distribution of the
response variable, see Chapter ??.

data a data frame containing the variables occurring in the formula (see also Section
4.2.3)

weights a vector of weights. Note that this argument is not equivalent to the same
argument of the glm() or gam() functions. Here weights can be used
i) to weight out observations (with weights equal to 1 or 0), or
ii) for a weighted likelihood analysis where the contribution of the observations
to the likelihood is weighted by the weights. Typically this is appropriate if
some rows of the data are identical and the weights represent the frequencies
of these rows, (see also Section 4.2.3).
Any other use of the weights is not recommended since this could have side
effects. In particular glm() weights do not in general translate to gamlss()

weights and such models should instead be fitted using offset(s) for the
parameters µ and/or σ appropriately.

contrasts list of contrasts to be used for some or all of the factors appearing as variables
in the parameter(s) model formula.

method the algorithms used for GAMLSS fitting, i.e. RS(), CG() or mixed(), see
Chapter 3.

start.from a fitted GAMLSS model from which to take the starting values for the current
model

mu.start vector or scalar for initial values for the location parameter µ.

sigma.start vector or scalar for initial values for the scale parameter σ.

nu.start vector or scalar of initial values for the shape parameter ν.

tau.start vector or scalar of initial values for the shape parameter τ .

mu.fix whether the µ parameter should be kept fixed at the mu.start value during
the fitting.

sigma.fix whether the sigma parameter should be kept fixed at the sigma.start value
during the fitting.

nu.fix whether the nu parameter should be kept fixed at the nu.start value during
the fitting.

4.2. THE ARGUMENTS OF THE GAMLSS() FUNCTION 85

tau.fix whether the tau parameter should be kept fixed at the tau.start value during
the fitting.

control Control parameters of the outer iterations of the algorithm. The default
setting is the gamlss.control function (see below).

i.control this sets the control parameters of the inner iterations of the RS algorithm.
The default setting is the glim.control function

As formulas the gamlss() accepts all glm() type formulas plus several smoothing function
formulas (see Chapter 9).

Important: Note that the na.action, and the subset argument common to other sta-
tistical modelling functions such as lm and glm have been removed as arguments in the
gamlss() function.

This is because while there is only one data set in the model there are usually up to
four different model frames created (one for each distribution parameter) and therefore for
consistency it is easier to apply sub-setting and na.action to the whole data set and not to
the individual frames.
For subsets use data=subset(mydata, subset=<the relevant condition>),
for na.action use data=na.omit(mydata)

4.2.1 The method argument of the gamlss() function

There are three different algorithms available in gamlss() and can be specified using the argu-
ment method.

RS(): The default method is the RS algorithm, which does not requires accurate starting values
for µ, σ, ν and τ to ensure convergence (the default starting values, often constants, are
usually adequate). This method is more stable in the initial stage of the fitting and faster
for larger data sets.

CG() The CG algorithm, which can be better for distributions with potentially highly cor-
related parameter estimates but which is very unstable in the beginning of the process.

mixed(): This is a mixture of the above two algorithms which starts with the RS algorithm
and finishes with the CG.

Note that the default value of the argument method is the RS algorithm because of its stability.

The RS() and CG() algorithms are explained in detail in Rigby and Stasinopoulos [2005].

R data file: abdom in package gamlss.data of dimensions 610× 2

variables

y : abdominal circumference

86 CHAPTER 4. THE GAMLSS() FUNCTION

x : gestational age

purpose: to demonstrate the fitting of a simple regression type model in GAMLSS

For example here we use the abdom data , kindly provided by Dr. Eileen M. Wright, with
response variable the abdominal circumference, y and explanatory variable the gestational age
in weeks x. The data comprises 610 observations.

data(abdom)

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom)

GAMLSS-RS iteration 1: Global Deviance = 4786.697

GAMLSS-RS iteration 2: Global Deviance = 4785.695

GAMLSS-RS iteration 3: Global Deviance = 4785.696

fits the model using the RS algorithm. Note that the global deviance can increase slightly during
the iterations. This can happen if smoothing additive terms are involved since the degrees of
freedom in the different fits could change very slightly. The CG algorithm is used by:

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom,

method=CG())

GAMLSS-CG iteration 1: Global Deviance = 6165.522

. . .

GAMLSS-CG iteration 9: Global Deviance = 4785.695

and the mixed algorithm is used by:

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom,

method=mixed(2,20))

GAMLSS-RS iteration 1: Global Deviance = 4786.697

GAMLSS-RS iteration 2: Global Deviance = 4785.695

GAMLSS-CG iteration 1: Global Deviance = 4785.696

In the above example the mixed method uses 2 cycles of the RS algorithm, followed by up to
20 cycles of the CG algorithm. All methods end up essentially with the same fitted model, a
useful check.

4.2.2 The algorithmic control functions

The gamlss.control function is defined as

gamlss.control(c.crit = 0.001, n.cyc = 20, mu.step = 1, sigma.step = 1, nu.step = 1,

tau.step = 1, gd.tol = 5, iter = 0, trace = TRUE, ...)

where

c.crit is the convergence criterion for the outer iteration of the algorithms

n.cyc is maximum number of cycles of the outer iteration of the algorithms

mu.step is the inner iteration step length for the parameter µ

sigma.step is the inner iteration step length for the parameter σ

4.2. THE ARGUMENTS OF THE GAMLSS() FUNCTION 87

nu.step is the inner iteration step length for the parameter ν

tau.step is the inner iteration step length for the parameter τ

gd.tol global deviance tolerance level, this allows the global deviance to temporarily
increase useful if fitting complicate models with a lot of smoothing parameters.

iter this should not normally be used by the user. It is used when the (refit)
function is used to count the right number of iterations

trace whether to print the global deviance at each outer iteration of the RS() and
CG() algorithms. The users are advised to keep the default values TRUE so
they can check if the algorithm is converging properly.

The function which controls parts of the inner iteration is glim.control

glim.control(cc = 0.001, cyc = 50, trace = FALSE, bf.cyc = 30, bf.tol = 0.001,

bf.trace = FALSE,...)

where

cc is the convergence criterion for the inner iteration or GLIM part of algorithm

cyc the number of cycles of the inner iteration GLIM part of the algorithm

trace whether to print at each inner iteration of the GLIM part of the algorithm
with default FALSE.

bf.cyc the number of cycles of the backfitting algorithm (see section)

bf.tol the convergence criterion (tolerance level=10−3 by default) for the backfitting
algorithm see 3.2.1

bf.trace whether to print at each iteration of the backfitting (TRUE) or not (FALSE,
the default).

Here is an example of how to change the convergence criterion c.crit. First fit the model with
the default convergence criterion value of 0.001.

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom)

GAMLSS-RS iteration 1: Global Deviance = 4786.697

GAMLSS-RS iteration 2: Global Deviance = 4785.695

GAMLSS-RS iteration 3: Global Deviance = 4785.696

Now change the convergence criterion to 0.000001 using control argument in gamlss() with
the criterion defined within gamlss.control().

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom, c.crit=0.000001)

GAMLSS-RS iteration 1: Global Deviance = 4786.697

. . .

GAMLSS-RS iteration 5: Global Deviance = 4785.696

Now let us change the default values of the trace option of in the i.control argument defined
within glim.control().

88 CHAPTER 4. THE GAMLSS() FUNCTION

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom, glm.trace=TRUE)

GLIM iteration 1 for mu: Global Deviance = 6607.265

. . .

GLIM iteration 1 for sigma: Global Deviance = 6036.217

This trick is useful when checking the convergences for the individual distribution parameters
but, unless a problem is suspected, it is better to leave it at the default value.

Useful Advice: If a large data set is used (say more than 10000 observations), and the user
is at an exploitative stage of the analysis, where many models have to be fitted relatively
fast, it is advisable to change the c.crit in gamlss.control() to something like 0.01 or
even 0.1.

Let us now fit the t distribution to the above data. The family option for the t distribution
family is TF and the t distribution degrees of freedom parameter is nu and is fitted as constant
by default.

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=abdom)

GAMLSS-RS iteration 1: Global Deviance = 4780.234

GAMLSS-RS iteration 2: Global Deviance = 4777.493

GAMLSS-RS iteration 3: Global Deviance = 4777.519

GAMLSS-RS iteration 4: Global Deviance = 4777.52

The fitted value for the constant degrees of freedom parameter nu is 11.42 and can be obtained
using fitted(h,"nu")[1] or exp(coef(h,"nu")). There are occasions where the user wants
to fix the parameter(s) of a distribution at specific value(s). For example, one might want to
fix the degrees of freedoms of the t distribution say at 10. This can be done as follows with the
nu.start and nu.fix arguments:

h1<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=abdom, nu.start=10,

nu.fix=TRUE)

GAMLSS-RS iteration 1: Global Deviance = 4780.35

GAMLSS-RS iteration 2: Global Deviance = 4777.61

GAMLSS-RS iteration 3: Global Deviance = 4777.633

GAMLSS-RS iteration 4: Global Deviance = 4777.633

Note The t distribution may be unstable if ν is fixed close to one (usually indicating that this
is an inappropriate value of ν for the particular data set).

4.2. THE ARGUMENTS OF THE GAMLSS() FUNCTION 89

4.2.3 Weighting out observations, the weights and data=subset() ar-
guments

There are two ways in which the user can weight out observations from the analysis. The first
relies on the subset() function of R and can be used in the data argument of gamlss(), i.e.
data=subset(mydata, condition), where condition is a relevant R code restricting the case
numbers of the data.

Important: It was mentioned earlier that the subset argument of lm() and glm() func-
tions is not an argument in gamlss(). Always use data=subset(mydata, condition).

The second way is through the weights option. Note that the weights are not performing
in the same way as in the glm() or lm() functions. There they are prior weights used to fit
only the mean of the model, while here the same weights are applied for fitting all (possibly
four) parameters. The weights here can be used for a weighted likelihood analysis where
the contribution of the observations to the log likelihood is weighted according to weights.
Typically this is appropriate in the following cases:

frequencies: if some rows of the data are identical and the weights represent the frequencies
of these rows

zero weights: A more common application of the weights is to set them equal to zero or one
(i.e. FALSE or TRUE), so observations can be weighted out from the analysis

weighted log-likelihood: This is the case where different weights in the log-likelihood for
different observations is required. One example is the use of gamlss objects in the fitting
of finite mixtures, see package gamlss.mx.

Note than in general a model fitted to the original uncollapsed data.frame or to the collapsed
data.frame using frequencies as weights should produce identical results in terms of fitted
model parameters. The fitted values and the residuals of the two different models do not have
to have the same length as we will demonstrate in this Section.

Note that using data=subset() only fits the data cases in the subset, so fitted values for the
parameters are only calculated for the subset data cases. However using the weights option
fits all the data cases (although cases with weights 0 do not contribute to the fit) and so fitted
values for the parameters are calculated for all data cases. These fitted values will be correct
and this is a method to produce predictive values the other is using the function predict()].

Let us assume that in our abdominal circumference example we want to weight out all obser-
vations in which the x variable is less than or equal to 20. We can do this using the function
subset().

h2<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=subset(abdom,x>20))

GAMLSS-RS iteration 1: Global Deviance = 3706.584

. . .

GAMLSS-RS iteration 4: Global Deviance = 3706.763

90 CHAPTER 4. THE GAMLSS() FUNCTION

c(length(fitted(h2)), length(resid(h2)), h2$noObs, h2$N)

[1] 456 456 456 456

Note that h2$N gives the length of the response variable while h2$noOBS is the sum of the
weights. Now we use weights:

h3<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=abdom, weights=x>20)

GAMLSS-RS iteration 1: Global Deviance = 3706.698

. . .

GAMLSS-RS iteration 4: Global Deviance = 3706.827

c(length(fitted(h3)), length(resid(h3)), h3$noObs, h3$N)

[1] 610 456 456 610

Let us assume now that we want to weight out only a few observations, say the 200th and 400th.
We can do it neither way using subset or weights. The advantage of using the argument
weights is that we can get predictions for those values:

w <- rep(1, 610)

w[c(200,400)] <- 0

h41<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF,

data=subset(abdom, w==1))

GAMLSS-RS iteration 1: Global Deviance = 4766.151

GAMLSS-RS iteration 2: Global Deviance = 4763.481

GAMLSS-RS iteration 3: Global Deviance = 4763.506

GAMLSS-RS iteration 4: Global Deviance = 4763.507

h42<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, weights=w,

data=abdom)

GAMLSS-RS iteration 1: Global Deviance = 4766.151

GAMLSS-RS iteration 2: Global Deviance = 4763.481

GAMLSS-RS iteration 3: Global Deviance = 4763.506

GAMLSS-RS iteration 4: Global Deviance = 4763.507

fitted(h42, "mu")[c(200,400)]

[1] 176.8339 278.3580

If the variables in the reduced data.frame are to be used extensively later on, it would make
more sense to use the subset function in advance of the fitting to create a reduced data set.

The following simple artificial example demonstrates the use of the weights argument when
frequencies are involved in the data. [The approach is particularly suited to fitting discrete
distributions to frequency count data.]

y <- c(3,3,7,8,8,9,10,10,12,12,14,14,16,17,17,19,19,18,22,22)

x <- c(1,1,2,3,3,4, 5, 5, 6, 6, 7, 7, 8, 9, 9,10,10,11,12,12)

ex1 <- data.frame(y=y,x=x)

The 20 × 2 data frame ex1 contains some identical rows, e.g. row 1 and 2 or 7 and 8. A new

4.2. THE ARGUMENTS OF THE GAMLSS() FUNCTION 91

data frame, containing the same information as in ex1, but with an extra variable called freq

indicating the number of identical rows in ex1 in can be create as:

yy <- c(3, 7, 8, 9, 10, 12, 14, 16, 17, 19, 18, 22)

xx <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

ww <- c(2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2)

ex2 <- data.frame(y=yy, x=xx, freq=ww)

Fitting a statistical model using each of the two data frames should produce identical results.
This is demonstrated below where prior weights are used to fit the data in ex2.

m1 <- gamlss(y~x, data=ex1, family=PO)

GAMLSS-RS iteration 1: Global Deviance = 90.8238

GAMLSS-RS iteration 2: Global Deviance = 90.8238

m2 <- gamlss(y~x, weights=freq, data=ex2, family=PO)

GAMLSS-RS iteration 1: Global Deviance = 90.8238

GAMLSS-RS iteration 2: Global Deviance = 90.8238

all.equal(deviance(m1),deviance(m2))

[1] TRUE

c(length(fitted(m1)), length(resid(m1)), m1$noObs, m1$N)

[1] 20 20 20 20

c(length(fitted(m2)), length(resid(m2)), m2$noObs, m2$N)

[1] 12 20 20 12

Note the lengths of the fitted values and the residuals of the two models. In the case of model
m2 the residuals are expanded to represent all 20 original observations. Note that resid(m1)

and resid(m2) are not going to be identical in this case since both are randomized residuals
due to the fact we used a discrete distribution.

The user may be tempted to scale the weights but this may have undesirable consequences as
we demonstrate below.

m3<- gamlss(y~x, sigma.fo=~x, weights=freq/2, data=ex2, family=PO)

GAMLSS-RS iteration 1: Global Deviance = 45.4119

GAMLSS-RS iteration 2: Global Deviance = 45.4119

summary(m2)

##

. . .

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.62331 0.16548 9.809 1.20e-08 ***

x 0.12904 0.01914 6.741 2.56e-06 ***

. . .

92 CHAPTER 4. THE GAMLSS() FUNCTION

summary(m3)

##

. . .

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.62331 0.23403 6.936 4.01e-05 ***

x 0.12904 0.02707 4.767 0.000761 ***

. . .

deviance(m2)

[1] 90.82379

deviance(m3)

[1] 45.41189

We can see that, while in this specific example the fitted coefficients are the same, the deviances
and more importantly the standard errors have been affected by the change in weights. Also
because the weights are not frequencies the length of the residuals remains 12. In general using
weights that are not frequencies is not recommended unless the user knows what he/she doing
and is aware of the problem.

4.3 The refit and update functions

4.3.1 refit()

The function refit() can be used if the converged component of the gamlss fitted object
is FALSE, that is, when the maximum number of iteration c.cyc has been reached without
convergence. The default value for c.cyc is 20 and it is usually sufficient for most problems.
Here it is an artificial example in which we force the algorithm to stop in the second iteration
so we can continue with refit()

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=abdom, n.cyc=3)

GAMLSS-RS iteration 1: Global Deviance = 4780.234

GAMLSS-RS iteration 2: Global Deviance = 4777.493

GAMLSS-RS iteration 3: Global Deviance = 4777.519

Warning in RS(): Algorithm RS has not yet converged

h<-refit(h)

GAMLSS-RS iteration 4: Global Deviance = 4777.52

4.3. THE REFIT AND UPDATE FUNCTIONS 93

4.3.2 update()

The function update() can be used to update formulae or other arguments of a gamlss fitted
object. To update formulae update uses the the R update.formula() function to update the
specified distribution parameter.

The gamlss update() function is defined as

update.gamlss(object, formula., ..., what = c("mu", "sigma", "nu", "tau"),

evaluate = TRUE)

where

object a gamlss fitted object

formula the formula to update

... for updating argument in gamlss()

what what parameter of the distribution is required for updating in the formula,
mu, sigma, nu or tau, the default is what="mu"

evaluate whether to evaluate the call or not (the default is TRUE)

R data file: aids in package gamlss.data of dimensions 45× 3

variables

y : the number of quarterly aids cases in England and Wales

x : time in quarters from January 1983 [item[qrt] : a factor for the quarterly seasonal
effect

purpose: to demonstrate the fitting of a simple regression type model in GAMLSS

Here we use the aids data which consist of the quarterly reported AIDS cases in the U.K. from
January 1983 to March 1994 obtained from the Public Health Laboratory Service, Commu-
nicable Disease Surveillance Centre, London. We start by using the Poisson family to model
the number of reported cases (the response variable), against time (a continuous explanatory
variable) which we smooth with a cubic spline smoother using 5 effective degrees of freedom
and against qrt a factor representing quarterly seasonal effect. We then (i) change the family
to negative binomial (type I) (ii) update the smoothing parameter with df=8 (iii) remove the
quarterly seasonal effect (iv) and finally fit a normal family model with response the log(y).

data(aids)

fit a poisson model

h.po <-gamlss(y~pb(x)+qrt, family=PO, data=aids)

GAMLSS-RS iteration 1: Global Deviance = 387.1462

. . .

GAMLSS-RS iteration 3: Global Deviance = 387.1547

update with a negative binomial

h.nb <-update(h.po, family=NBI)

94 CHAPTER 4. THE GAMLSS() FUNCTION

GAMLSS-RS iteration 1: Global Deviance = 373.1785

. . .

GAMLSS-RS iteration 5: Global Deviance = 366.9258

update the smoothing using cs()

h.nb1 <-update(h.nb,~cs(x,8)+qrt)

GAMLSS-RS iteration 1: Global Deviance = 362.9323

. . .

GAMLSS-RS iteration 5: Global Deviance = 359.2348

remove qrt

h.nb2 <-update(h.nb1,~.-qrt)

GAMLSS-RS iteration 1: Global Deviance = 379.5915

. . .

GAMLSS-RS iteration 4: Global Deviance = 379.5626

put back qrt take log of y and fit a normal distribution

h.nb3 <-update(h.nb1,log(.)~.+qrt, family=NO)

GAMLSS-RS iteration 1: Global Deviance = -42.3446

GAMLSS-RS iteration 2: Global Deviance = -42.3446

verify that it is the same

h.no<-gamlss(log(y)~cs(x,8)+qrt,data=aids)

GAMLSS-RS iteration 1: Global Deviance = -42.3446

GAMLSS-RS iteration 2: Global Deviance = -42.3446

Finally we give an example taken from see Venables and Ripley [2002] Section 6.1, to demon-
strate how update can be used to fit two different lines in a analysis of covariance situation.
Each model fits a separate regression of gas consumption on temperature for the two different
levels of the factor Insul. The data are gas consumtion, Gas, the average outside temperature
in degrees Celsius, Temp, and Insul a factor, before or after insulation.

library(MASS)

data(whiteside)

gasB <- gamlss(Gas~Temp, data=subset(whiteside, Insul=="Before"))

GAMLSS-RS iteration 1: Global Deviance = 5.7566

GAMLSS-RS iteration 2: Global Deviance = 5.7566

gasA <- update(gasB,data=subset(whiteside, Insul=="After"))

GAMLSS-RS iteration 1: Global Deviance = 20.9026

GAMLSS-RS iteration 2: Global Deviance = 20.9026

Figure 4.1 shows the gas consumption against the average outside temperature in degrees Celsius
for before or after insulation.

Figure 4.1 with(whiteside, plot(Temp,Gas,pch=21,bg=c("red","green3")[unclass(Insul)]))

with(whiteside, lines(Temp[Insul=="Before"],fitted(gasB)))

with(whiteside, lines(Temp[Insul=="After"],fitted(gasA), col="blue"))

4.3. THE REFIT AND UPDATE FUNCTIONS 95

0 2 4 6 8 10

2
3

4
5

6
7

Temp

G
as

R code on

page ??

Figure 4.1: A linear interaction model for gas consumption against the average outside temper-
ature in degrees Celsius for before or after insulation

96 CHAPTER 4. THE GAMLSS() FUNCTION

Chapter 5

Methods for fitted gamlss objects

This chapter:

• provides information how to deal with a gamlss fitted object

• shows how several methods applied to gamlss objects are working including
predict() and summary()

• provides information for the use of the inferential functions prof.dev() and
prof.term()

5.1 Introduction

This Chapter describes methods, (that is, R functions) which can be used to display information
from a fitted gamlss object. The gamlss() function creates S3 class objects. Note that not all
methods for a gamlss object are described here. For example, methods associated with additive
terms, diagnostics and selection of variables are described in Chapter 8, 12 and ?? respectively.
The following methods are considered in this chapter.

deviance() for extracting the global deviance

edf(), edfAll() for extracting the effective degrees of freedom

fitted(), fv() for extracting the fitted values

formula() for extracting a model formula

gen.likelihood() for generating the likelihood function of the fitted model (used by vcoc())

get.K() for extracting the K matrix (meat) for sandwich standard errors

getSmo() for extracting information from a fitted smoothing term

logLik() for extracting the log likelihood

97

98 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

lp() for extracting the linear predictor for a distribution parameter (see also lpred)

lpred() for extracting the fitted values, linear predictor or specified terms (with standard
errors) for a distribution parameter.

model.frame() for extracting the model frame of a specified distribution parameter

model.matrix() to extract the design matrix of a specified distribution parameter

predict(), predictAll() to predict from new data individual distribution parameter values
(see also lpred above)

print() : for printing a gamlss object

residuals() to extract the normalised (randomised) quantile residuals from a fitted gamlss

model object, see Chapter 12.

Rsq() for getting the generalised R-squared

rvcov() for extracting the robust (sandwich) variance-covariance matrix of the beta estimates
(for all distribution parameter models). It can be done also with vcov().

summary() to summarize the fit in a gamlss object

terms() for extracting terms from a gamlss object

vcov() to extract the variance-covariance matrix of the beta estimates (for all distribution
parameter models).

5.2 The gamlss object

The function gamlss() returns a gamlss S3 object, that is, a GAMLSS fitted model which may
have converged or not depending whether the maximum number of iterations given by c.cyc

has been reached or not.

The generic functions print and summary can be used to print and summarise the object as
was indicated in Chapter 2. The model

h<-gamlss(y~pb(x), sigma.fo=~pb(x), family=TF, data=abdom)

GAMLSS-RS iteration 1: Global Deviance = 4780.234

. . .

GAMLSS-RS iteration 4: Global Deviance = 4777.52

is used here to demonstrate the composition of a gamlss object. By calling the names function
we are able to check on the components of the object h.

names(h)

[1] "family" "parameters" "call"

[4] "y" "control" "weights"

[7] "G.deviance" "N" "rqres"

[10] "iter" "type" "method"

[13] "contrasts" "converged" "residuals"

[16] "noObs" "mu.fv" "mu.lp"

5.2. THE GAMLSS OBJECT 99

[19] "mu.wv" "mu.wt" "mu.link"

[22] "mu.terms" "mu.x" "mu.qr"

[25] "mu.coefficients" "mu.offset" "mu.xlevels"

[28] "mu.formula" "mu.df" "mu.nl.df"

[31] "mu.s" "mu.var" "mu.coefSmo"

[34] "mu.lambda" "mu.pen" "df.fit"

[37] "pen" "df.residual" "sigma.fv"

[40] "sigma.lp" "sigma.wv" "sigma.wt"

[43] "sigma.link" "sigma.terms" "sigma.x"

[46] "sigma.qr" "sigma.coefficients" "sigma.offset"

[49] "sigma.xlevels" "sigma.formula" "sigma.df"

[52] "sigma.nl.df" "sigma.s" "sigma.var"

[55] "sigma.coefSmo" "sigma.lambda" "sigma.pen"

[58] "nu.fv" "nu.lp" "nu.wv"

[61] "nu.wt" "nu.link" "nu.terms"

[64] "nu.x" "nu.qr" "nu.coefficients"

[67] "nu.offset" "nu.formula" "nu.df"

[70] "nu.nl.df" "nu.pen" "P.deviance"

[73] "aic" "sbc"

More generally any gamlss object has the following components

family The distribution family of the gamlss object (see Chapter ??) e.g. for the
object h we have

h$family

[1] "TF" "t Family"

parameters The name of the fitted parameters as a character list.

h$parameters

[1] "mu" "sigma" "nu"

call The call of the gamlss() function e.g.

h$call

gamlss(formula = y ~ pb(x), sigma.formula = ~pb(x), family = TF,

data = abdom)

y The response variable as a vector (or matrix), accessed by h$y

control The gamlss() fit control settings, accessed by h$control

weights The vector of prior weights, accessed by h$weights

G.deviance The value of global deviance which can be extracted by h$G.deviance or by
using the generic function deviance() or deviance(gamlss.object, "G")

e.g.

deviance(h)

[1] 4777.519

100 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

N The length of the response variable (or the number of observations in the fit
unless weights are used) e.g.

h$N

[1] 610

noObs The actual number of observations if weights are used (e.g.. to weight out
observations) in the fit equal to the sum of the weights. If no weights are
used is equal to h$N.

h$noObs

[1] 610

rqres A function to calculate the (normalized randomized quantile) residuals of
the object, accessed by h$rqres. [The residuals are randomized for discrete
distributions only, see Dunn and Smyth [1996]]

iter The number of external iterations in the fitting process (by an external iter-
ation we mean the refitting of all the distribution parameters µ, σ, ν and τ),
i.e.

h$iter

[1] 4

type The type of the distribution of the response variable (continuous, discrete or
mixed) i.e.

h$type

[1] "Continuous"

method Which algorithm is used for the fit, RS(), CG() or mixed() i.e.

h$method

RS()

contrasts Which contrasts were used in the fit, NULL if they have not been set in
gamlss() function

converged Whether the model has converged i.e.

h$converged

[1] TRUE

residuals The (normalized randomized quantile) residuals of the model which can be
extracted by h$residuals or by using the generic function residuals(),
(also abbreviated as resid()). [These residuals are randomized for discrete
distributions only. See Dunn and Smyth (1996) or Chapter 12.]

df.fit The total degrees of freedom use by the model, e.g. in the model h there are 3
distribution parameters µ and σ and ν. The total degrees of freedom for the
fit is the summation of all the degrees of freedom used to fit the individual

5.2. THE GAMLSS OBJECT 101

parameters. Those degrees of freedom are stored in h$mu.df, h$sigma.df
and h$nu.df respectively.

h$df.fit

[1] 8.789107

h$mu.df+h$sigma.df+h$nu.df

[1] 8.789107

df.residual The residual degrees of freedom left after the model is fitted

h$df.residual

[1] 601.2109

pen The sum of the quadratic penalties for all the parameters (if appropriate
additive terms are fitted)

h$pen

[1] 3.839226

P.deviance The penalized deviance, Global deviance + penalties, which can be extracted
by h$P.deviance or by using the generic function deviance(gamlss.object,"P")

e.g.

h$P.deviance

[1] 4781.359

deviance(h,"P")

[1] 4781.359

aic The Akaike information criterion, which can be also obtained using the func-
tions AIC() or GAIC().

h$aic

[1] 4795.098

AIC(h)

[1] 4795.098

GAIC(h)

[1] 4795.098

sbc The Bayesian information criterion (BIC) or the Schwartz Bayesian criterion
(SBC), which can be also extracted using AIC() or GAIC().

h$sbc

[1] 4833.888

AIC(h, k=log(length(abdom$y)))

[1] 4833.888

102 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

GAIC(h, k=log(length(abdom$y)))

[1] 4833.888

The rest of the components refer to the parameters of the model (if they exist). The name par

below should be replaced with the appropriate parameter, which can be any of the mu, sigma,
nu or tau).

par.fv The fitted values of the appropriate parameter accessed by e.g. h$mu.fv. The fitted
values can also be extracted using the generic function fitted() e.g. fitted(h,"mu")

extracts the mu fitted values while fitted(h,"sigma") extracts the sigma fitted values.

head(fitted(h)) # equivalent to fitted(h,"mu")

[1] 60.81081 60.81081 60.81081 62.58732 66.13772 66.13772

tail(fitted(h, "sigma"))

[1] 20.46207 20.46207 20.46207 20.46207 20.58861 20.70743

par.lp The (linear) predictor of the appropriate parameter, accessed by e.g.

head(h$mu.lp)

[1] 60.81081 60.81081 60.81081 62.58732 66.13772 66.13772

par.wv The working variable of the appropriate parameter.

par.wt The working weights of the appropriate parameter.

par.link The link function for appropriate parameter i.e.:

h$sigma.link

[1] "log"

par.terms The terms for the appropriate parameter model.

par.x The design matrix for the appropriate parameter.

par.qr The QR decomposition of the appropriate parameter model.

par.coefficients The linear coefficients of the the appropriate parameter model which can
also be extracted using the generic function coef().

coef(h, "mu")

(Intercept) pb(x)

-55.61858 10.34939

par.formula The formula for the appropriate parameter model.

h$mu.formula

y ~ pb(x)

par.df The appropriate parameter degrees of freedom (see obove).

5.3. THE PREDICT(), PREDICTALL() AND LPRED() FUNCTIONS 103

h$mu.df

[1] 5.787446

parameter.ml.df The non linear (e.g. smoothing) degrees of freedom for the appropriate
parameter. Note that this does not include the fitted constant and linear part.

h$mu.nl.df

[1] 3.787446

par.pen The sum of the quadratic penalties for the specific parameter (if appropriate additive
terms are fitted).

par.xlevels (only where relevant) a record of the levels of the factors used in fitting of this
parameter.

5.3 The predict(), predictAll() and lpred() functions

The function predict.gamlss() is the GAMLSS specific method which produces predictors for
the current or a new data set for a specified parameter of a gamlss object. The predict.gamlss()
can be used to extract (linear) predictors, (type="link"), fitted values, (type="response") and
contributions of terms in the (linear) predictor, (type="terms"), for a specific parameter in the
model at the current or new values of the x-variables in a similar way that the predict.lm()

and predict.glm() functions can be used for lm and glm objects. Problems associated with
the above functions, see Venables and Ripley [2002] Section 6.4, are avoided here since the
predict() function for gamlss is based on the safe predict.gam() S-PLUS function of Trevor
Hastie, see Chambers and Hastie [1992]. Note that the main difference between the gamlss
predict() and the usual predictive functions in R is the fact that the gamlss predict()

function is distribution parameter specific, that is, predictions are for one of the distribution
parameters mu, sigma, nu and tau.

Linear predictors, fitted values and specific terms for a specific distribution parameter in the
model at the current data values of the explanatory variables can be also extracted using the
function lpred() (which in fact is called from predict() if the newdata argument is NULL,
see below).

The gamlss predict() function is defined as

predict(object, what = c("mu", "sigma", "nu", "tau"),

parameter= NULL,

newdata = NULL, type = c("link", "response", "terms"),

terms = NULL, se.fit = FALSE, data = NULL, ...)

where

object a gamlss fitted object

what or parameter

what parameter of the distribution is required, mu, sigma, nu or tau, the
default is what="mu"

104 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

newdata a data frame containing new values for the explanatory variables used in the
model

type The default value is type="link" gets the (linear) predictor for the specified
distribution parameter. type="response" gets the fitted values for the pa-
rameter and finally type="terms" gets the contribution of fitted terms for
the specific parameter.

terms if type="terms" is defined then this option selects the specified term from
the formula of the parameter at hand. By default all terms are selected.

se.fit if TRUE the approximate standard errors of the appropriate type are ex-
tracted. Note that standard errors are not given for new data sets, i.e. when
newdata is defined.

data the data frame used in the original fit if is not defined in the call

... for extra arguments

The lpred function of gamlss has identical arguments to the predict.gamlss() function apart
from the newdata argument which does not exist in lpred. The functions fitted() and fv()

are equivalent to using lpred() or predict() with the argument type="response". The
function lp() is equivalent of using lpred() or predict() with the argument type="link".
The following code demonstrates some of the points.

data(aids)

fitting a negative binomial type I distribution

aids.1<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #

GAMLSS-RS iteration 1: Global Deviance = 383.4541

. . .

GAMLSS-RS iteration 4: Global Deviance = 381.7145

head(predict(aids.1))

1 2 3 4 5 6

1.322524 1.490931 1.996051 2.140244 2.540856 2.643345

identical(predict(aids.1),predict(aids.1, parameter="mu"))

[1] TRUE

identical(predict(aids.1),predict(aids.1, parameter="mu", type="link"))

[1] TRUE

identical(predict(aids.1),lpred(aids.1))

[1] TRUE

identical(predict(aids.1),lpred(aids.1, parameter="mu"))

[1] TRUE

identical(predict(aids.1),lpred(aids.1, parameter="mu", type="link"))

[1] TRUE

5.3. THE PREDICT(), PREDICTALL() AND LPRED() FUNCTIONS 105

identical(predict(aids.1),lp(aids.1))

[1] TRUE

identical(predict(aids.1),lp(aids.1,parameter="mu"))

[1] TRUE

identical(predict(aids.1),lp(aids.1,parameter="mu"))

[1] TRUE

head(predict(aids.1, type="response"))

1 2 3 4 5 6

3.752880 4.441230 7.359933 8.501513 12.690525 14.060153

identical(predict(aids.1, parameter="mu", type="response"),

lpred(aids.1, parameter="mu", type="response"))

[1] TRUE

identical(predict(aids.1, type="response"),fitted(aids.1, parameter="mu"))

[1] TRUE

identical(predict(aids.1, type="response"),fv(aids.1, parameter="mu"))

[1] TRUE

identical(predict(aids.1, type="response"),fv(aids.1, parameter="mu"))

[1] TRUE

se.fit=TRUE can be used to obtain approximate standard errors for both predict() or lpred.
The result would be a list containing two objects, fit and se.fit.

paids.1 <- predict(aids.1, what="mu", se.fit=TRUE ,type="response")

names(paids.1)

[1] "fit" "se.fit"

head(paids.1$se.fit)

1 2 3 4 5 6

0.6739890 0.6939025 1.0019629 1.0183976 1.3176894 1.2834913

Important: Standard errors should be used with caution. If the (linear) predictor contains
only linear (no smoothing) terms then the standard errors of the (linear) predictor (using
the option type="link") are correctly calculated. Standard errors for fitted distribution
parameters if the link function is not the identity function are calculated using the delta-
method which could be unreliable, see Chambers and Hastie [1992] p 240. If additive
(smoothing) terms are included in the model of a specific distribution parameter then the
unreliability increases since the the standard errors of the additive (smoothing) terms are
crudely approximated using the method described in Chambers and Hastie [1992] Section
7.4.4.

106 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

The option type="terms" creates a matrix containing the contribution to the (linear) predic-
tor from each of the terms in the model formula. If in addition the argument se.fit=TRUE is
set then a list of two objects is created, each containing a matrix. The first matrix contains
the contribution of the terms to the (linear) predictor and the second their approximate stan-
dard errors. The number of columns in the matrices are the number of terms in the model
formula. The argument terms can be used in combination with type="terms" to select the
contribution to the (linear) predictor of a specific term in the model. A typical use of the
option type="terms" is for plotting the additive contribution of a specific term in modelling a
distribution parameter as in the function term.plot().

paids.2 <- predict(aids.1, what="mu", type="terms")

colnames(paids.2)

[1] "poly(x, 3)" "qrt"

now with se

paids.2 <- predict(aids.1, what="mu", type="terms", se.fit=TRUE)

names(paids.2)

[1] "fit" "se.fit"

colnames(paids.2$fit)

[1] "poly(x, 3)" "qrt"

colnames(paids.2$se.fit)

[1] "poly(x, 3)" "qrt"

select only "qrt" to save

paids.2 <- predict(aids.1, what="mu", type="terms", se.fit=TRUE, terms="qrt")

colnames(paids.2$fit)

[1] "qrt"

The most common use of the function predict() is to obtain fitted values for a specific pa-
rameter at new values of the explanatory variables (predictors) for predictive purposes or for
validation. In order to do that the argument newdata should be set. The predict() function
expects that the object given in newdata is a data frame containing the right x-variables used
in the model. This could cause problems if a transformed variables is used in the fitting of the
original model (see below).

The predict() function for gamlss is based on the predict.gam() S-PLUS function of Trevor
Hastie which insures that the prediction is reliable even if expressions defining the terms in the
model formula depend on the entire data vector for evaluation, are used, see Chambers and
Hastie [1992] Section 7.3.3.

We reiterate here the steps used in the execution of predict() taken from Chambers and Hastie
[1992] Section 7.3.3. Let Dold the original data frame, with original design matrix Xold, and
Dnew the new data frame (the new x-values where the fitted model has to be evaluated) and
assume that both data frames contain the right columns in the sense that the x-variables used
in the model formula (for the specific distribution parameter) are present in both.

1. Construct a new data frame using the combined (old and new) data, with columns the

5.3. THE PREDICT(), PREDICTALL() AND LPRED() FUNCTIONS 107

matching variables included in both data frames, i.e. Dn =

[
Dold

Dnew

]
.

2. Construct the model frame and the corresponding new design matrix, Xn =

[
Xold2

Xnew

]
,

using the combined data frame, Dn =

[
Dold

Dnew

]
. Note that for certain models (when the

function use to construct the design matrix is data dependent) the sub matrix Xold2 of
the new design matrix Xn, corresponding to the original observations in Dold, may be
different from the original design matrix Xold. This for example can happen if the cubic
spline base, bs() is used in the model.

3. The parametric part of the model for the specified parameter is refitted using only Xold2 .
If the difference of the old and the new fit is large, a warning is given.

4. The coefficients from the fit obtain using only Xold2 are used to obtain the new predictions.

5. If the gamlss object contains additive (smoothing) components an additional step is taken
to evaluate the appropriate function at the the new data values. (This requires that the
additive function has a predict option)

Warning: The random(), additive functions does not have a predict option im-
plemented. Predictions for new levels of the factor in random() can be obtain by
expanding the data to include the new levels and setting the prior weights for the
new observations to 1.

Here we use the aids data to fit a negative binomial model using a polynomial, poly(), a
cubic spline base, bs(), and a smoothing P-spline, pb(), function to model time (x). The
sigma parameter is a constant is the model. predict() is used first, to find values for mu

(type="response") at new data values and finally for sigma. Note that the predict() function
gives a warning when bs is used in the mu model.

data(aids)

use with poly

mod1<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #

GAMLSS-RS iteration 1: Global Deviance = 383.4541

. . .

GAMLSS-RS iteration 4: Global Deviance = 381.7145

use with bs

mod2<-gamlss(y~bs(x,5)+qrt, family=NBI, data=aids) #

use with pb

mod3<-gamlss(y~pb(x)+qrt, family=NBI, data=aids)

GAMLSS-RS iteration 1: Global Deviance = 373.1785

. . .

GAMLSS-RS iteration 5: Global Deviance = 366.9258

create a new data frame

newaids<-data.frame(x=c(45,46,47), qrt=c(2,3,4))

predict "mu" at new values

108 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

(ap1 <- predict(mod1, what="mu", newdata=newaids, type = "response"))

Warning in predict.gamlss(mod1, what = "mu", newdata = newaids, type = "response"):

There is a discrepancy between the original and the re-fit

used to achieve ’safe’ predictions

##

[1] 410.9393 521.6606 471.6455

(ap2 <- predict(mod2, what="mu", newdata=newaids, type = "response"))

Warning in predict.gamlss(mod2, what = "mu", newdata = newaids, type = "response"):

There is a discrepancy between the original and the re-fit

used to achieve ’safe’ predictions

##

[1] 389.8785 475.1377 408.4420

(ap3 <- predict(mod3, what="mu", newdata=newaids, type = "response"))

new prediction

[1] 407.0380 513.1502 465.0690

get the term contributions

(ap4 <- predict(mod3, what="mu", newdata=newaids, type = "terms"))

new prediction

pb(x) qrt

1 1.352781 -0.09869534

2 1.398161 0.08758643

3 1.445596 -0.05823180

attr(,"constant")

[1] 4.754821

(ap4 <- predict(mod3, what="mu", newdata=newaids, type = "terms", se.fit=TRUE))

Warning in predict.gamlss(mod3, what = "mu", newdata = newaids, type = "terms",

: se.fit = TRUE is not supported for new data values at the moment

new prediction

pb(x) qrt

1 1.352781 -0.09869534

2 1.398161 0.08758643

3 1.445596 -0.05823180

attr(,"constant")

[1] 4.754821

predict "sigma"

(ap5 <- predict(mod3, what="sigma", newdata=newaids, type="response"))

[1] 0.005131356 0.005131356 0.005131356

Note that the se.fit argument is not working with new data.

The following example is taken from Venables and Ripley [2002] (who use it to demonstrate
that the predict.lm function is not working properly for lm models). Here we use gamlss()

5.3. THE PREDICT(), PREDICTALL() AND LPRED() FUNCTIONS 109

and the safe predict.gamlss() function giving consistent correct results.

library(MASS)

data(wtloss)

squaring Days

quad1 <-gamlss(Weight~Days+I(Days^2),data=wtloss)

GAMLSS-RS iteration 1: Global Deviance = 137.8867

GAMLSS-RS iteration 2: Global Deviance = 137.8867

using poly

quad2 <-gamlss(Weight~Days+poly(Days,2),data=wtloss)

GAMLSS-RS iteration 1: Global Deviance = 137.8867

GAMLSS-RS iteration 2: Global Deviance = 137.8867

new data

new.x <-data.frame(Days=seq(250,300,10), row.names=seq(250,300,10))

using predict

predict(quad1, newdata=new.x)

[1] 112.5061 111.4747 110.5819 109.8277 109.2121 108.7351

predict(quad2, newdata=new.x)

Warning in predict.gamlss(quad2, newdata = new.x): There is a discrepancy between

the original and the re-fit

used to achieve ’safe’ predictions

##

[1] 112.5061 111.4747 110.5819 109.8277 109.2121 108.7351

If a transformed variable is used in the fitting of the current data, some care has to taken
to insure that the right variables exist in the new data as well. For example, let us as-
sume that a transformation of age is needed in the model i.e. nage<-age^.5. This could
be fitted as mod<-gamlss(y ~ cs(age^.5),data=mydata) or by transforming the age first,
nage<-age^.5, and then fitting mod<-gamlss(y~cs(nage), data=mydata). The later fit is
more efficient particularly for a data set with large number of data cases. In the first case,
the code predict(mod,newdata=data.frame(age=c(34,56))) would produce the expected re-
sults. In the second case a new data frame has to be created containing the old data plus any new
transform variable. This data frame has to be declared in the data argument of the predict()

function. The option newdata should contain a data.frame with the transformed variable
names and the transformed variable values for which prediction is required as the following
example demonstrates.

data(abdom)

assume that a transformation x^5 is required

aa<-gamlss(y~pb(x^.5),data=abdom, trace=FALSE)

predict at old values

predict(aa, what="mu")[610]

[1] 371.4253

predict at new data

predict(aa,newdata=data.frame(x=abdom$x[610]))

110 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

new prediction

[1] 371.4253

now transform x first

nx<-abdom$x^.5

aaa<-gamlss(y~pb(nx),data=abdom, trace=FALSE)

create a new data frame

newd<-data.frame(abdom, nx=abdom$x^0.5)

predict at old values

predict(aaa)[610]

[1] 371.4253

predict at new values

predict(aaa,newdata=data.frame(nx=abdom$x[610]^.5), data=newd)

new prediction

[1] 371.4253

5.4 The gen.likelihood() function

We have seen in Chapter ?? that the fitting algorithms for GAMLSS models consists of re-
peatedly calling an iterative weighted least squares algorithm (possible penalised). The whole
process is repeated several times until convergence of the the global deviance. The problem with
such of procedure is that at the end of the algorithm the standard errors provided by each least
squares fitting are not correct because they assume that all the other parameters of the distri-
bution are fixed at their current fitted values. The function gen.likelihood() is created to try
to overcome this deficiency. Given a fitted gamlss model the function gen.likelihood() gener-
ates the likelihood function of the model so it can be used to create the Hessian matrix required
for the construction of the standard errors of the parameters. The function gen.likelihood()

is used by the vcov() function to obtain the right Hessian matrix after a model has fitted. Here
is an example on how the function gen.likelihood() is working:

data(aids)

m100 <- gamlss(y~x+qrt, data=aids, family=NBI, trace=FALSE)

get the value of log Likelihood

#logLik(m100)

generate the log likelihood function

logL<-gen.likelihood(m100)

evaluate it at the final fitted values

logL()

[1] 246.3187

the following code is equivalent

logL(c(coef(m100), coef(m100, "sigma")))

[1] 246.3187

now getting the Hessian matrix using optimHess()

optimHess(c(coef(m100), coef(m100, "sigma")), logL)

5.4. THE GEN.LIKELIHOOD() FUNCTION 111

(Intercept) x qrt2 qrt3 qrt4

(Intercept) 212.050893 4971.82091 51.5380919 52.0715125 51.791336

x 4971.820911 140205.85157 1198.0983500 1187.7321846 1237.550255

qrt2 51.538092 1198.09835 51.5380919 0.0000000 0.000000

qrt3 52.071512 1187.73218 0.0000000 52.0715125 0.000000

qrt4 51.791336 1237.55026 0.0000000 0.0000000 51.791336

(Intercept) 1.826129 -15.03447 0.6425665 0.2461583 0.231789

(Intercept)

(Intercept) 1.8261293

x -15.0344720

qrt2 0.6425665

qrt3 0.2461583

qrt4 0.2317890

(Intercept) 18.1635333

When smoothing terms are fitted the function gen.likelihood() considers them as fixed at
their fitted value so the Hessian in this case does not take into account the variability for the
fitting of the smoothers.

m200 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI, trace=FALSE)

create the log Likelihood

logL2<-gen.likelihood(m200)

evaluate it at the final fitted values

logL2(c(coef(m200), coef(m200, "sigma")))

[1] 183.4629

now getting the Hessian matrix

optimHess(c(coef(m200), coef(m200, "sigma")), logL2)

(Intercept) pb(x) qrt2 qrt3

(Intercept) 3.741335e+03 1.111319e+05 848.198810 947.019761

pb(x) 1.111319e+05 3.695284e+06 24596.919051 27506.266553

qrt2 8.481988e+02 2.459692e+04 848.198810 0.000000

qrt3 9.470198e+02 2.750627e+04 0.000000 947.019761

qrt4 9.279800e+02 2.811189e+04 0.000000 0.000000

(Intercept) 1.183395e+00 -3.405392e+00 3.595562 -7.024548

qrt4 (Intercept)

(Intercept) 927.980000 1.183395

pb(x) 28111.889104 -3.405392

qrt2 0.000000 3.595562

qrt3 0.000000 -7.024548

qrt4 927.980000 2.294323

(Intercept) 2.294323 5.416412

The entry under the pb(x) column refer to the linear part of the smoother and therefore should
not be interpreted on their own but only in combination with the fitted smoother.

112 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

5.5 The vcov() and rvcov() functions

The generic function vcov() within the package gamlss uses the function gen.likelihood()

to construct numerically the Hessian matrix. Standard errors for the estimated coefficients
are obtained from the observed information matrix (that is, the inverse of the Hessian). The
standard errors obtained this way are more reliable, that the ones obtained during the fitting
GAMLSS algorithms since they take into account the information about the interrelationship
between the distribution parameters, i.e. µ, σ, ν and τ . The function rvcov() creates the
robust or sandwich standard errors. Here are the arguments of the generic function vcov().

This function is not visible

vcov.gamlss(object, type = c("vcov", "cor", "se", "coef", "all"),

robust = FALSE, hessian.fun = c("R", "PB"), ...)

where

object a gamlss fitted object,

type what is required i) variance-covariance matrix, "vcov", ii) the correlation
matrix, "cor", iii) the standard errors, "se", iv) the fitted coefficients, "coef,
v) all the above as a list, "all".

robust whether the normal (FALSE) or robust or sandwich (TRUE) standard errors
are required

hessian.fun how to obtain numerically the Hessian i) using optimHess(), option "R" ii)
using a function by Pinheiro and Bates taken from package nlme, option "PB".

... for extra arguments

As an example we use the model fitted in the previous section:

the correlation betwwen the fitted parameters

vcov(m100, type="cor")

(Intercept) x qrt2 qrt3 qrt4

(Intercept) 1.00000000 -0.760891874 -0.462032219 -0.47515350 -0.446719862

x -0.76089187 1.000000000 0.018879191 0.03463720 -0.002258329

qrt2 -0.46203222 0.018879191 1.000000000 0.47791869 0.476834481

qrt3 -0.47515350 0.034637199 0.477918686 1.00000000 0.477952149

qrt4 -0.44671986 -0.002258329 0.476834481 0.47795215 1.000000000

(Intercept) -0.08157924 0.088524725 0.001656598 0.01247367 0.009506204

(Intercept)

(Intercept) -0.081579245

x 0.088524725

qrt2 0.001656598

qrt3 0.012473668

qrt4 0.009506204

(Intercept) 1.000000000

the standard errors

vcov(m100, type="se")

5.5. THE VCOV() AND RVCOV() FUNCTIONS 113

(Intercept) x qrt2 qrt3 qrt4 (Intercept)

0.204805619 0.006535937 0.192532079 0.192104635 0.192260793 0.235686941

the sandwich standard errors

vcov(m100, type="se", robust=TRUE)

(Intercept) x qrt2 qrt3 qrt4 (Intercept)

0.291009501 0.008784397 0.212083065 0.210080980 0.198288097 0.250504613

The function rvcov() has the same arguments as the function vcov.gamlss() apart from the
argument robust. It provides the sandwich or robust standard errors. Robust standard errors,
introduced by Huber [1967] and White [1980] are, in general, more reliable than the usual
standard errors when the variance model is suspected not to be correct (assuming the mean
model is correct). The sandwich standard errors are usually (but not always) bigger than the
usual ones. Here is an example of simulated data from a gamma distribution with sigma=2,
where an incorrect exponential distribution model is fitted instead. Therefore we would expect
the robust standard errors to be greater that the standard ones and more reliable.

#set seed

set.seed(4321)

gererate from a gamma distribution

Y <- rGA(200, mu=1, sigma=2)

fitting the wrong model i.e. sigma=1

r1 <- gamlss(Y~1, family=EXP)

GAMLSS-RS iteration 1: Global Deviance = 391.2369

GAMLSS-RS iteration 2: Global Deviance = 391.2369

the conventional se is too precise

vcov(r1, type="se")

(Intercept)

0.07071067

the sandwich se is wider

rvcov(r1, type="se")

(Intercept)

0.1182156

fitting the correct model

r2 <- gamlss(Y~1, family=GA)

GAMLSS-RS iteration 1: Global Deviance = 19.5225

GAMLSS-RS iteration 2: Global Deviance = 19.5225

standard se's

vcov(r2, type="se")

(Intercept) (Intercept)

0.13170785 0.03935216

robust se's

rvcov(r2, type="se")

114 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

(Intercept) (Intercept)

0.11851375 0.03866188

similar stadard errors

also obtained using

vcov(r2, type="se", robust=TRUE)

(Intercept) (Intercept)

0.11851375 0.03866188

5.6 The summary() and confint() functions

More detailed information about the fitted GAMLSS model than the method print() , which
provides only limited information, is obtained using the generic function summary.gamlss().
The arguments of the function are as follows:

summary(object, type = c("vcov", "qr"),

robust=FALSE, save = FALSE,

hessian.fun = c("R", "PB"), ...)

where

object a gamlss fitted object,

type the default value "vcov" uses the vcov() method for gamlss to get the
variance-covariance matrix of the estimated beta coefficients. The alterna-
tive "qr" produces standard errors from the individual least square fits but
it is not reliable since it does not take into the account the inter-correlation
between the distributional parameters µ, σ, ν and τ .

robust whether the robust (or sandwich) standard errors are required in which case
the function rvcov() is called.

save whether to save the environment of the function in order to have access to its
values

hessian.fun how to obtain numerically the Hessian. Using the optimHess() function,
option "R" or using the Pinheiro and Bates function taken from package nlme,
option "PB"

... for extra arguments

In the following example the environment of the function summary() is saved so say the p-values
can be accessed.

sm100 <-summary(m100, robust=TRUE, save=TRUE)

Family: c("NBI", "Negative Binomial type I")

##

Call:

gamlss(formula = y ~ x + qrt, family = NBI, data = aids, trace = FALSE)

##

5.6. THE SUMMARY() AND CONFINT() FUNCTIONS 115

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.885458 0.291010 9.915 3.25e-12 ***

x 0.087433 0.008784 9.953 2.92e-12 ***

qrt2 -0.120383 0.212083 -0.568 0.574

qrt3 0.111753 0.210081 0.532 0.598

qrt4 -0.075539 0.198288 -0.381 0.705

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.6032 0.2505 -6.4 1.44e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 45

Degrees of Freedom for the fit: 6

Residual Deg. of Freedom: 39

at cycle: 3

##

Global Deviance: 492.6373

AIC: 504.6373

SBC: 515.4773

names(sm100)

[1] "ps" "co" "p1" "pm" "est.disp"

[6] "coef.table" "pvalue" "tvalue" "se" "coef"

[11] "ifWarning" "covmat" "object" "type" "robust"

[16] "save" "hessian.fun" "digits"

sm100$pvalue

(Intercept) x qrt2 qrt3 qrt4

3.253778e-12 2.921666e-12 5.735457e-01 5.977766e-01 7.053023e-01

(Intercept)

1.443488e-07

For testing the significance of individual terms given all the rest of the terms are in the model
it may be better to use the drop1() function instead of relying on p-values from summary().
The drop1() function provides the generalised likelihood ratio test (GLRT) for dropping each

116 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

term which is much more reliable than the Wald test based on the standard errors given by the
p-value above. The GLRT has an asymptotic Chi-squared distribution with degrees of freedom
equal to the number of parameters in the term dropped. This only applies if the model does not
include smoothing term(s). In the present of smoothing terms in the model, drop1() could be
used as rough guide to the significance of each of the parametric terms, provided the smoothing
degrees of freedom are fixed at theirs values chosen from the model prior to drop1(). Note
that for complicated models with large data drop1() can take few minutes. Here we first apply
drop1() to a fully parametric model m100. The resulting test p-values 0.661 for the parametric
term qrt should be reliable assuming thr parametric submodel (x) was correct.

drop1(m100)

Single term deletions for

mu

##

Model:

y ~ x + qrt

Df AIC LRT Pr(Chi)

<none> 504.64

x 1 576.91 74.271 <2e-16 ***

qrt 3 500.23 1.593 0.661

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here in model m300 we fix the smoothing degrees of freedom (from model m200 which includes
a smoothing term) and then apply drop1(m300).

m300 <- gamlss(y~pb(x, df=m200$mu.nl.df)+qrt, data=aids, family=NBI, trace=FALSE)

drop1(m300)

Single term deletions for

mu

##

Model:

y ~ pb(x, df = m200$mu.nl.df) + qrt

Df AIC LRT Pr(Chi)

<none> 390.10

pb(x, df = m200$mu.nl.df) 6.5889 576.91 199.983 < 2.2e-16 ***

qrt 3.0000 402.49 18.389 0.0003656 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The resulting test p-value is 3.7 × 10−4 for the parametric term qrt. This gives a guide to
testing qrt. The corresponding test not fixing the smoothing degrees of freedom is certainly
not reliable.

The generic function confint() provides (standard error based) confidence intervals for the the
fitted coefficients. It has the following arguments:

confint.gamlss((object, parm, level = 0.95,

what = c("mu", "sigma", "nu", "tau"),

parameter = NULL, robust = FALSE, ...))

5.7. THE PROF.DEV() AND PROF.TERM() FUNCTIONS 117

where

object a gamlss fitted object,

parm which term are to be given confidence intervals, either a vector of numbers or
a vector of names. If missing, all terms are considered.

level the confidence level required.

what or parameter

which distribution parameter to consider.

robust whether the normal (FALSE) or robust or sandwich (TRUE) standard errors
should be used

... for extra arguments

Here is an example using confint():

confint(m100)

2.5 % 97.5 %

(Intercept) 2.48404626 3.2868695

x 0.07462303 0.1002434

qrt2 -0.49773874 0.2569731

qrt3 -0.26476513 0.4882712

qrt4 -0.45236355 0.3012849

confint(m100,1, robust=TRUE)

2.5 % 97.5 %

(Intercept) 2.31509 3.455826

5.7 The prof.dev() and prof.term() functions

There are two function providing profile likelihood intervals for a GAMLSS model.

prof.dev(): which can be used to obtain profile deviance plot for any parameters µ, σ, ν or τ
of the distribution.

prof.term(): which can be used to obtain profile deviance plot for any linear term in a model
for the distribution parameters µ, σ, ν or τ .

5.7.1 prof.dev()

The function prof.dev() obtains a profile deviance plot for any of the distribution parameters
µ, σ, ν or τ of the fitted family and is useful for checking the reliability of models in which
one (or more) of the parameters in the distributions are constant, (and therefore have not been
modelled as functions of explanatory variables). The prof.dev() also provides a 100(1-α)%
profile likelihood confidence interval for the parameter (which is, in general, much more reliable
than a standard error based confidence interval for a parameter) for a specified value of α.

118 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

prof.dev(object, which = NULL, min = NULL, max = NULL,

step = NULL, length = 7, startlastfit = TRUE,

plot = TRUE, perc = 95, ...)

where

object a gamlss fitted object,

which which parameter to get the profile deviance e.g. which=``tau''

min the minimum value for the parameter e.g. min=1

max the maximum value for the parameter e.g. max=20

step how often to evaluate the global deviance (defines the step length of the grid
for the parameter) e.g. step=1

length if step is not set, this gives how many times the function has to be evaluate
for the construction of the profile deviance, the default value is equal 7.

startlastfit whether to start fitting from the last fit or not, default value is startlastfit=TRUE.

plot whether to plot, plot=TRUE or save the results, plot=FALSE

perc what % confidence interval is required

. . . for extra arguments

As an example consider the abdominal circumference model fitted in Section 5.2 where a t
distribution is fitted to to the data with smooth terms for the µ and σ but not for ν which is
fitted as a constant. The ν parameter is the degrees of freedom parameter of the t distribution
and it would be of some interest to find a confidence interval for it. Note that ν = 1 corresponds
to a Cauchy distribution while a large value of ν corresponds closely to a normal distribution.
Usually it takes several attempts to select a suitable range for the parameter in order to produce
a decent graph. As a default (if the argument step is not specified) the profile deviance is
evaluated at only 7 points and a cubic spline approximation of the function is formed. This can
produce a wobbly function. The arguments step or length can be then used to improve the
approximation. Our advice is to start with a sparse grid for the parameter (i.e. few points) and
improve that when you see the resulting plot (aiming to include the full 95% confidence interval
for the parameter within the horizontal axis scale and the horizontal deviance bar representing
the global deviance at the endpoints of the parameter interval to be roughly half way up the
vertical axis scale). Note that the procedure requires fitting the model repeatedly for a sequence
of fixed values of the parameter of interest (ν in this example) so it can be slow.

Here we reproduce our first attempt (shown at the left side of Figure 5.1) and our final attempt
(shown at the right side of Figure 5.1).

pd1<-prof.dev(h,"nu",min=5, max=50)

. . .

The Maximum Likelihood estimator is 13.84947

with a Global Deviance equal to 4777.443

A 95 % Confidence interval is: (7.324271 , 39.75037)

5.7. THE PROF.DEV() AND PROF.TERM() FUNCTIONS 119

Now we increase the evaluation of the function to 20.

pd2<-prof.dev(h,"nu",min=5, max=50, length=20)

. . .

The Maximum Likelihood estimator is 11.55543

with a Global Deviance equal to 4777.53

A 95 % Confidence interval is: (6.171182 , 40.87693)

10 20 30 40 50

47
78

47
80

47
82

47
84

Profile Global Deviance

Grid of the nu parameter

G
lo

ba
l D

ev
ia

nc
es

95 %

10 20 30 40 50

47
78

47
80

47
82

47
84

Profile Global Deviance

Grid of the nu parameter

G
lo

ba
l D

ev
ia

nc
es

95 %

R code on

page 118

R code on

page ??

Figure 5.1: Profile deviance for ν from a t-family fitted model h using abdom data with µ = pb(x)
and log(σ) = pb()/ The left panel has 7 evaluation of the function while the right panel has 20.

Note that the object pd2 has several components saved, among them the profile deviance func-
tion under the name fun. This function can be used for further evaluations of he function as
the following code shows. Beware of not trying to evaluated outside the original range since
this can be very misleading:

names(pd2)

[1] "values" "fun" "min" "max" "max.value" "CI"

[7] "criterion"

pd2$fun(34)

[1] 4780.734

curve(pd2$fun(x), 5, 50)

120 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

10 20 30 40 50

47
78

47
80

47
82

47
84

x

pd
2$

fu
n(

x)

R code on

page 119

Figure 5.2: The profile deviance for ν plotted using curve().

For different confidence intervals change the perc option, e.g. for a 99% use perc=99.

5.7.2 prof.term()

The function prof.term() is similar to the function prof.dev() but it can provide a profile
deviance for any parameter in the model not just for the distribution parameters. That is, while
prof.dev() can be applied to profile a (constant) parameter of the distribution of the response
variable y (i.e. µ, σ, ν or τ), the prof.term() can be applied to any parameter in the predictor
model for µ, σ, ν or τ . In order to show how the prof.term() is working consider the aids

data used in Section 5.4. Let us assume first that we are interested to fit a linear in time term
(x) plus a factor for the the quarterly seasonal effect, qrt, using the negative binomial model
(type I) family. This model is fitted as gamlss(y∼x + qrt, family = NBI, data = aids).

The coefficient for the linear term in time (x) has the value of 0.08743 and a t-value of 13.3773
which indicates that it is highly significant from zero. An approximate 95% confidence interval
for this parameter can be obtained using the function confint():

confint(m100, "x")

2.5 % 97.5 %

x 0.07462303 0.1002434

We shall use now the function prof.term to find hopefully a more accurate profile (deviance)
95% confidence interval for the linear term parameter. Note that this in the model formula
indicates which parameter to profile.

mod<-quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI))

prof.term(mod, min=0.06, max=0.11)

5.7. THE PROF.DEV() AND PROF.TERM() FUNCTIONS 121

GAMLSS-RS iteration 1: Global Deviance = 508.2

GAMLSS-RS iteration 2: Global Deviance = 508.2

GAMLSS-RS iteration 3: Global Deviance = 508.2

GAMLSS-RS iteration 1: Global Deviance = 500.8

. . .

The Maximum Likelihood estimator is 0.08739

with a Global Deviance equal to 492.6

A 95 % Confidence interval is: (0.07458 , 0.1008)

0.06 0.07 0.08 0.09 0.10 0.11

49
5

50
0

50
5

Profile Global Deviance

parameter

G
lo

ba
l D

ev
ia

nc
es

95 %

R code on

page 120

Figure 5.3: The profile deviance for the coefficint of x.

The profile deviance looks quadratic so it is not a surprise that the approximate 95% confidence
interval and the 95% profile interval are almost identical. In general this would not be the
case if the likelihood is not nearly quadratic at the maximum. To obtain a 99% interval use
prof.term(mod, min=0.06, max=0.11, perc=99).

Now we shall used plot.term() to find a break point in the relationship between the response
and one of the explanatory variables. Stasinopoulos and Rigby [1992] have shown that the
AIDS data provide a clear break point between the AIDS cases and time. Here we consider a
linear+linear model for time (x), i.e. x+(x>break)*(x-break) and we are interested to estimate
the break point., Stasinopoulos and Rigby [1992].

aids.1 <- quote(gamlss(y ~ x+I((x>this)*(x-this))+qrt,family=NBI,data=aids))

prof.term(aids.1, min=15, max=23, length=15, criterion="GD")

GAMLSS-RS iteration 1: Global Deviance = 403.8474

GAMLSS-RS iteration 2: Global Deviance = 402.9138

GAMLSS-RS iteration 3: Global Deviance = 402.913

GAMLSS-RS iteration 1: Global Deviance = 396.6076

122 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

. . .

The Maximum Likelihood estimator is 18.33295

with a Global Deviance equal to 377.4614

A 95 % Confidence interval is: (17.19218 , 19.41849)

16 18 20 22

38
0

39
0

40
0

41
0

Profile Global Deviance

parameter

G
lo

ba
l D

ev
ia

nc
es

95 %
R code on

page 121

Figure 5.4: The profile deviance for the break point parameter of x.

The profile plot shown in Figure (5.4) suggests strong support for a break point.

Finally the function prof.term() can also be used as a way of determining a smoothing (hy-
per) parameter in a model by plotting the Generalized Akaike Information Criterion, GAIC(k)
[where penalty k is specified by the penalty argument of prof.term]. Consider the model
gamlss(y ∼ cs(x,df=??) + qrt, data = aids, family = NBI) in which we would like to
determine a reasonable value for the missing degrees of freedom of the cubic spline function
cs()). (Note that, in pb() the smoothing parameter and therefore the degrees of freedom are
estimated automatically using a local maximum likelihood procedure, while here the estimation
of effective degrees of freedom is done globally). Models with different degrees of freedom can
be fitted and their generalized Akaike Information criterion (GAIC) plotted against the degrees
of freedom. This process can be automated using the function prof.term().

mod1<-quote(gamlss(y ~ cs(x,df=this) + qrt, data = aids, family = NBI))

prof.term(mod1, min=1, max=15, step=1, criterion="GAIC", penalty=2.5)

GAMLSS-RS iteration 1: Global Deviance = 419.651

GAMLSS-RS iteration 2: Global Deviance = 423.8293

GAMLSS-RS iteration 3: Global Deviance = 425.0032

GAMLSS-RS iteration 4: Global Deviance = 425.0032

. . .

GAMLSS-RS iteration 3: Global Deviance = 347.9341

5.7. THE PROF.DEV() AND PROF.TERM() FUNCTIONS 123

The Mimimum is 8.240494

with an an GAIC(2.5) = 394.2163

2 4 6 8 10 12 14

40
0

42
0

44
0

Profile GAIC

parameter

G
A

IC
 p

en
=

 2
.5

R code on

page 122

Figure 5.5: Profile GAIC with penalty 2.5 for the degrees of freedom in the model gamlss(y
cs(x,df=this) + qrt, data = aids, family = NBI).

The profile GAIC plot, with penalty= 2.5, shown in Figure 5.5 suggests support for effec-
tive degrees of freedom around 8. Note that GAIC with penalty 2.5 denoted GAIC(2.5) =

−2 log(ˆ̀) + 2.5 ∗ df , where ˆ̀ is the fitted likelihood for a given values of the degrees of freedom
parameter df of the cubic splines smoother. Alternative penalties values could be used e.g..
penalty= 2, 3, 4 or log(n).

Important: Profile deviance intervals should be used with care if random effects are
included in the model for any of the distribution parameters. They correspond to a naive
plug-in profile estimation which in general produces narrower intervals than the marginal
likelihood approach, see Rigby and Stasinopoulos [2005] Section 6.2 and Appendix A.2.
The more accurate profile deviance intervals are obtained from the approximate marginal
likelihoods which are model dependent. At present we do not provide a general function
for calculating these intervals but see comments below.

Finding a confidence interval for a parametric term parameters when the model contains smooth-
ing terms is more difficult. One possible approach which could provide a guide to the confidence
internals is as follows:

i) fit the full model including smoothing terms on which the smoothing parameter or the
effective degrees of freedom could be estimated i.e. pb(x)

124 CHAPTER 5. METHODS FOR FITTED GAMLSS OBJECTS

ii) fix each of the smoothing degrees of freedom to their values from the full model in i)

iii) profile the parametric term parameters in model ii)

Part III

Distributions

125

Chapter 6

The gamlss.family of
distributions

This chapter:

1. describe the different types of distribution within gamlss

2. how to visualise the different distributions

3. how to create a new distribution and

4. about link functions within gamlss

This chapter is essential for understanding the different types of distributions in GAMLSS
and especially the need for more complex distributions.

6.1 Introduction

Within the GAMLSS framework the population probability (density) function of the response
variable Y , f(y|θ), where θ = (µ, σ, ν, τ), is deliberately left general with no explicit distribution
specified. The only restriction that the R implementation of GAMLSS, Stasinopoulos and Rigby
(2007), has for specifying the distribution of Y is that the function f(y|θ) and its first (and
optionally expected second and cross) derivatives with respect to each of the parameters of
θ must be computable. Explicit derivatives are preferable, but numerical derivatives can be
used (resulting in reduced computational speed). That is, the algorithm used for fitting the
regression model needs only this information.

Here we introduce the available distributions within the current implementation of GAMLSS
in R. We refer to this set of distributions as the GAMLSS family to be consistent with R where
the distributions are defined as gamlss.family objects. Note that comprehensive review of all
gamlss.family distributions can be found in the book “Distributionf for Location Scale and
Shape”.

127

128 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

Fitting a parametric distribution within the GAMLSS family can be achieved using the com-
mand gamlss(y ∼ 1, family="") where the argument family can take any gamlss.family

distribution, see Tables 6.1, 6.2 and 6.3 for appropriate names. For example, in order to fit say a
negative binomial distribution to some count data one can use family=NBI. Note also the follow-
ing forms are acceptable: family=NBI(), family="NBI" or family=NBI(mu.link=log, sigma.link=log)

with the NBI default link functions for µ and σ which can be amended. Here is an example of
fitting a distribution to the Turkish stock exchange returns data shown in Figure 6.1:

data(tse)

truehist(tse$ret, xlab="TSE",main="")

m1 <- gamlss(ret~1, data=tse, family=TF)

GAMLSS-RS iteration 1: Global Deviance = -12734.83

. . .

GAMLSS-RS iteration 11: Global Deviance = -12795.56

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
5

10
15

20
25

TSE

R code on

page 128

Figure 6.1: A histogram of the Turkish stock exchange returns.

When no explanatory x-variables are involved, (as above), the functions gamlssML(), histDist()
and fitDist() can be used instead of gamlss(). gamlssML() uses optimization techniques in
R and it is faster then the algorithms that gamlss() uses, which are designed for regression
type models.

m2 <- gamlssML(ret, data=tse, family=TF)

histDist() uses gamlssML() as a default algorithm to fit the model but in addition displays
the histogram together with the fitted distribution of the data, see Figure 6.2,

m3 <- histDist(ret, data=tse, family=TF, nbins=30)

6.2. TYPES OF DISTRIBUTION WITHIN THE GAMLSS FAMILY 129

−0.2 −0.1 0.0 0.1 0.2

0
5

10
15

20
The ret and the fitted TF distribution

ret

f(
)

R code on

page 128

Figure 6.2: A histogram of the Turkish stock exchange returns together with a fitted t distri-
bution.

The function fitDist() uses gamlssML() to fit a set of predetermine distribution to the data
and chooses the ”best” according to a Generalised Akaike Information criterion (GAIC). The
order of the fitted models can be displayed as shown below:

m5 <- fitDist(ret, data=tse, type="realline")

m5$fits

SEP2 SEP1 SEP3 SEP4 PE GT SHASHo

-12879.01 -12876.88 -12876.14 -12865.04 -12862.09 -12860.09 -12836.07

JSU ST3 TF ST2 ST5 ST1 ST4

-12803.68 -12790.80 -12789.56 -12788.83 -12788.20 -12787.75 -12787.62

LO NO SN2 SN1 GU RG

-12726.41 -12444.12 -12442.92 -12442.12 -11578.60 -11305.11

The book “Distributions for LOcatiob Scale and Shape” contains more examples demonstrating
all of the above those functions.

6.2 Types of distribution within the GAMLSS family

6.2.1 Explicit GAMLSS family distributions

The type of distribution to use depends on the type of the response variable. Within the
GAMLSS family there are three distinct types of distributions:

1. continuous distributions see Figure 6.3(a),

2. discrete distributions, see Figure 6.3(b),

3. mixed distributions see Figure 6.3(c).

130 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

Figure 6.3 op<-par(mfrow=c(3,1))

curve(dBCT(x, mu=5, sigma=0.2, nu=-1, tau=3), 0,10, xlab="x",

ylab="f(x)", main="(a) Continuous ")

plot(x<-0:15, dNBI(x, mu=3, sigma=.5), type="h", xlab="x",

ylab="f(x)", main="(b) Discrete ")

points(x, dNBI(x, mu=3, sigma=.5), col="blue")

plotBEINF(mu =.2 , sigma=.2, nu = 1, tau = 0.5, from = 0, to=1,

n = 501, ylab="f(x)", main="(b) Mixed")

par(op)

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

(a) Continuous

x

f(
x
)

0 5 10 15

0
.0

0
0

.1
0

(b) Discrete

x

f(
x
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

(b) Mixed

x

f(
x
)R code on

page 130

Figure 6.3: Different type of distributions in GAMLSS (s) continuous, (b) discrete, (c) mixed

All the continuous distributions in gamlss.family are shown in Table 6.1. The columns of
the Table shows the names, the gamlss.family names and the default link functions of the
distribution respectively. Link functions were introduced by Weddeburn and Nelder (1972) for
Generalised Linear Models but are appropriate for all regression models since they guarantee
that the distribution parameters remain within the appropriate range. For example take the

6.2. TYPES OF DISTRIBUTION WITHIN THE GAMLSS FAMILY 131

beta distribution in the first row of Table 6.1. Both µ and σ are defined on (0, 1). The logit

link for µ uses the predictor η = log(µ
1−µ) for fitting the µ parameter in the model. Therefore

µ = eη

1+eη which ensures that µ is in the right range from 0 to 1.

The continuous distributions, fY (y|θ) in Table 6.1 are defined on (−∞,+∞), (0,+∞) and
(0, 1), ranges. Users can restrict those ranges of the response variable Y by defining a truncated
gamlss.family distribution using the package gamlss.tr.

Discrete distributions P (Y = y|θ) are usually defined on y = 0, 1, 2, . . . , n, where n is a known
finite value or n is infinite, i.e. usually discrete (count) values. Table 6.2 shows the available
discrete gamlss.family distributions.

Mixed distributions are a special case of finite mixture distributions described in Chapter ?? and
are mixtures of continuous and discrete distributions, i.e. continuous distributions where the
range of Y has been expanded to include some discrete values with non-zero probabilities. These
distributions are useful for modelling data like insurance claims where most of the people are
not claiming therefore there is a high probability at zero, but if they claim then the distribution
on the amount of claim is defined in the positive line. The zero inflated gamma distribution
shown in Figure ?? is a possible distribution for such data. Table 6.3 shows the available mixed
gamlss.family distributions.

Distributions R Name µ σ ν τ
beta BE() logit logit - -
Box-Cox Cole-Green BCCG() identity log identity -
Box-Cox power exp. BCPE() identity log identity log

Box-Cox t BCT() identity log identity log

exponential EXP() log - - -
exponential Gaussian exGAUS() identity log log -
exponential gen. beta t2 EGB2() identity identity log log

gamma GA() log log - -
generalised beta type 1 GB1() logit logit log log

generalised beta type 2 GB2() log identity log log

generalised gamma GG() log log identity -
generalised inv. Gaussian GIG() log log identity -
generalised t GT() identity log log log

Gumbel GU() identity log - -
inverse Gamma IGAMMA() log log - -
inverse Gaussian IG() log log - -
Johnson’s SU repar. JSU() identity log identity log

Johnson’s original SU JSUo() identity log identity log

logistic LO() identity log - -
logit normal LOGITNO() logit log - -
log normal LOGNO() identity log - -
log normal 2 LOGNO2() log log - -
log normal (Box-Cox) LNO() identity log fixed -
NET NET() identity log fixed fixed
normal NO() identity log - -
normal family NOF() identity log identity -
Pareto 2 original PARETO2o() log log - -

132 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

Pareto 2 PARETO2() log log - -
Pareto 2 repar GP() log log - -
power exponential PE() identity log log -
reverse Gumbel RG() identity log - -
skew normal type 1 SN1() identity log identity -
skew normal type 2 SN2() identity log identity -
skew power exp. t1 SEP1() identity log identity log

skew power exp. t2 SEP2() identity log identity log

skew power exp. t3 SEP3() identity log log log

skew power exp. t4 SEP4() identity log log log

sinh-arcsinh original SHASHo() identity log identity log

sinh-arcsinh original 2 SHASHo2() identity log identity log

sinh-arcsinh SHASH() identity log log log

skew t type 1 ST1() identity log identity log

skew t type 2 ST2() identity log identity log

skew t type 3 ST3() identity log log log

skew t type 3 repar SST() identity log log logshifto2

skew t type 4 ST4() identity log log log

skew t type 5 ST5() identity log identity log

t Family TF() identity log log -
t Family repar TF() identity log logshifto2 -
Weibull WEI() log log - -
Weibull (PH) WEI2() log log - -
Weibull (µ the mean) WEI3() log log - -

Table 6.1: Continuous distributions implemented within the gamlss.dist package(with default
link functions)

For the R implementation of GAMLSS all of the distributions in Tables 6.1 and 6.2 have d, p,
q and r functions corresponding respectively to the probability (density) function (pdf), the
cumulative distribution function (cdf), the quantiles (i.e. inverse cdf) and random value gen-
erating functions. For example, the gamma distribution has the functions dGA, pGA, qGA and
rGA. In addition each distribution has a fitting function which helps the fitting procedure by
providing link functions, first and (exact or approximate) expected second derivatives, start-
ing values etc. All fitting functions have as arguments the link functions for the distribution
parameters. For example, the fitting function for the gamma distribution is called GA with
arguments mu.link and sigma.link. The default link functions for all gamlss.family distri-
butions are shown in columns 3-6 of Tables 6.1, 6.2 and 6.3. The function show.link() can be
used to identify which are the available links for the distribution parameter within each of the
gamlss.family. For example,

show.link(BCT)

$mu

c("inverse", "log", "identity", "own")

##

6.2. TYPES OF DISTRIBUTION WITHIN THE GAMLSS FAMILY 133

Distributions R Name µ σ ν
beta binomial BB() logit log -
binomial BI() logit - -
geometric GEOM() log - -
logarithmic LG() logit - -
Delaporte DEL() log log logit

negative binomial type I NBI() log log -
negative binomial type II NBII() log log -
Poisson PO() log - -
Poisson inverse Gaussian PIG() log log -
Sichel SI() log log identity

Sichel (µ the mean) SICHEL() log log identity

Waring (µ the mean) WARING() log log -
Yule (µ the mean) YULE() log - -
zero altered beta binomial ZABB() logit log logit

zero altered binomial ZABI() logit logit -
zero altered logarithmic ZALG() logit logit -
zero altered neg. binomial ZANBI() log log logit

zero altered poisson ZAP() log logit -
zero inflated beta binomial ZIBB() logit log logit

zero inflated binomial ZIBI() logit logit -
zero inflated neg. binomial ZINBI() log log logit

zero inflated poisson ZIP() log logit -
zero inflated poisson (µ the mean) ZIP2() log logit -
zero inflated poisson inv. Gaussian ZIPIG() log log logit

Table 6.2: Discrete distributions implemented within the gamlss packages (with default link
functions)

beta inflated (at 0) BEOI() logit log logit -
beta inflated (at 0) BEINF0() logit logit log -
beta inflated (at 1) BEZI() logit log logit -
beta inflated (at 1) BEINF1() logit logit log -
beta inflated (at 0 and 1) BEINF() logit logit log log

zero adjusted GA ZAGA() log log logit -
zero adjusted IG ZAIG() log log logit -

Table 6.3: Mixed distributions implemented within the gamlss packages (with default link
functions)

134 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

$sigma

c("inverse", "log", "identity", "own")

##

$nu

c("inverse", "log", "identity", "own")

##

$tau

c("inverse", "log", "identity", "own")

will display the available links within the BCT distribution. Available link functions are the
usual glm() link functions plus some extra like logshiftto1, and own, see Section 6.4. The
own option allows the user to define his/her own link function, for an example see the help file
on the function make.link.gamlss() e.g. ?make.link.gamlss.

6.2.2 Extending GAMLSS family distributions

There are several ways to extend the gamlss.family distributions. This can be achieved by

• creating a new gamlss.family distribution,

• creating a log or logit version of a distributions from an existing continuous gamlss.family
distribution on the real line (−∞,∞),

• truncating an existing gamlss.family,

• using a censored version of an existing gamlss.family

• mixing different gamlss.family distributions to create a new finite mixture distribution.

New gamlss.family distributions

To create a new gamlss.family distribution is relatively simple, if the pdf function of the
distribution can be evaluated easily. To do that, find a file of a current gamlss.family distri-
bution, (having the same number of distribution parameters) and amend accordingly. Section
6.4 provides an example on how to do that.

New log and logit versions from a continuous gamlss.family on (−∞,∞)

Any random variable say Z defined on continuous distribution in (−∞,+∞) can be transformed
using Y = exp(Z) to a random variable defined on the positive scale (0,∞). The typical example
of this is the log-normal distribution which is defined by Y = exp(Z) where Z is a normally
random variable. The function gen.Familily() using the option type="log" can do that.
Here is an example in which we create a log-t distribution on (0,∞), generate a random sample
of 200 observations from the distribution and finally fit the distribution to the generated data.

generate the distribution

gen.Family("TF", type="log")

6.2. TYPES OF DISTRIBUTION WITHIN THE GAMLSS FAMILY 135

A log family of distributions from TF has been generated

and saved under the names:

dlogTF plogTF qlogTF rlogTF logTF

generate 200 observations

set.seed(345)

Y<- rlogTF(200)

fit the distribution

h1 <- histDist(Y, family=logTF, nbins=30, ylim=c(0,.65))

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

The Y and the fitted logTF distribution

Y

f(
)

R code on

page 135

Figure 6.4: A fitted log-t to 200 simulated observations

Similarly a logit-t distribution on (0, 1) can be created using the following code:

gen.Family("TF", type="logit")

A logit family of distributions from TF has been generated

and saved under the names:

dlogitTF plogitTF qlogitTF rlogitTF logitTF

Truncating gamlss.family distributions

Truncating existing gamlss.family distributions can be achieved by using the add-on package
gamlss.tr. The function gen.trun(), within the gamlss.tr package, can take any gamlss.family

distribution and generate the d, p, q, r and R fitting functions for the specified truncated
distribution. The truncation can be left, right or in both tails of the range of the response y
variable.

library(gamlss.tr)

gen.trun(par=c(0,100),family="TF", name="0to100", type="both")

A truncated family of distributions from TF has been generated

136 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

and saved under the names:

dTF0to100 pTF0to100 qTF0to100 rTF0to100 TF0to100

The type of truncation is both and the truncation parameter is 0 100

set.seed(123)

Y<-rTF0to100(1000, mu=80 ,sigma=20, nu=5)

h1 <- histDist(Y, family=TF0to100, nbins=30, xlim=c(0,100))

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

The Y and the fitted TF0to100 distribution

Y

f(
)

R code on

page 136

Figure 6.5: A fitted truncated t distribution defined on 0, 100, fitted to simulated 1000 obser-
vations

Note that for continuous distributions left truncation at 3 means that the random variable can
take the value 3. For discrete distributions left truncation at 3 means that the random variable
can take values from 4 onwards. Also for discrete distributions right truncation at 10 means
that the random variable can take values up to 10.

Censored gamlss.family distributions

The package gamlss.cens is designed for the situation where the response variable is left or right
censored or, more generally, it has been observed in an interval form, e.g.. (3, 10] an interval
from 3 to 10 (including only the right end point 10). The function gen.cens() will take any
gamlss.family distribution and create a new function which can fit a response of “interval”
type. Note that for “interval” response variables the usual likelihood function for independent
response variables defined as

L(θ) =

n∏
i=1

f(yi|θ) (6.1)

changes to

L(θ) =

n∏
i=1

[F (y2i|θ)− F (y1i|θ)] (6.2)

6.2. TYPES OF DISTRIBUTION WITHIN THE GAMLSS FAMILY 137

where F (y) is the cumulative distribution function and (y1i, y2i] is the observed interval. The
following is an example of generating a Weibull distribution which allows an ”interval” response
variable to be fitted. The data are called lip and come from a experimental enzymology research
project which attempted to develop a generic food spoilage model. Note that the response
variable lip$y is defined as an interval response.

library(gamlss.cens)

data(lip)

head(lip$y, 10)

[1] 1- 1- 1- 1- [11, 18] 1- 1-

[8] 1- 1- [2, 4]

The value 1− indicates an interval (1,∞) not including 1, while [11, 18] indicates the interval
(11, 18] not including 11 but including 18. For a continuous distribution the likelihood is unaf-
fected by whether interval endpoints are included or not, but for a discrete distribution this is
very important.

gen.cens(WEI2,type="interval")

A censored family of distributions from WEI2 has been generated

and saved under the names:

dWEI2ic pWEI2ic qWEI2ic WEI2ic

The type of censoring is interval

WEI2ic

##

GAMLSS Family: WEI2ic interval censored Weibull type 2

Link function for mu : log

Link function for sigma: log

weimi<- gamlss(y ~ poly(Tem,2)+poly(pH,2)+poly(aw,2), data=lip,

family=WEI2ic, c.crit=0.00001, n.cyc=200, trace=FALSE)

summary(weimi)

Family: c("WEI2ic", "interval censored Weibull type 2")

##

Call: gamlss(formula = y ~ poly(Tem, 2) + poly(pH, 2) + poly(aw, 2),

family = WEI2ic, data = lip, c.crit = 1e-05, n.cyc = 200,

trace = FALSE)

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.6495 0.7591 -7.443 2.17e-11 ***

poly(Tem, 2)1 37.0182 4.7789 7.746 4.62e-12 ***

poly(Tem, 2)2 -2.1235 2.0769 -1.022 0.3088

poly(pH, 2)1 22.0409 3.3806 6.520 2.10e-09 ***

138 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

poly(pH, 2)2 -4.6537 2.1145 -2.201 0.0298 *

poly(aw, 2)1 33.0681 4.5549 7.260 5.45e-11 ***

poly(aw, 2)2 1.6015 1.9023 0.842 0.4017

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1813 0.1550 1.169 0.245

##

No. of observations in the fit: 120

Degrees of Freedom for the fit: 8

Residual Deg. of Freedom: 112

at cycle: 200

##

Global Deviance: 138.146

AIC: 154.146

SBC: 176.4459

Use WEI2 for a proportional hazard model or WEI3 for µ = population mean.

Finite mixtures of gamlss.family distributions

Finite mixtures of gamlss.family distributions can be fitted using the package gamlss.mx. A
finite mixture of gamlss.family distributions will have the form

fY (y|ψ) =

K∑
k=1

πkfk(y|θk) (6.3)

where fk(y|θk) is the probability (density) function of y for component k, and 0 ≤ πk ≤ 1

is the prior (or mixing) probability of component k, for k = 1, 2, . . . ,K. Also
∑K
k=1 πk = 1

and ψ = (θ,π) where θ = (θ1,θ2, . . . ,θk) and π = (π1, π2, . . . , πK). Any combination of
(continuous or discrete) gamlss.family distributions can be used. The model in this case
is fitted using the EM algorithm. The component probability (density) functions may have
different parameters [fitted using the function gamlssMX()] or may have parameters in common
[fitted using the function gamlssNP()]. In the former case, the mixing probabilities may also be
modelled using explanatory variables and the finite mixture may have a zero component (e.g.
zero inflated negative binomial etc.). Both functions gamlssMX() and gamlssNP() are in the
add on package gamlss.mx. Chapter ?? gives more details about modelling and fitting finite
mixtures models using the package gamlss.mx. Figure ?? shows an example of fitting a finite
mixture of two reverse Gumbel distributions to the enzyme data.

library(gamlss.mx)

data(enzyme)

6.3. DISPLAYING GAMLSS FAMILY DISTRIBUTIONS 139

m3 <- gamlssMX(act ~ 1, data = enzyme, family = RG, K = 2)

Figure 6.6library(MASS); library(gamlss.mx)

truehist(enzyme$act, h = 0.1)

fyRG <- dMX(y = seq(0, 3, 0.01), mu = list(1.127, 0.1557),

sigma = list(exp(-1.091), exp(-2.641)),

pi = list(0.376, 0.624), family = list("RG","RG"))

lines(seq(0, 3, 0.01), fyRG, col = "red", lty = 1)

lines(density(enzyme$act, width = "SJ-dpi"), lty = 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0

enzyme$act

R code on

page 139

Figure 6.6: Showing a fitted reverse Gumbel finite mixture with two components distribution to
the enzyme data (continuous line) together with fitted non-parametric density estimate (dash
line)

6.3 Displaying GAMLSS family distributions

Each GAMLSS family distribution has five functions. The ”fitting” function which is used in
the argument family of the gamlss() function when fitting a distribution and the usual four R
functions, d,p, q and r for the pdf, the cdf, the inverse cdf and the random generating function
respectively. The names of the fitting gamlss.family functions are given in column two of
Tables 6.1 6.2 and 6.3 respectively

For example the pdf, cdf, inverse cdf and random generating functions of the normal distribution
who has within the gamlss.family the name NO are given as dNO, pNO, qNO, rNO respectively.

140 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

6.3.1 Using the distribution demos

A gamlss.family population distribution can be displayed graphically in R using the gamlss.demo
package. For example the following commands will bring the gamlss.demo package and start
the gamlss demos.

library(gamlss.demo)

gamlss.demo()

Figure 6.7: Showing a screen shot demonstrating the logit Normal distribution, LOGITNO

This will display a menu where by choosing the option ”gamlss family distributions” you can
proceed to display the different distributions. Alternatively you can just type demo.NAME()

where NAME is a gamlss.family name e.g. demo.NO() for normal distribution. This allows any
distribution in GAMLSS to be displayed graphically and its parameters adjusted interactively.
A screen shot the how this looks like is given in Figure 6.7.

6.3.2 Using the pdf.plot() function

An alternative method of graphically displaying the probability (density) functions is to use the
pdf.plot() function:

Figure 6.8
pdf.plot(family=PO(),mu=c(1,2,3,4), min=0, max=10,step=1)

The resulting figure is shown in Figure 6.8.

6.3. DISPLAYING GAMLSS FAMILY DISTRIBUTIONS 141

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

Poisson, PO

PO(mu = 1)

y

pf
, f

(y
)

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Poisson, PO

PO(mu = 2)

y

pf
, f

(y
)

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Poisson, PO

PO(mu = 3)

y

pf
, f

(y
)

0 2 4 6 8 10
0.

00
0.

05
0.

10
0.

15
0.

20

Poisson, PO

PO(mu = 4)

y

pf
, f

(y
)

R code on

page 140

Figure 6.8: Plotting the Poison distribution using the pdf.plot() function

This function is also useful for plotting different fitted distributions for specific observations.
For example here we plot the fitted distribution for observations 100 and 200 after we have
fitted a t-distribution to the abdom data.

Figure 6.9
m1 <- gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=TF, trace=FALSE)

pdf.plot(m1,obs=c(100,200), min=50, max=250,step=.1)

142 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

pdf.plot(m1,obs=c(100,200), min=50, max=250,step=.1)

50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

t Family, TF

TF(mu = 127.1, sigma = 7.497, nu = 11.42)

y

pd
f,

f(
y)

50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

t Family, TF

TF(mu = 176.8, sigma = 9.049, nu = 11.42)

y

pd
f,

f(
y)

R code on

page 141

Figure 6.9: Plotting the fitted distribution for observations 100 and 200

The resulting figure is shown in Figure 6.9.

6.3.3 Plotting the d, p, q and r functions of a distribution

The following code plot demonstrate how to plot the d, p, q and r functions of a continuous
distribution.

Figure 6.10
PPP <- par(mfrow=c(2,2))

curve(dBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, 10, ylab="pdf") # pdf

curve(pBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, 10, ylab="cdf") # cdf

plot(function(x) qBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, .999, ,

ylab="invcdf") # inverse cdf

y<-rBCT(200, mu=5, sigma=.2, nu=-5, tau=2) # randomly generated values

hist(y)

par(PPP)

The plot appears in Figure 6.10. For discrete distribution use

Figure 6.11 PPP <- par(mfrow=c(2,2))

curve(dBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, 10, ylab="pdf") # pdf

curve(pBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, 10, ylab="cdf") # cdf

plot(function(x) qBCT(x, mu=5, sigma=.2, nu=-5, tau=2), 0.01, .999, ,

ylab="invcdf") # inverse cdf

6.4. AMENDING AND CONSTRUCTING A NEW DISTRIBUTION 143

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

x

pd
f

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

cd
f

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
12

x

in
vc

df

Histogram of y

y

F
re

qu
en

cy

3 4 5 6 7 8 9
0

20
40

60

R code on

page 142

Figure 6.10: Plotting the d, p, q and r functions of a continuous distribution

y<-rBCT(200, mu=5, sigma=.2, nu=-5, tau=2) # randomly generated values

hist(y)

par(PPP)

The plot is shown in Figure 6.11.

6.4 Amending and constructing a new distribution

Note: This Section can be omitted if the user does not plan to add a new distribution or
amend an existing distribution.

This section describes the structure of a gamlss.family distribution and how it can be amended
to produce a new distribution. As we have mention above for each new distribution five different
functions are required. Taking the normal distribution as an example, we have:

NO the function used for fitting

dNO the pdf function

pNO the cdf function

qNO the inverse cdf function

rNO the randomization function

144 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

0 10 20 30 40

0.
00

0.
04

0.
08

0.
12

pdf

x

pd
f(

x)

0 10 20 30 40

0.
2

0.
6

1.
0

cdf

x

cd
f(

x)

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15

inverse cdf

x

in
v−

cd
f(

x)

0 2 4 6 8 10 12 14 16 18
0

5
15

25

R code on

page 142

Figure 6.11: Plotting the d, p, q and r functions of a discrete distribution

The function, NO provides information for fitting the normal distribution within gamlss. The
function body for NO() has three fields:

• the definition of the link functions

• the information needed for fitting the distribution and

• the class definition of the fitted object

Here is how NO() is implemented:

NO <- function (mu.link = "identity", sigma.link = "log")

{
mmstats <- checklink("mu.link", "Normal", substitute(mu.link),

c("inverse", "log", "identity", "own"))

dstats <- checklink("sigma.link", "Normal", substitute(sigma.link),

c("inverse", "log", "identity", "own"))

The code shows that the available links for both mu and sigma parameters are the identity,
log and inverse links but the default links are identity and log respectively.

The definition of the link functions

To define the link function of any of the parameters the checklink() function is used. This
function takes four arguments.

which.link: which parameter the link is for, e.g. "mu.link"

6.4. AMENDING AND CONSTRUCTING A NEW DISTRIBUTION 145

which.dist: the current distribution, e.g. "Normal" (the name is only used to report an error
in the specification of the link function)

link: which link is currently used, (the default value is the one given as arguments in the
function definition, e.g. substitute(mu.link)will do the job)

link.List: the list of the possible links for the specific parameter, e.g. c("inverse", "log", "identity")

The available links to choose from are currently the ones used by the make.link.gamlss()

function. This list includes:
"logit", "probit", "cloglog", "cauchit" "identity", "log", "sqrt", "1/mu^2", "mu^2",
"inverse", "logshiftto1", "logshiftto2", "logshiftto0", "inverse" and "own".
This may change in future gamlss releases to incorporate more link functions. For the use of
the own see the help files under the make.link.gamlss where an example is given. [The object
returned by checklink() contains the link function as a function of the current parameter, the
inverse link function as a function of the current linear predictor and finally the first derivative
of the inverse link function as a function of the linear predictor, i.e. dmu/deta. These functions
are used in the fitting of the distribution.]

The fitting information

The fitting algorithm uses the following information.

structure(list(family = c("NO", "Normal"),

parameters = list(mu = TRUE, sigma = TRUE), nopar = 2,

type = "Continuous",

mu.link = as.character(substitute(mu.link)),

sigma.link = as.character(substitute(sigma.link)),

mu.linkfun = mstats$linkfun,

sigma.linkfun = dstats$linkfun, mu.linkinv = mstats$linkinv,

sigma.linkinv = dstats$linkinv, mu.dr = mstats$mu.eta,

sigma.dr = dstats$mu.eta,

dldm = function(y, mu, sigma) (1/sigma^2) * (y - mu),

d2ldm2 = function(sigma) -(1/sigma^2),

dldd = function(y, mu,sigma) ((y - mu)^2 - sigma^2)/(sigma^3),

d2ldd2 = function(sigma) -(2/(sigma^2)),

d2ldmdd = function(y) rep(0, length(y)),

G.dev.incr = function(y, mu, sigma, ...) -2 * dNO(y, mu, sigma,

log = TRUE),

rqres = expression(rqres(pfun = "pNO", type = "Continuous",

y = y, mu = mu, sigma = sigma)

),

mu.initial = expression({ mu <- (y + mean(y))/2}),
sigma.initial = expression({sigma <- rep(sd(y), length(y))}),

mu.valid = function(mu) TRUE,

sigma.valid = function(sigma) all(sigma > 0),

y.valid = function(y) TRUE),

Here is an explanation of what all those entries mean:

146 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

• family: the name of the distribution, usually an abbreviated version and a more explicit
one

• parameters: a list indicating whether the parameter will be fitted i.e. mu=TRUE, or fixed
at initial values, e.g. nu=FALSE.

• nopar: the number of parameters

• type: the type of distribution i.e. ”Continuous”, ”Discrete” or ”Mixed”

• mu.link, sigma.link: the current link functions as character strings

• mu.linkfun, sigma.linkfun: the actual link functions returned from checklink()

• mu.linkinv, sigma.linkinv: the actual inverse link functions returned from checklink()

• mu.dr, sigma.dr: the actual first derivative of the inverse link functions returned from
checklink()

• dldm: the first derivative of the likelihood with respect to the location parameter mu

• d2ldm2: the expected second derivative of the likelihood with respect to the location
parameter mu

• dldd: the first derivative of the likelihood with respect to the scale parameter sigma

• d2ldd2: the expected second derivative of the likelihood with respect to the scale param-
eter sigma

• d2ldmddd: the expected cross derivative of the likelihood with respect to both the location
mu and scale parameter sigma

• G.dev.incr: the global deviance (equal to minus twice the log likelihood)

• rqres: the definition of the (normalised quantile) residuals [Note these are randomized
for discrete distributions], this requires specification of the type of the distribution

• mu.initial, sigma.initial: the default initial starting values for mu and sigma (both
vectors of length n) for starting the algorithm

• mu.valid, sigma.valid, y.valid: valid range of values for the parameters (mu and
sigma) and the response variable

Note that all the items above are compulsory. The expected second derivatives can be replaced
in some cases by the negative squared first derivatives. [This can be done by using the ex-
pression eval.parent(expression(-dldp^2))]. Similarly the expected cross derivatives can
be replaced in some cases by the negative cross product of the first derivatives.

The S3 class definition

Each family is defined as a gamlss.family object.

class = c("gamlss.family", "family"))

6.4. AMENDING AND CONSTRUCTING A NEW DISTRIBUTION 147

The definition of the d, p, q, and r functions

dNO<-function(y, mu=0, sigma=1, log=FALSE)

{
fy <- dnorm(y, mean=mu, sd=sigma, log=log)

fy

}
pNO <- function(q, mu=0, sigma=1, lower.tail = TRUE, log.p = FALSE)

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

cdf <- pnorm(q, mean=mu, sd=sigma, lower.tail = lower.tail, log.p = log.p)

cdf

}

qNO <- function(p, mu=0, sigma=1, lower.tail = TRUE, log.p = FALSE)

{ if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

if (log.p==TRUE) p <- exp(p) else p <- p

if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1", "\n",
""))

q <- qnorm(p, mean=mu, sd=sigma, lower.tail = lower.tail)

q

}

rNO <- function(n, mu=0, sigma=1)

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

r <- rnorm(n, mean=mu, sd=sigma)

r

}
#---

These four functions [dNO, pNO, qNO and rNO] defined in general, the pdf, cdf, inverse cdf and
random generating functions for the distribution. In the specific case of the normal distribution
these function are not necessarily needed since R provides the equivalent functions dnorm, pnorm,
qnorm and rnorm. We have included them here for convenience and consistency (with our
parametrization of the distribution according to mu and sigma). From these four functions
only the d function is usually used within the fitting function of a distribution while the p

function is needed for calculating (and plotting) the residuals. The d function is used in the
definition of global deviance and the p function in the definition of the normalized quantile
residuals. The residuals are defined with the element rqres of the structure above which uses
the function rqres() of the package (gamlss). The function rqres() needs to know what type of
gamlss.family distribution we are using. For example for the NO distribution above we use the
code rqres(pfun="pNO", type="Continuous", y=y, mu=mu, sigma=sigma). This in effect
will define the residuals as qnorm(pNO(y,mu,sigma)). For discrete distributions the function
rqres() will randomized the residuals. For example the code for the Poisson distribution is
rqres(pfun="pPO", type="Discrete", ymin=0, y=y, mu=mu).

148 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

An Example: re-parametrising the NO distribution

As an example in which a different parametrization a distribution is required consider the
parametrized normal distribution in which mu is still the mean but sigma is now the variance
of the distribution rather the standard error. Only the changes from the previous definition of
the function are printed here.

NO2 <- function (mu.link ="identity", sigma.link="log")

...

list(family = c("NO2","Normal with variance"),

...

dldm = function(y,mu,sigma) (1/sigma)*(y-mu),

d2ldm2 = function(sigma) -(1/sigma),

dldd = function(y,mu,sigma) 0.5*((y-mu)^2-sigma)/(sigma^2),

d2ldd2 = function(sigma) -(1/(2*sigma^2)),

d2ldmdd = function(y) rep(0,length(y)),

G.dev.incr = function(y,mu,sigma,...) -2*dNO2(y,mu,sigma,log=TRUE),

rqres = expression(rqres(pfun="pNO2", type="Continuous",

y=y, mu=mu, sigma=sigma)),

...

}

The d, p, q and r functions have to be amended accordingly. Since R provides d, p, q and r

functions for the normal distributions [given by dnorm, pnorm, qnorm and rnorm respectively]
the amendment here can be easily done as follows:

dNO2<-function(y, mu=0, sigma=1, log=FALSE)

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

fy <- dnorm(y, mean=mu, sd=sqrt(sigma), log=log)

fy

}
pNO2 <- function(q, mu=0, sigma=1, lower.tail = TRUE, log.p = FALSE)

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

cdf <- pnorm(q, mean=mu, sd=sqrt(sigma), lower.tail = lower.tail,

log.p = log.p)

cdf

}
qNO2 <- function(p, mu=0, sigma=1, lower.tail = TRUE, log.p = FALSE)

{ if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

if (log.p==TRUE) p <- exp(p) else p <- p

if (any(p < 0)|any(p > 1))

stop(paste("p must be between 0 and 1", "\n", ""))

q <- qnorm(p, mean=mu, sd=sqrt(sigma), lower.tail = lower.tail)

q

}
rNO2 <- function(n, mu=0, sigma=1)

6.5. THE LINK FUNCTIONS 149

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

r <- rnorm(n, mean=mu, sd=sqrt(sigma))

r

}

More generally if an equivalent function does not exist it has to be written explicitly. For
example this is another version of dNO2:

dNO2<-function(y, mu=0, sigma=1, log=FALSE)

{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))

loglik <- -0.5*log(2*pi*sigma)-0.5*((y-mu)^2)/sigma

fy <- if(log==FALSE) exp(loglik) else loglik

fy

}

For users who would like to implement a different (or their own) distribution from the ones in
Tables 6.1 and 6.2 the advice is to take one of the current distribution definition files (with
the same number of parameters) and amend it. The GU(), TF(), and BCT() distributions are
good examples of 2, 3, and 4 parameter continuous distributions respectively. IG() provides a
good example where the p and q functions are calculated using numerical methods. The PO(),
NBI() and SI() are good examples of 1, 2 and 3 parameter discrete distributions respectively.
The BB() provides a example where the p and q functions are calculated using numerical
methods. The SICHEL() distribution provides an example where numerical derivative are used
implemented using the function numeric.deriv().

6.5 The link functions

There are two functions in gamlss packages which are related to link functions of the parameters,
the make.link.gamlss() and the show.link(). The first creates the link functions while the
second displays them. Table ?? shows the usual link functions within the gamlss packages
according to the range of the distribution parameter. The user can also create their own link
function as we will show below.

range of parameters link functions
−∞ to +∞ identity

0 to +∞ log, inverse, sqrt, ‘1/mu∧2’, ‘mu∧2’
0 to 1 logit, probit, cauchit, cloglog

1 to +∞ logshiftto1

2 and +∞ logshiftto2

0.00001 and +∞ logshiftto0 or Slog 1

Table 6.4: The usual link functions available within the gamlss packages according to the range
of the distribution parameters

The default link functions can be find by type the name of distribution. For example:

150 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

GA()

##

GAMLSS Family: GA Gamma

Link function for mu : log

Link function for sigma: log

is indicates that the default links for µ and σ are “log” links. Each link function requires the
definition of four separate functions:

linkfun(mu): the link function defining the predictor η, (eta), as a function of the current
distribution parameter (which is always referred as mu) i.e. η = g(µ).

linkinv(eta): the inverse of the link function as a function of the predictor η, (eta), i.e.
µ = g−1(η)

mu.eta(eta): the first derivative of the inverse link with respect to η, (eta), i.e. dµ
dη

validate(eta): in which range the values of η (eta) are defined

own link function

There are two ways for the user to create their own link functions within gamlss. The first
one is by creating a new function having the right link information. This is the newest and
recommended way. The other is by using the own link facility. That was the original way to
generate a link function, but it is not as flexible as it can only be used to change the link of one
parameters of the current distribution.

To demonstrate the use of link function we are using a binomial response variable example
using the aep data. First we use own facility to create a complementary log-log link function
η = log [− log (1− µ)] and we compare the results by using the existing cloglog.

Try the complementary log-log function

by using the Gumbel inverse cumulative distribution function

own.linkfun <- function(mu) { qGU(p=mu)}
own.linkinv <- function(eta) {

thresh <- -qGU(.Machine$double.eps)

eta <- pmin(thresh, pmax(eta, -thresh))

pGU(eta)}
own.mu.eta <- function(eta) pmax(dGU(eta), .Machine$double.eps)

own.validate <- function(eta) TRUE

h1 should be identical to cloglog in h2

h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep)

GAMLSS-RS iteration 1: Global Deviance = 9456.145

GAMLSS-RS iteration 2: Global Deviance = 9456.145

h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="cloglog"), data=aep)

GAMLSS-RS iteration 1: Global Deviance = 9456.145

GAMLSS-RS iteration 2: Global Deviance = 9456.145

6.5. THE LINK FUNCTIONS 151

Note that the Gumbel distribution is a negatively skew distribution while the Reverse Gumbel
(a reflation of the Gumbel) is positively skew. As a result a link function created using the
Gumbel distribution will cause the binomial probability µ in BI(N,µ) to increa rapidly with η
when µ > 0.5 than when µ < 0.5, while the one using the Reverse Gumbel will reverse this.

new link function

Here we create a link function based on the Reverse Gumbel i.e. η = log (− logµ) and compare
the results with the cloglog.

creating a log-log link

loglog <- function()

{
linkfun <- function(mu) { qRG(p=mu)}
linkinv <- function(eta) {

thresh <- -qRG(.Machine$double.eps)

eta <- pmin(thresh, pmax(eta, -thresh))

pRG(eta)}
mu.eta <- function(eta) pmax(dRG(eta), .Machine$double.eps)

valideta <- function(eta) TRUE

link <- "loglog"

structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta,

valideta = valideta, name = link), class = "link-gamlss")

}
fitting a model

h3<-gamlss(y~ward+loglos+year, family=BI(mu.link=loglog()), data=aep)

GAMLSS-RS iteration 1: Global Deviance = 9439.48

GAMLSS-RS iteration 2: Global Deviance = 9439.48

AIC(h1,h2,h3, k=0)

df AIC

h3 5 9439.480

h1 5 9456.144

h2 5 9456.144

It is obvious that the log-log link function improves the global deviance.

152 CHAPTER 6. THE GAMLSS.FAMILY OF DISTRIBUTIONS

Chapter 7

Finite mixture distributions

This chapter covers finite mixtures within GAMLSS in particular:

1. Finite mixtures with no parameters in common

2. Finite mixtures with several parameters in parameters in common

This chapter is important for fitting multimodal distributions to data.

7.1 Introduction to finite mixtures

This Chapter needs a major revision and connection to random effect Chapter.

Suppose that the random variable Y comes from component k, having probability (density)
function fk(y), with probability πk for k = 1, 2, . . . ,K, then the (marginal) density of Y is
given by

fY (y) =

K∑
k=1

πkfk(y) (7.1)

where 0 ≤ πk ≤ 1 is the prior (or mixing) probability of component k, for k = 1, 2, . . . ,K and∑K
k=1 πk = 1. Note that the cumulative distribution function of Y will have a similar form and

will be:

FY (y) =

K∑
k=1

πkFk(y). (7.2)

More generally the probability (density) function fk(y) for component k may depend on pa-
rameters θk and explanatory variables xk, i.e. fk(y) = fk(y|θk,xk). Hence fY (y) depends on
parameters ψ = (θ,π) where θ = (θ1,θ2, . . . ,θK) and πT = (π1,π2, . . . ,πK) and explanatory
variables x = (x1,x2, . . . ,xK), i.e. fY (y) = fY (y|ψ,x), and

fY (y|ψ,x) =

K∑
k=1

πkfk(y|θk,xk) (7.3)

153

154 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

Subsequently we omit the conditioning on θk, xk and ψ to simplify the presentation.

In general finite mixture distributions are fitted within GAMLSS using the EM algorithm.
Certain specific mixtures distributions are explicitly available in gamlss packages. In particular
the zero adjusted gamma (ZAGA), the zero adjusted inverse Gaussian (ZAIG), and the four
parameter beta inflated at zero and one (BEINF), and a variety of zero inflated and adjusted
discrete distributions (ZIP, ZIP2, ZAP, ZINBI, ZANBI, ZIPIG, ZIBI, ZIBB).]

In Sections 7.2, 7.3 and 7.4 we consider respectively maximum likelihood estimation, the corre-
sponding fitting function gamlssMX and examples for finite mixtures models with no parameters
in common, while in Sections 7.5, 7.6 and 7.7 we consider respectively maximum likelihood es-
timation, the corresponding fitting function gamlssNP and examples for finite mixture models
with parameters in common. Throughout this chapter we will assume that all K components
of the mixture can be represented by GAMLSS models.

7.2 Finite mixtures with no parameters in common

Here the parameter sets (θ1,θ2, . . . ,θk) are distinct, i.e. no parameter is common to two or more
parameters sets. Note that what this means in practice within GAMLSS is that the conditional
distribution components in (7.1), fk(y), can have different gamlss.family distributions, e.g.
one can be GA and the other IG.

7.2.1 The likelihood function

Given n independent observations yi for i = 1, 2, . . . , n, from finite mixture model (7.3), the
likelihood function is given by

L = L(ψ,y) =

n∏
i=1

fYi(yi) =

n∏
i=1

[
K∑
k=1

πkfk(yi)

]
(7.4)

where y = (y1, y2, . . . , yn), fk(yi) = fk(yi|θk,xki), with log likelihood function given by

` = `(ψ,y) =

n∑
i=1

log

[
K∑
k=1

πkfk(yi)

]
(7.5)

We wish to maximize ` with respect to ψ, i.e. with respect to θ and π. The problem is that the
log function between the two summations in (7.5) makes it difficult. One solution, especially for
simple mixtures where no explanatory variables are involved, is to use a numerical maximization
technique, e.g. function optim in R, to maximize the log likelihood in (7.5) numerically, see for
example Venables and Ripley [2002] Chapter 16. More generally an EM algorithm can be used
to maximize (7.5).

7.2.2 Maximizing the likelihood function using the EM algorithm

Here we will use the EM algorithm, (Dempster, A., Laird, N. and Rubin [1977]) to maximize
(7.5) with respect to ψ, treating all the component indicator variables (i.e δ, defined below) as
missing variables.

7.2. FINITE MIXTURES WITH NO PARAMETERS IN COMMON 155

Let

δik =

{
1, if observation i comes from component k
0, otherwise

(7.6)

for k = 1, 2, . . . ,K and i = 1, 2, . . . , n. Let δTi = (δi1, δi2, . . . , δik) be the indicator vector for
observation i. If observation i comes from component k then δi is a vector of zeros, except for
the kth value which is δik = 1. Let δT = (δT1 , δ

T
2 , . . . , δ

T
n) combine all the indicator variable

vectors. Then the complete data, i.e. observed y and unobserved δ, has complete likelihood
function given by

Lc = Lc(ψ,y, δ) = f(y, δ) =

n∏
i=1

f(yi, δi)

=

n∏
i=1

f(yi|δi)f(δi)

=

n∏
i=1

{
K∏
k=1

[
fk(yi)

δikπδikk

]}
, (7.7)

since if δik = 1 and δik′ = 0 for k
′ 6= k, then

f(yi|δi)f(δi) = fk(yi)πk,

= fk(yi)
δikπδikk

=
∏K
k=1 fk(yi)

δikπδikk

and hence f(yi|δi)f(δi) =
∏K
k=1 fk(yi)

δikπδikk for all δi.

From (7.7) the complete log likelihood is given by

`c = `c(ψ,y, δ) =

n∑
i=1

K∑
k=1

δik log fk(yi) +

n∑
i=1

K∑
k=1

δik log πk (7.8)

If δ were known then, since θ1,θ2, . . .θK have no parameter in common, `c could be maximized
over each θk separately, since the likelihood separates.

The EM algorithm alternates between the E-step and the M-step until convergence. Iteration
(r + 1) of the EM algorithm comprises an E-step followed by an M-step.

E-step

At the (r+ 1)th iteration, the E-step finds Q, the conditional expectation of the complete data

log likelihood (7.8), over the missing δ, given y and the current parameter estimates ψ̂
(r)

from
iteration r.

M-step

At the (r+1)th iteration, the M step maximizes Q with respect to ψ, where Q is the conditional
expected value from E-step.

How does it work in practice we have to explain.

156 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

7.2.3 Modelling the mixing probabilities

Here we extend the finite mixture model by assuming that the mixing probabilities πk for
k = 1, 2, . . . ,K for observations i = 1, 2, . . . , n are not fixed constants but depend on explanatory
variables x0 and parameters α, and hence depend on i, so fYi(yi) =

∑K
k=1 πikfk(yi). We model

the mixing probabilities πik using a multinomial logistic model where δi is a single draw from
a multinomial distribution with probability vector π, i.e. δi ∼M(1,π) and

log

[
πik
πiK

]
= αTk x0i (7.9)

for k = 1, 2, . . . ,K and i = 1, 2, . . . , n. Hence

πik =
exp

{
αTk x0i

}∑K
k=1 exp

{
αTk x0i

} (7.10)

for k = 1, 2, . . . ,K and i = 1, 2, . . . , n where αK = 0 . Consequently the complete log likelihood
is given by replacing πk by πik in equation (7.8) to give

`c = `c(ψ,y, δ) =

n∑
i=1

K∑
k=1

δik log fk(yi) +

n∑
i=1

K∑
k=1

δik log πik (7.11)

7.2.4 Zero components

Special cases of the models described above are distributions which we described earlier as type
mixed. For example, the zero adjusted inverse Gaussian distribution (ZAIG) can be thought of
as a finite mixture where the first component is identically zero, i.e. y = 0, with probability 1.
Hence

f1(y) =

{
1, if y=0
0, otherwise.

(7.12)

The second component is an inverse Gaussian distribution. Distributions of this type can be
also fitted with the EM algorithm described in the previous section.

7.3 The gamlssMX() function

The function to fit finite mixtures with no parameters in common is gamlssMX(). In this section
we describe how it works. Examples of using the function are given in the next section. The
function gamlssMX() has the following arguments:

formula This argument should be a single formula (or a list of formulae of length K the
number of components in the mixture) for modelling the predictor for the µ parameter
of the model. If a single formula is used then the K mixture components have the same
predictor for µ, but different parameters in their predictors (since there are no parameters
in common to two or more of the K components). Note that modelling the rest of the
distributional parameters can be done by using the usual gamlss() formula arguments,
e.g. sigma.fo=∼x , which passes the arguments to gamlss(). Again either a single
common formula or a list of formula of length K is used.

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 157

pi.formula This should be a formula for modelling the predictor for prior (or mixing) proba-
bilities as a function of explanatory variables in the multinomial model (7.9). The default
model is constants for the prior (or mixing) probabilities. Note that no smoothing or
other additive terms are allowed here, only the usual linear terms. The modelling here is
done using the multinom() function from package nnet.

family This should be a gamlss.family distribution (or a list of K distributions). Note
that if different distributions are used here, it is preferable (but not essential) that their
parameters are comparable for ease of interpretation.

weights For declaring prior weights if needed.

K For declaring the number of components in the finite mixture with default K=2

prob For setting starting values for the prior probabilities.

data The data frame containing the variables in the fit. Note that this is compulsory if
pi.formula is used for modelling the prior (or mixing) probabilities.

control This argument sets the control parameters for the EM iterations algorithm. The
default setting are given in the MX.control function

g.control This argument can be used to pass to gamlss() control parameters, as in gamlss.control.

zero.component This argument declares whether or not there is a zero component, i.e. y
identically equal to zero, y = 0, in the finite mixture.

. . . For extra arguments to be passed to gamlss().

What the output produce Fitted values? residuals? we have to explain

7.4 Examples using the gamlssMX() function

7.4.1 The Old Faithful geyser data

The data on the Old Faithful geyser has two variables, duration, the duration of the eruption
and waiting, the waiting time in minutes until the next eruption. Firstly, the variable waiting

is used on its own to demonstrate the fitting of a finite mixture to a single response variable.
In the second part the data are modified and used as to model of the mixture response variable
against an explanatory variable.

Fitting a finite mixture to a single response

Data summary: the old faithful geyser

R data file: geyser in package MASS of dimensions 299× 2

variables

waiting : the waiting time (in minutes) until the next eruption.

duration : the duration of the eruption.

158 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

purpose: only the variable waiting is used here to demonstrate the fitting of a finite
mixture.

conclusion: A two component inverse Gaussian distribution is found to be suitable

Here we study the waiting time on its own. We use waiting time to demonstrate how to
fit a variety of two component mixtures of continuous distributions and then select the ‘best’
using AIC. Two component mixtures of normal, gamma, reverse Gumble, Gumble, logistic and
inverse Gaussian distributions are fitted:

data(geyser)

set.seed(1581)

mNO <- gamlssMX(waiting ~ 1, data = geyser, family = NO, K = 2)

mGA <- gamlssMX(waiting ~ 1, data = geyser, family = GA, K = 2)

mRG <- gamlssMX(waiting ~ 1, data = geyser, family = RG, K = 2)

mGU <- gamlssMX(waiting ~ 1, data = geyser, family = GU, K = 2)

mLO <- gamlssMX(waiting ~ 1, data = geyser, family = LO, K = 2)

mIG <- gamlssMX(waiting ~ 1, data = geyser, family = IG, K = 2)

AIC(mNO, mGA, mRG, mGU, mLO, mIG)

df AIC

mIG 5 2321.827

mGA 5 2322.764

mRG 5 2323.879

mNO 5 2325.084

mLO 5 2328.147

mGU 5 2420.051

mIG

##

Mixing Family: c("IG", "IG")

##

Fitting method: EM algorithm

##

Call: gamlssMX(formula = waiting ~ 1, family = IG, K = 2, data = geyser)

##

##

Mu Coefficients for model: 1

(Intercept)

4.393

Sigma Coefficients for model: 1

(Intercept)

-4.642

Mu Coefficients for model: 2

(Intercept)

4.006

Sigma Coefficients for model: 2

(Intercept)

-4.304

##

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 159

Estimated probabilities: 0.669591 0.330409

##

Degrees of Freedom for the fit: 5 Residual Deg. of Freedom 294

Global Deviance: 2311.83

AIC: 2321.83

SBC: 2340.33

The best model appears to be mIG, the two component inverse Gaussian (IG) model for Y (=
waiting) given by fY (y) = π̂if1(y) + π̂if2(y) = 0.67f1(y) + 0.33f2(y) where f1(y) is an inverse
Gaussian distribution, IG(µ1, σ1) with µ̂1 = exp(4.393) = 80.88 and σ̂1 = exp(−4.641) =
0.009843 and f2(y) is an inverse Gaussian distribution, IG(µ2, σ2) with µ̂2 = exp(4.006) = 54.93
and σ̂2 = exp(−4.304) = 0.01351. We next plot a histogram of the data together with the fitted
two component IG model (solid line) and a non-parametric density estimator (dash line).

Figure 7.1truehist(geyser$waiting, h = 2)

fyIG <- dMX(y = seq(39, 115, 1), mu = list(exp(4.393), exp(4.006)),

sigma = list(exp(-4.642), exp(-4.304)), pi = list(0.6695835,

0.3304165), family = list("IG", "IG"))

lines(seq(39, 115, 1), fyIG, col = "red", lty = 1)

lines(density(geyser$waiting, width = "SJ-dpi"), lty = 2)

40 50 60 70 80 90 100 110

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

geyser$waiting

R code on

page 159

Figure 7.1: A histogram of variable waiting time (to next eruption from the Old Faithful geyser
data), together with a non-parametric density estimator (− −−) and the fitted two component
IG model ()

The residuals of the final fitted model mIG are plotted next.

Figure 7.2

160 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

plot(mIG)

Summary of the Randomised Quantile Residuals

mean = -0.001605

variance = 0.9946

coef. of skewness = 0.07091

coef. of kurtosis = 2.862

Filliben correlation coefficient = 0.9969

80.5 81.0 81.5

−3
−2

−1
0

1
2

3

Against Fitted Values

Fitted Values

Qu
an

tile
 R

es
idu

als

0 50 100 150 200 250 300

−3
−2

−1
0

1
2

3

Against index

index

Qu
an

tile
 R

es
idu

als

−2 0 2 4

0.0
0.1

0.2
0.3

0.4

Density Estimate

Quantile. Residuals

De
ns

ity

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

R code on

page 160

Figure 7.2: The residual plot from the fitted two component IG model for waiting time from
the Old Faithful geyser data

Fitting a finite mixture to a simple regression problem

Data summary: the old faithful geyser

R data file: geyser2 created from gayser of dimensions 298× 2

variables

waiting : the response variable, waiting time (in minutes) until the next eruption.

duration : previous duration of the eruption (used as explanatory variable)

purpose: model the distribution of waiting time until the next eruption given the explana-

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 161

tory variable previous duration

conclusion: The response can be modeled as a mixture of two components each having an
inverse Gaussian distribution or a single component inverse Gaussian with smoothing

We will now model the the waiting time until the next eruption as a function of the previous
codeduration. We will also follow Venables and Ripley [2002] p441 and model the probabilities,
π’s, of belonging to one of the two mixture components as functions of the previous duration

of the eruption.

We first create a data frame containing the waiting time to the next eruption and the previous
duration of the eruption. The data are displayed in the left panel of Figure 7.3. Then we fit a
normal (NO) two component mixture model, used by Venables and Ripley [2002], and a inverse
Gaussian (IG) two component mixture model. First we fit constant models for the predictors of
both µ and π, then include duration in the predictor of each of µ and π separately and finally
include duration in the predictor of both µ and π. We compare all the models using AIC.

geyser2 <- matrix(0, ncol = 2, nrow = 298)

geyser2[, 1] <- geyser$waiting[-1]

geyser2[, 2] <- geyser$duration[-299]

colnames(geyser2) <- c("waiting", "duration")

geyser2 <- data.frame(geyser2)

set.seed(1581)

mNO1 <- gamlssMX(waiting ~ 1, data = geyser2, family = NO, K = 2)

mIG1 <- gamlssMX(waiting ~ 1, data = geyser2, family = IG, K = 2)

mNO2 <- gamlssMX(waiting ~ 1, pi.formula = ~duration, data = geyser2,

family = NO, K = 2)

mIG2 <- gamlssMX(waiting ~ 1, pi.formula = ~duration, data = geyser2,

family = IG, K = 2)

mNO3 <- gamlssMX(waiting ~ duration, pi.formula = ~1, data = geyser2,

family = NO, K = 2)

mIG3 <- gamlssMX(waiting ~ duration, pi.formula = ~1, data = geyser2,

family = IG, K = 2)

mNO4 <- gamlssMX(waiting ~ duration, pi.formula = ~duration,

data = geyser2, family = NO, K = 2)

mIG4 <- gamlssMX(waiting ~ duration, pi.formula = ~duration,

data = geyser2, family = IG, K = 2)

AIC(mNO1, mNO2, mNO3, mNO4, mIG1, mIG2, mIG3, mIG4)

df AIC

mIG4 8 1930.034

mNO4 8 1936.679

mNO3 7 1953.317

mIG3 7 1961.234

mIG2 6 1970.647

mNO2 6 1981.932

mIG1 5 2315.304

mNO1 5 2318.472

mIG4

##

162 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

Mixing Family: c("IG", "IG")

##

Fitting method: EM algorithm

##

Call: gamlssMX(formula = waiting ~ duration, pi.formula = ~duration,

family = IG, K = 2, data = geyser2)

##

Mu Coefficients for model: 1

(Intercept) duration

4.09618 0.07007

Sigma Coefficients for model: 1

(Intercept)

-4.807

Mu Coefficients for model: 2

(Intercept) duration

3.6312 0.1935

Sigma Coefficients for model: 2

(Intercept)

-4.351

model for pi:

(Intercept) duration

fac.fit2 10.18838 -3.131291

##

Estimated probabilities:

pi1 pi2

1 0.91598279 0.08401721

2 0.03058744 0.96941256

3 0.91187829 0.08812171

...

##

Degrees of Freedom for the fit: 8 Residual Deg. of Freedom 290

Global Deviance: 1914.03

AIC: 1930.03

SBC: 1959.61

Note that in order to model the π’s, the function gamlssMX needs the data argument. The
best model using AIC is model mIG4. This model is a mixture of two components. In each
component waiting time has an inverse Gaussian distribution, with a simple linear regression
model in duration for the predictor of the mean and a constant scale. The predictor for the
mixing probability is also a simple linear regression model in duration. So the final mixture
model mIG4 is given by

fY (y) = π̂1f1(y) + π̂2f2(y)

where f1(y) is an inverse Gaussian distribution IG(µ̂1, σ̂1) with

µ̂1 = exp {4.0962 + 0.07007 ∗ duration}

and

σ̂1 = exp {−4.807} = 0.00817

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 163

and where f2(y) is also an inverse Gaussian distribution IG(µ̂2, σ̂2) with

µ̂2 = exp {3.6312 + 0.1935 ∗ duration}

and
σ̂2 = exp {−4.351} = 0.01289

and where
log [π̂2/(1− π̂2)] = ηπ = 10.188− 3.1313 ∗ duration

.

Figure 7.3(a) plots the data together with the fitted means of each of the two components.
Figure 7.3(b) shows the fitted probability of belonging to group 1. As the previous eruption
duration increases, the probability that the waiting time will belong to component 1 increases.
Figure 7.3 was obtained by the following commands:

Figure 7.3op <- par(mfrow = c(1, 2))

plot(waiting ~ duration, data = geyser2, xlab = "previous duration",

ylab = "waiting time", main = "(a)")

lines(fitted(mIG4$models[[1]])[order(geyser2$duration)] ~

geyser2$duration[order(geyser2$duration)],

col = "dark green", lty = 3, lwd = 2)

lines(fitted(mIG4$models[[2]])[order(geyser2$duration)] ~

geyser2$duration[order(geyser2$duration)],

col = "red", lty = 4, lwd = 2)

plot(mIG4$prob[, 1][order(duration)] ~ duration[order(duration)],

data = geyser2, xlab = "previous duration", ylab = "probability of component 2",

main = "(b)")

lines(mIG4$prob[, 1][order(duration)] ~ duration[order(duration)],

data = geyser2)

lines(mIG4$prob[, 1][order(duration)] ~ duration[order(duration)],

data = geyser2)

par(op)

Figure 7.4 shows the fitted distribution in three dimensions, where f1 is the fitted conditional
probability density function for weighted time (using the commands below). Figure 7.6 (a)
shows this as a levelplot (see later for the commands).

grid <- expand.grid(duration = seq(1.5, 5.5, 0.1), waiting = seq(40,

110, 0.5))

etapi <- 10.19069 - 3.132215 * grid$duration

etamu1 <- 4.09618 + 0.07007 * grid$duration

etamu2 <- 3.6312 + 0.1935 * grid$duration

pp <- (exp(etapi)/(1 + exp(etapi)))

grid$f1 <- dMX(y = grid$waiting, mu = list(exp(etamu1), exp(etamu2)),

sigma = list(exp(-4.807), exp(-4.351)), pi = list(1 - pp, pp),

family = list("IG", "IG"))

Figure 7.4library(lattice)

wireframe(f1 ~ duration * waiting, data = grid, aspect = c(1,

0.5), drape = TRUE)

164 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

1 2 3 4 5

50
60

70
80

90
10

0
11

0

(a)

previous duration

wa
itin

g t
im

e

1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
1.0

(b)

previous duration

pro
ba

bil
ity

 of
 co

mp
on

en
t 2

R code on

page 163

Figure 7.3: (a) A scatter plot of the waiting time (to next eruption)against the previous eruption
duration from the Old Faithful geyser data together with the fitted values from the two com-
ponents, (dotted and dashed for component 1 and 2 respectively) (b) a plot of the probability
of belonging to component 1 as a function of duration, estimated from model mIG4

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 165

duration
waiting

f1

0.00

0.02

0.04

0.06

0.08

R code on

page 163

Figure 7.4: Fitted conditional probability density function (f1) for waiting time to the next
eruption given the previous eruption duration for model mIG4

Model mIG4 provides us with an example of a regression model where the response variable has
a mixture distribution with two components and where the probability of belonging to each
component of the mixture is modelled as a function of a single explanatory variable. The model
is appropriate if modelling the probability of belonging to a component is of interest. If, on the
other hand, the interest lies in just modelling the waiting time as a function of the previous
duration, a simple GAMLSS model could be appropriate.

We will try here to compare the mIG4 (finite mixture) model with a single component model
(not a mixture) using the inverse Gaussian distribution with regression models in the previous
duration for both µ and σ. A flexible cubic smoothing spline function as a function of the
previous duration is also used for µ and σ.

mIG5 <- gamlss(waiting ~ duration, sigma.formula = ~duration,

data = geyser2, family = IG, trace = FALSE)

mIG6 <- gamlss(waiting ~ cs(duration), sigma.formula = ~duration,

data = geyser2, family = IG, trace = FALSE)

mIG7 <- gamlss(waiting ~ cs(duration), sigma.formula = ~cs(duration),

data = geyser2, family = IG, trace = FALSE)

mIG8 <- gamlss(waiting ~ cs(duration), sigma.formula = ~1, data = geyser2,

family = IG, trace = FALSE)

AIC(mIG4, mIG5, mIG6, mIG7, mIG8)

df AIC

mIG6 7.000763 1928.512

166 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

mIG4 8.000000 1930.034

mIG7 10.000071 1933.061

mIG8 6.000815 1957.221

mIG5 4.000000 1958.542

Model mIG6 is marginally better that model mIG4 in terms of AIC. Figure 7.5 compares the
fitted means for the two models. The smooth fitted mean line of model mIG6 follows closely the
component 2 line of model mIG4 up to duration around 4 and then the component 1 line. The
two models behave very similarly as far the mead model is concerned.

Figure 7.5 plot(waiting ~ duration, data = geyser2, xlab = "previous duration",

ylab = "waiting time")

lines(fitted(mIG4$models[[1]])[order(geyser2$duration)] ~

geyser2$duration[order(geyser2$duration)],

col = "green", lty = 3, lwd = 1.5)

lines(fitted(mIG4$models[[2]])[order(geyser2$duration)] ~

geyser2$duration[order(geyser2$duration)],

col = "red", lty = 4, lwd = 1.5)

lines(fitted(mIG6)[order(duration)] ~ duration[order(duration)],

data = geyser2, col = "blue", lty = 1, lwd = 1.5)

1 2 3 4 5

50
60

70
80

90
10

0
11

0

previous duration

wa
itin

g t
im

e

R code on

page 166

Figure 7.5: Comparison of the fitted values for µ for models mIG4 (dashed and dotted lines)
and mIG6 (solid line)

Figures 7.6 (a) and (b) show levelplots of the conditional probability density function (pdf) for
waiting time given the previous eruption time for models (a) mIG4 and (b) mIG6 respectively
obtained using the commands below. The plots are similar, although model mIG4 has a higher

7.4. EXAMPLES USING THE GAMLSSMX() FUNCTION 167

conditional pdf for waiting time to the next eruption around 50 minutes when previous duration
is less than 2.

mu <- predict(mIG6, what = "mu", type = "response", newdata = grid[,

c("waiting", "duration")], data = geyser2)

new prediction

sigma <- predict(mIG6, what = "sigma", type = "response", newdata = grid[,

c("waiting", "duration")], data = geyser2)

grid$f2 <- dIG(x = grid$waiting, mu = mu, sigma = sigma)

Figure 7.6op <- par(mfrow = c(1, 2))

print(levelplot(f1 ~ duration * waiting, data = grid, colorkey = F,

at = seq(0, 0.075, 0.001), xlab = "previous duration", ylab = "waiting time",

col.regions = rev(trellis.par.get("regions")$col), main = "(a)"),

split = c(1, 1, 2, 1), more = TRUE)

print(levelplot(f2 ~ duration * waiting, data = grid, colorkey = F,

at = seq(0, 0.075, 0.001), xlab = "previous duration", ylab = "waiting time",

col.regions = rev(trellis.par.get("regions")$col), main = "(b)"),

split = c(2, 1, 2, 1))

par(op)

(a)

previous duration

wa
itin

g t
im

e

60

80

100

2 3 4 5

(b)

previous duration

wa
itin

g t
im

e

60

80

100

2 3 4 5

R code on

page 167

Figure 7.6: Levelplot of the fitted conditional probability density function of the waiting time
given the previous eruption time for models (a) mIG4 and model (b) mIG6

168 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

7.5 Finite mixtures with parameters in common

Here the K components of the mixture may have parameters in common, i.e. the parameter
sets (θ1,θ2, . . . ,θk) are not disjoint. The prior (or mixing) probabilities can be either assumed
to be constant or that may depend on explanatory variables x0 and parameters α through a
multinomial logistic model as in Section 7.2.3. Note however that in the implementation of the
function gamlssNP(), which can be used fitting finite mixture with common components, the
probabilities are assumed to be constant and are not depending on explanatory variables.

It is assumed throughout that the K components fk(y) = fk(y|θk,xk) for k = 1, 2, . . . ,K can
be represented by GAMLSS models. However, since some of the parameters may be common in
all K components, the distribution used must be the same for all K components. Similarly the
link functions of the distribution parameters must be the same for all K components. In our
notation in this Chapter, the parameter vector θk contains all the parameters in the (linear)
predictor models for µ, σ, ν and τ for component k, for k = 1, 2, . . . ,K. Here are some examples
to clarify this.

Example 1, Mixture of K Poisson regression models: f(y) =
∑K
k=1 πkfk(y) where fk(y)

is PO(µk) for k = 1, 2, . . . ,K, and where logµk = βok+β1x. Here the slope parameter β1,
a predictor parameter for the distribution parameter µk, is the same for all K components,
but the intercept parameter βok depends on k, for k = 1, 2, . . . ,K.

Example 2, Mixture of K negative binomials regression models: Let fk(y) beNBI(µk, σk)
for k = 1, 2, . . . ,K, where logµk = β10k + β11x and log σk = log σ = β2o + β21x. Here the
predictor slope parameter β11 for µk and all predictor parameters for σ are the same for
all K components, but the predictor intercept parameter β10k for µk depends on k, for
k = 1, 2, . . . ,K.

Example 3, Mixture of K BCT models: Let fk(y) = BCT (µk, σk, νk, τk) for k = 1, 2, . . . ,K,
where logµk = β1ok+β11kx, log σk = β2ok+β21kx, νk = ν = β3o and log τk = log τ = β4o.
Here predictor parameters β1ok and β11k for µ and β20k and β21k for σ depend on k for
k = 1, 2, . . . ,K, but parameters β3o for ν and β4o for τ are the same for all k components.

7.5.1 Maximizing the likelihood using the EM algorithm

As in Section 7.2.3 the complete log likelihood is given by (7.11), and can be maximized using
an EM algorithm. The M step of the EM algorithm is achieved by expanding the data set K
times as in Table 7.1. This method is identical to the method used in Aitkin et al. (2006) but
here we are not restricting ourselves to the exponential family. The column headed ŵ(r+1) are
the iterative weights (calculated internaly) at the (r + 1)th iteration. The column headed as
MASS identifies the K mixture components. This column is declared as a factor in the R imple-
mentation of the EM algorithm. If this factor MASS is included in the predictor for a distribution
parameter µ, σ, ν, or τ , then the predictor intercepts differs between the K components. If an
interaction between this factor MASS and an explanatory variable x is included in the predictor
model for a distribution parameter, then the coefficient of x differ between the K components.
Note however that the syntax used in gamlssNP() for the interaction between MASS and x in
the predictor for µ is achieved using the random=∼x argument (see Section 7.7 for an example).

7.6. THE GAMLSSNP() FUNCTION 169

i MASS ye Xe ŵ(r+1)

1 1

2 1 y X ŵ
(r+1)
1

...
...

n 1
1 2

2 2 y X ŵ
(r+1)
2

...
...

n 2
...

...
...

...
...

1 K

2 K y X ŵ
(r+1)
K

...
...

n K

Table 7.1: Table showing the expansion of data use in M-step of the EM algorithm for fitting
the common parameter mixture model

7.6 The gamlssNP() function

The function to fit finite mixtures with parameters in common is gamlssNP(). The gamlssNP()
was initial designed for fitting marginal likelihoods for random effect models. In the next section
we give an example of how it can be used to fit finite mixtures models. The function gamlssNP()

has the following arguments:

formula This argument should be a formula defining the response variable and explanatory
he fixed effects terms for the µ parameter of the model. Note that modelling the rest of
the distribution parameters can be done by using the usual formulae, e.g. sigma.fo= x,
which passes the arguments to gamlss()

random This should be a formula defining the random part of the model (for random effect
models). This formula is also used for fixed effect mixture models to define interactions
of the factor MASS with explanatory variables x in the predictor for µ (needed to request
different coefficients in x in the predictor of µ for the K components).

family A gamlss family distribution.

data This should be a data frame. Note that this argument is mandatory for this function
even if the data are attached. This is because the data frame is used to expand the data
as in Table 7.1.

K Declaring the number of mixture components (in fixed effects finite mixture models), or the
number of mass points or integration quadrature points (for random effects models)

mixture Defining the mixing distribution, ”np” for non-parametric finite mixtures or ”gq” for
Gaussian quadrature.

tol This defines the tolerance scalar usually between zero and one, used for changing the starting

170 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

values.

weights For prior weights

control This sets the control parameters for the EM iterations algorithm. The default setting
is the NP.control function.

g.control This is for controlling the gamlss control function, gamlss.control, passed to the
gamlss fit

. . . For extra arguments

7.7 Examples using the gamlssNP() function

7.7.1 The animal brain data

Data summary: the animal brain data

R data file: brains in package gamlss.mx of dimensions 28 × 2 (identical to Animals in
package (MASS))

variables

brain : brain weight in g.

body : body weight in kg.

purpose: To fit a finite mixture model with different intercepts.

conclusion: A three component normal distribution mixture is found to be adequate

The brain size (brain) and the body weight (body) were recorded for 28 different animals. Since
the distribution of both brain size and body weight are highly skewed a log transformation was
applied to each variable to give transformed variables lbrain and lbody. The resulting data
are plotted in Figure 7.7.

library(gamlss.mx)

data(brains)

brains$lbrain <- log(brains$brain)

brains$lbody <- log(brains$body)

Figure 7.7 with(brains, plot(lbrain ~ lbody, ylab = "log brain", xlab = "log body"))

A normal error linear regression model of lbrain against lbody has a highly significant slope
for lbody but it is believed that the data may represent different stages of evolution and so a
mixture models is fitted to the data. In the mixture model, the evolution stage was represented
by a shift in the intercept of the regression equation. Normal mixture models with K equal
to 1, 2, 3, 4 are fitted below. Models br.2, br.3 and br.4 are models with different intercepts
for the K components, where K = 2, 3 and 4 respectively. Slopes are the same for the K
components, so parallel lines are fitted (see later for how different slopes can be incorporated
in the model). The plots of the EM trajectories are omitted here.

7.7. EXAMPLES USING THE GAMLSSNP() FUNCTION 171

0 5 10

0
2

4
6

8

log body

log
 br

ain

R code on

page 170

Figure 7.7: A plot of the brain size data

br.1 <- gamlss(lbrain ~ lbody, data = brains)

GAMLSS-RS iteration 1: Global Deviance = 101.2578

GAMLSS-RS iteration 2: Global Deviance = 101.2578

br.2 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 2,

tol = 1, data = brains, family = NO)

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..15 ..16 ..

17 ..18 ..19 ..20 ..21 ..22 ..23 ..24 ..25 ..26 ..27 ..28 ..29 ..30 ..31 ..32 ..33 ..

##

EM algorithm met convergence criteria at iteration 33

Global deviance trend plotted.

EM Trajectories plotted.

br.3 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 3,

tol = 1, data = brains, family = NO)

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..

EM algorithm met convergence criteria at iteration 14

Global deviance trend plotted.

EM Trajectories plotted.

br.4 <- gamlssNP(formula = lbrain ~ lbody, mixture = "np", K = 4,

tol = 1, data = brains, family = NO)

172 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..15 ..16 ..

17 ..18 ..19 ..20 ..21 ..22 ..23 ..24 ..25 ..26 ..27 ..28 ..29 ..

EM algorithm met convergence criteria at iteration 29

Global deviance trend plotted.

EM Trajectories plotted.

We compare the models using each of the ctiteria AIC and SBC:

GAIC(br.1, br.2, br.3, br.4)

df AIC

br.3 7 79.15079

br.4 9 83.15613

br.2 5 85.95938

br.1 3 107.25779

GAIC(br.1, br.2, br.3, br.4, k = log(length(brains$body)))

df AIC

br.3 7 88.47622

br.2 5 92.62040

br.4 9 95.14598

br.1 3 111.25440

Changing the starting values by trying different values for tol (e.g. trying each of the values
0.1, 0.2, . . . , 1 in turn), for models br.2, br.3 and br.4, did not change the values of AIC and
SBC given by the two GAIC commands above. The model br.3 with three components (i.e.
three parallel lines) is selected by both AIC and SBC criteria. We now print model br.3 and
its estimated (fitted) posterior probabilities.

br.3

##

Mixing Family: c("NO Mixture with NP", "Normal Mixture with NP")

##

Fitting method: EM algorithm

##

Call: gamlssNP(formula = lbrain ~ lbody, family = NO, data = brains,

K = 3, mixture = "np", tol = 1)

##

Mu Coefficients :

(Intercept) lbody MASS2 MASS3

-3.0715 0.7499 4.9805 6.5530

Sigma Coefficients :

(Intercept)

-0.9387

##

Estimated probabilities: 0.1071429 0.7514161 0.141441

##

Degrees of Freedom for the fit: 7 Residual Deg. of Freedom 21

Global Deviance: 65.1508

AIC: 79.1508

7.7. EXAMPLES USING THE GAMLSSNP() FUNCTION 173

SBC: 88.4762

br.3$post.prob

[[1]]

[,1] [,2] [,3]

[1,] 0 9.999624e-01 3.760045e-05

[2,] 0 9.999995e-01 4.736429e-07

[3,] 0 9.996309e-01 3.691210e-04

[4,] 0 9.979683e-01 2.031733e-03

[5,] 0 9.999947e-01 5.254125e-06

[6,] 1 0.000000e+00 0.000000e+00

[7,] 0 9.583487e-01 4.165135e-02

[8,] 0 9.995208e-01 4.792198e-04

[9,] 0 9.999824e-01 1.764759e-05

[10,] 0 1.617020e-01 8.382980e-01

[11,] 0 9.947820e-01 5.217995e-03

[12,] 0 9.999769e-01 2.306099e-05

[13,] 0 9.998409e-01 1.590788e-04

[14,] 0 3.157024e-06 9.999968e-01

[15,] 0 9.997563e-01 2.436742e-04

[16,] 1 0.000000e+00 0.000000e+00

[17,] 0 1.044992e-04 9.998955e-01

[18,] 0 9.999998e-01 2.035525e-07

[19,] 0 9.999978e-01 2.187091e-06

[20,] 0 9.999398e-01 6.024621e-05

[21,] 0 9.999799e-01 2.013594e-05

[22,] 0 9.992899e-01 7.101261e-04

[23,] 0 9.999975e-01 2.489188e-06

[24,] 0 6.263055e-02 9.373694e-01

[25,] 1 0.000000e+00 0.000000e+00

[26,] 0 9.999977e-01 2.336595e-06

[27,] 0 8.662450e-01 1.337550e-01

[28,] 0 9.999999e-01 6.645917e-08

So model br.3 can be presented as Y ∼ NO(µ̂, σ̂) where

µ̂ =

−3.072 + 0.750x, with probability 0.107
1.909 + 0.750x, with probability 0.751
3.481 + 0.750x, with probability 0.141

(7.13)

and σ̂ = 0.391. [Note that the intercept for the second component in (7.13) is obtained from
the estimated parameter coefficients for µ by 1.909 = −3.072 + 4.981, since MASS2 gives the
adjustment to the intercept for the second mixture component; similarly for MASS3.] The
output given by br.3$post.prob contains the estimated posterior probabilities of each of the
observations in the data set belonging to each of the 3 components. These are the fitted weights
ŵik given by (??) on convergence of the EM algorithm. A plot of the data together with the
fitted values for the µ parameter of model br.3 are shown in Figure 7.8. Each observation of
the data was allocated to the component for which it had the highest posterior probability and
the observations are plotted in the command below with circles (colour red), squares (colour

174 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

green) and diamonds (colour blue) representing allocation to each of the 3 components. Note
that since the parameter µ in this (normal distribution) case is the mean of the distribution
the lines are the fitted means of the conditional distributions fk(y) for k = 1, 2, 3. Figure 7.8 is
obtained by :

Figure 7.8 with(brains, plot(lbody, lbrain,

pch = c(21, 22, 23)[max.col(br.3$post.prob[[1]])],

bg = c("red", "green3", "blue")[max.col(br.3$post.prob[[1]])]))

for (k in 1:3) {
with(brains, lines(fitted(br.3, K = k)[order(lbody)] ~ lbody[order(lbody)],

lty = k))

}

0 5 10

0
2

4
6

8

lbody

lbr
ain

R code on

page 174

Figure 7.8: A plot of the brain size data together with a plot of the three component fitted
means of log brain size (lbrain) against log body size (lbody), (solid, dashed and dotted for
component 1,2 and 3 respectively)

The weighted average for the (conditional) parameters µ̂ for the K(= 3) components for each

observation, i.e.
∑K
k=1 π̂kµ̂ik can be obtained using the command fitted(br.3, K=0). Since

the parameter µ is, in this case, the mean of the normal distribution, this gives the marginal
mean of the response variable lbrain given the explanatory variable lbody.

Note how the marginal mean, using the function fitted(), is obtained here compared to the
conditional means. If the argument K of the fitted() function has any value in the range 1, 2, 3,
(that is the range of permissible values for the model br.3), then the conditional parameters
is given. For any other value the average µ is given. This will be the marginal mean only if
parameter µ is the mean of the conditional distribution for each component.

7.7. EXAMPLES USING THE GAMLSSNP() FUNCTION 175

model µ intercept µ slope σ
br.3 different same same
br.31 different same different
br.32 different different same
br.33 different different diferent

Table 7.2: Possible alternative models for the animal brain data

A residual plot of the finite mixture model is obtained the usual way using the function plot().

Figure 7.9plot(br.3)

Summary of the Randomised Quantile Residuals

mean = -0.004003875

variance = 1.052469

coef. of skewness = 0.1668313

coef. of kurtosis = 2.739025

Filliben correlation coefficient = 0.9962244

−6 −4 −2 0 2 4

−2
−1

0
1

2

Against Fitted Values

Fitted Values

Qu
an

tile
 R

es
idu

als

0 5 10 15 20 25

−2
−1

0
1

2

Against index

index

Qu
an

tile
 R

es
idu

als

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

Density Estimate

Quantile. Residuals

De
ns

ity

−2 −1 0 1 2

−2
−1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

R code on

page 175

Figure 7.9: The residual plot of model br.3 for the animal brain size data

There are several different models that we could fit here depending on which parameters are
common to the K = 3 components in the model. Table 7.2 shows possible alternative models
and the code below shows how to fit them:

176 CHAPTER 7. FINITE MIXTURE DISTRIBUTIONS

br.31 <- gamlssNP(formula = lbrain ~ lbody, sigma.fo = ~MASS,

mixture = "np", K = 3, tol = 1, data = brains, family = NO)

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..15 ..16 ..

17 ..18 ..19 ..20 ..21 ..22 ..23 ..24 ..25 ..26 ..27 ..28 ..

EM algorithm met convergence criteria at iteration 28

Global deviance trend plotted.

EM Trajectories plotted.

br.32 <- gamlssNP(formula = lbrain ~ lbody, random = ~lbody,

sigma.fo = ~1, mixture = "np", K = 3, tol = 1, data = brains,

family = NO)

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..15 ..16 ..

##

EM algorithm met convergence criteria at iteration 16

Global deviance trend plotted.

EM Trajectories plotted.

br.33 <- gamlssNP(formula = lbrain ~ lbody, random = ~lbody,

sigma.fo = ~MASS, mixture = "np", K = 3, tol = 1, data = brains,

family = NO)

1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 ..11 ..12 ..13 ..14 ..15 ..16 ..

17 ..

EM algorithm met convergence criteria at iteration 17

Global deviance trend plotted.

EM Trajectories plotted.

We compare the models using each of the criteria AIC and SBC:

GAIC(br.3, br.31, br.32, br.33)

df AIC

br.32 9 77.31133

br.3 7 79.15079

br.33 11 80.26824

br.31 9 81.93037

GAIC(br.3, br.31, br.32, br.33, k = log(length(brains$lbody)))

df AIC

br.3 7 88.47622

br.32 9 89.30117

br.31 9 93.92021

br.33 11 94.92249

Model br.3 has the smallest SBC. [Note model br.32 has the smallest AIC, however with so
many parameters in the model and so few data points it is not sensible to try to interpreted
this model.] Note also that since model br.33 has components with no parameters in common
it could also be fitted using the gamlssMX function.

Part IV

Additive terms

177

Chapter 8

Linear parametric additive terms

This chapter explains types linear terms which be used within a gamlss model and how
they can be used. In particularly it explains :

1. linear terms and interactions for factors and numerical explanatory variables.

2. different useful bases used for explanatory variables.

This chapter is essential for understanding the different types of additive terms in GAMLSS.

8.1 Introduction to linear and additive terms

In the GAMLSS implementation in R, the function gamlss() in gamlss allows modelling all
the distribution parameters µ, σ, ν and τ as linear and/or non-linear and/or ‘non-parametric’
smoothing functions of the explanatory variables. This allow the explanatory variables to affect
the predictors, (the η’s), of the specific parameters and therefore the parameters themselves. As
a result the shape of the distribution of the response variable, (not only the mean), is affected
by the explanatory variables.

We shall refer to the explanatory variables as terms in the model. The relationships between
a predictor η and the terms can be linear or non-linear. A non-linear relationship can be
parametric non-linear or a smoother. As an example of a parametric non-linear relationship
consider the expression β1x

β2 where both β1 and β2 are parameters and have to be estimated
within the model. Smoothers are non-parametric techniques which allow the data to determine
which relationship exists between the predictors and the explanatory variables, see Chapter ??
for more details about additive smoothing terms.

By additive terms we refer to the fact that in order to evaluate the effect of the explanatory
variables on the predictor for a specific parameter we have to add up their individual effects.
Additivity does not imply that there are no interactions in the model. Section 8.2.2 presents
some examples.

As an example of what type of terms GAMLSS model can take, let the x’s represent continuous
explanatory variables and the f a factor (with three levels), then the following could be typical

179

180 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

predictor η for a parameter:

η = b0 + b1x1 + b2x2 + b3if(f = 2) + b4if(f = 3) + b5(x1 × x2) +

b6x1if(f = 2) + b7x1if(f = 3) + s1(x3) + s2(x4) +

s3b8(x1)x4 + s4(x1)if(f = 2) + s5(x1)if(f = 3) + s6(x3, x5)

where

b0 is the constant term

b1x1 + b2x2 are linear additive terms of continuous variables

b3if(f = 2) + b4if(f = 3) is the main effect of a factor f

b5(x1x2) linear interaction between two continuous terms

b6x1if(f = 2) + b6x1if(f = 3) is a linear interaction between x1 and f

s1(x3) + s2(x4) are smoothing additive terms for x3 and x4

s3(x1)x4 is varying coefficient term for x4 given x1

s4(x1)if(f = 2) + s5(x1)if(f = 3) is an interaction of f with smoothing terms for x1

s6(x3, x5) is a smooth iteration between x3 and x5

The diagram in ?? shows a classification of the different additive terms within the GAMLSS
models.

In this Chapter we are dealing with linear parametric terms. That is, the left part of the above
figure. Chapter ?? describes the non-parametric smoothing terms. First we introduce how
main effects and interactions for linear terms are used (based on Wilkinson and Rogers [1973]
notation) and them how some non-linear relationships can be still modelled using linear basis
functions. In particular the following basis functions are introduced:

1. polynomials (Section 8.3)

2. fractional polynomials (Section 8.4)

3. piecewise polynomials (Section 8.5)

4. B-splines (Section 8.6)

The fitting of non-linear parametric functions with GAMLSS is described in Chapter ??. Section
8.2 describes how simple linear terms for continuous and categorical explanatory variables are
accommodated with an additive model. It also describes linear interactions between terms.

8.2 Linear terms

The linear part is declared by the use of formulae. A formula in R looks something like:

y ∼ x1 + x2 + f1 + f2 ∗ x3

8.2. LINEAR TERMS 181

Additive
Terms

parametric smoothing

linear nonlinear

penalised

others

polynomials

fractional poly

piecewise poly

B-splines

P-splines

cubic splines

tensor products

thin plate splines

loess

neural networks

decision trees

Figure 8.1: Diagram showing the different additve terms in GAMLSS

182 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

where the variable y on the left side of ∼ is the response variable, and the variables x1, x2, x3,
f1, f2 on the right side of ∼ are the explanatory variables. For demonstration purposes we
shall use here the x’s to denote continuous explanatory variables and f ’s for factors (that is,
categorical explanatory variables).

The symbols ‘+’ and ‘∗’ have special meaning here derived from the Wilkinson and Rogers
[1973] notation as applied in the S language by Chambers and Hastie [1992]. [It is the same
notation used in R the fitting of linear models, lm(), and generalised linear models, glm(), see
for example Venables and Ripley [2002], Section 6.2.] The purpose of the right hand part of the
formula is to create the design matrix X for fitting the linear part of the GAMLSS model. The
symbol ‘+’ is describes additive terms while the symbol ‘∗’ interactions between terms.

8.2.1 Additive linear terms

If the explanatory variable is a continuous one the ‘+’ sign will enter a single column in the
design matrix X. If it is a factor it will enter a set of dummy variables. This is the most
common way to enter factors in the design matrix X. A dummy variable is a vector containing
zeros and ones. As an example, if the factor f1 has say 4 levels (that is, four categories) then
f1 will be represented within X as a set of four dummy variable. Each dummy variable will
have the values 1 if f1 is at the appropriate level and zero otherwise (see example below).

Things are complicated a bit with the presence of the constant in the design matrix X. The
constant or intercept is represented in the design matrix as a column of ones. The constant
is automatically included in the design matrix unless the user uses within the formula ‘-1’.
The problem arises from the fact that by including both the constant and the factor (as a
set of dummy variables) in the model, the design matrix became singular (and therefore not
invertible). To avoid this R drops the first dummy variable that is the first level of the factor
from the design matrix.

To demonstrate we use the aids data. The data were collected quarterly and the aids

data.frame contains three variables: i) y: the number of quarterly aids cases in England
and Wales from January 1983 to March 1994 . ii) x: time in quarters from January 1983 iii)
qrt: a factor for the quarterly seasonal effect. Here we input the data and output the first ten
rows of the design matrix of the model ∼ x+ qrt.

data(aids)

head(with(aids,model.matrix(formula(~x+qrt))), 10)

(Intercept) x qrt2 qrt3 qrt4

1 1 1 0 0 0

2 1 2 1 0 0

3 1 3 0 1 0

4 1 4 0 0 1

5 1 5 0 0 0

6 1 6 1 0 0

7 1 7 0 1 0

8 1 8 0 0 1

9 1 9 0 0 0

10 1 10 1 0 0

8.2. LINEAR TERMS 183

8.2.2 Linear interactions

Interactions make the effect of two or more explanatory variables a joint effect. Interactions
can be between:

• two or more continuous variables

• two or more factors

• one or more continuous variables and one or more factors

The additive formula ∼x1+x2 for two continuous variables initiates a linear plane fitting (by
introducing two new columns on the design matrix X). The interaction formula ∼x1*x2 in-
troduces a third column containing the element-wise multiplication of x1 by x2. This extra
column makes the fitting surface a curvy one. This linear interaction surface is fitted globally
and it is rather restrictive compared with surfaces fitted by non-parametric smoothers where
more flexibility locally is allowed. The formula ∼x1*x2 is equivalent in R to ∼x1+x2+x1:x2
which represents the main effect for x1, the main effect of x2 and the linear interaction between
x1 and x2. We refer to the coefficient of x1 as the main effectt for x1 the coefficient of x2 as
the main effect for x2 and the coefficient of x1:x2 as the interaction of x1 and x2. Depending
on how many variables are involved we have ‘two way’, i.e. x1*x2, ‘three way’ i.e. x1*x2*x3

and up to say ‘k way‘ forms of interactions.

Interactions for categorical variables say ∼f1*f2 add extra columns in the design matrix to make
sure that all the combinations of the crossing of the different levels involved are represented.
For example if f1 has 2 levels, {A,B}, and f2 has 3 levels, {1, 2, 3}, them the iteration will
have 6 = 2 × 3 levels reflecting all combinations {A1, A2, A3, B1, B2.B3}. The following is an
example of how R works out the design matrix for factor iterations. First we create two factors
with 2 and 3 levels of length 24 and then we show the first twelve rows of the design matrix.

f1<-gl(2,1, 24)

levels(f1) <- c("A", "B")

f1

[1] A B A B A B A B A B A B A B A B A B A B A B A B

Levels: A B

f2<-gl(3,2, 24)

f2

[1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

Levels: 1 2 3

head(model.matrix(~f1*f2), 12)

(Intercept) f1B f22 f23 f1B:f22 f1B:f23

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0

4 1 1 1 0 1 0

5 1 0 0 1 0 0

6 1 1 0 1 0 1

7 1 0 0 0 0 0

8 1 1 0 0 0 0

184 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

9 1 0 1 0 0 0

10 1 1 1 0 1 0

11 1 0 0 1 0 0

12 1 1 0 1 0 1

Note that, since the constant (intercept) is added automatically in the design matrix, the main
effect of f1 is represented by 1 column, (number of levels of f1 minus 1) headed by f1B, the main
effect of f2 by 2 columns, (3-1=2), and the interaction of the two factors by 2 = (2−1)×(3−1)
columns headed by f1B:f22 and f1B:f23. In general if f1 has k1 levels and f2 has k2 levels
then the interaction has k = (k1 − 1)× (k2 − 1) columns.

The following is an example of an interaction between a continuous variable and a factor.

data(aids)

head(with(aids,model.matrix(formula(~x*qrt))), 10)

(Intercept) x qrt2 qrt3 qrt4 x:qrt2 x:qrt3 x:qrt4

1 1 1 0 0 0 0 0 0

2 1 2 1 0 0 2 0 0

3 1 3 0 1 0 0 3 0

4 1 4 0 0 1 0 0 4

5 1 5 0 0 0 0 0 0

6 1 6 1 0 0 6 0 0

7 1 7 0 1 0 0 7 0

8 1 8 0 0 1 0 0 8

9 1 9 0 0 0 0 0 0

10 1 10 1 0 0 10 0 0

The continuous variable here is time which is coded as the values from 1 to 45. The design
matrix in this case contains: i) the constant as the first column ii) the x main effect as the second
column iii) the main effect of the factor qrt as three dummy variables containing the last three
levels of the factor and iv) the interaction x:qtr represented here by the last three columns. In
order to show the interpretation of the model containing both factors and continuous variable
consider the simple analysis of covariance case, ANOCOVA, with a single covariate x and a single
factor f. In the standard ANOCOVA table we assume that the response variable is normally
distributed and we interested to see how the mean of the response variable is behaving. Within
GAMLSS we are interested to see how the predictor of a distribution parameter η changes with
the continuous variable x and the factor f. In a case like this there are five different models of
interest for η:

1. The null model in which neither f or x are needed in the model, i.e. just the constant

2. The simple analysis of variance model where only the factor f is included in the model
but not the variable x

3. The simple regression model where the variable x is included in the model but not the
factor f

4. The additive model where both x and f are included in the model, but with no interaction
between them, so the slope for x is common for all levels of f but the intercept varies
according to to the levels in f

5. The interaction model where both intercepts and slopes vary for different levels of f

8.2. LINEAR TERMS 185

4 6 8 10 12 14 16

0
10

20
30

40
50

1: Null model
 y~1

x

y

1 2 3

0
10

20
30

40
50

2: ANOVA model
 y~f

f

y

4 6 8 10 12 14 16

0
10

20
30

40
50

3: Regression model
 y~x

x

y

4 6 8 10 12 14 16

0
10

20
30

40
50

4: The additive model
 y~x+f

x

y

4 6 8 10 12 14 16

0
10

20
30

40
50

5: The interaction model
 y~x*f

x

y

Figure 8.2: The five different models in the simple analysis of covariance

A graph for the different models involved is shown in Figure 8.2. The vertical axis labelled y
represents the mean of y in a normal error ANOCVA model, or more generally the predictor η
for a distribution parameter in a GAMLSS model, in which case the lines in the graph represent
the different predictor values for each of the models. Model 1 has a constant predictor value.
Model 2 has different values for the different levels of the factor f. The predictor of model
3 increases linearly with x, while the predictor of model 4 shows the same slope in the linear
relationship between the the predictor and x but with different intercept values. In model 5,
both the intercepts and slopes of the predictor vary according to the levels of the factor f.

In the normal case where we model the mean, the choice between models is achieved using an
ANOCOVA table and the nested models can be compared using an F-test. (Model I is nested
within model II if model I is a subclass of model II). For example Model 4 above is a nested
model within model 5 so we can compare them. Models 2 and 3 are nested models within both
models 4 and 5, while the null model is nested within all the rest. Note model 2 is not nested
within model 3. The appropriateness of the F-distribution comes as a result of the normal
assumption with constant variance for the response variable, so in general it not appropriate for
a GAMLSS model where the selection between models can be achieved through χ2

df asymptotic
distribution of the generalized likelihood ratio test statistic for nested models (where df is the
deference in degrees of freedom between models) or GAIC for non-nested ones.

186 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

8.3 Polynomials

Polynomial are the simplest way of trying to model non-linear relationships in a regression type
situation. A polynomial has the form:

h(x) = β0 + β1x+ β2x
2 + β3x

3 + . . .+ βpx
p (8.1)

and the only thing required by the user is the add the appropriate columns in the design
matrix X. There are two ways of doing this in R the first is by using the function I() the
second through the orthogonal polynomial function poly(). The function I() allows the user
to calculate expression within a formula. For example ∼ x + I(x∧2)+I(x∧3) will fit a cubic
polynomial for x by creating two extra column (apart from the columns of the constant and x)
containing x2 and x3. The columns of the design matrix X form a polynomial basis. Higher
order polynomial can be added the same way. The problem with defining polynomials this
way is that it can lead to numerical inaccuracy. See for example Figure 8.3(a) where the basis
functions for a 5th degree polynomial for the time variable (1 to 45) of the aids data is plotted.
The values for xp can easily become too big (as in Figure 8.3(a)) or too small (for small values
of x). This problem is avoided if, instead of the standard basis, we use an orthogonal polynomial
basis. Figure 8.3(b) shows an orthogonal polynomial basis for the same time variable of the
aids data. The poly() function provides this facility in R. For example, Figure 8.3(b) shows
all up to 5th order orthogonal polynomial basis (apart from the constant). The curves are easily
identified as linear, quadratic, cubic etc. Furthermore the basis vectors in the design matrix X
are orthogonal from each other.

The fitted values of the same order polynomial, irrespective of whether the standard or orthog-
onal basis is used, should be identical (unless something went numerically wrong). The fitted
values are a linear function of the basis variables, weighted differently, according to the fitted
coefficients. Figure 8.3(c) shows the fitted values of the the model y∼poly(x,5) to the aids

data. The figure also show the orthogonal basis functions weight by their fitted coefficients.
Adding the weighted basis functions together will results the fitted values. Note that in this
specific case the constant (flat line) and the linear part of the basis play a major role in deter-
mining the shape of the fitted value, while the rest of the basis only add a small curvature to
it.

Figure 8.3 data(aids)

def.par <- par(no.readonly = TRUE)

simple

X <- with(aids,model.matrix(formula(~x+I(x^2)+I(x^3)+I(x^4)+I(x^5))))[,-1]

nf <- layout(matrix(c(1,2,3,3),2,2,byrow=TRUE))

matplot(X, type="l", ylim=c(9, 1000), lwd=2, ylab="poly Basis", xlab="x",

main="(a)")

legend("topright", legend =c("^1", "^2", "^3", "^4", "^5"),

col=c(1,2,3,4,5), lty=c(1,2,3,4,5),

ncol=1, bg="white", title="types")

orthogonal

P <- with(aids,model.matrix(formula(~poly(x, 5)))[,-1])

matplot(P, type="l", lwd=2, ylab="poly Basis", xlab="x", main="(b)")

legend("bottomright", legend =c("^1", "^2", "^3", "^4", "^5"),

col=c(1,2,3,4,5), lty=c(1,2,3,4,5),

ncol=1, bg="white", title="types")

8.3. POLYNOMIALS 187

fitting the model

m1 <- gamlss(y~poly(x, 5), data=aids)

GAMLSS-RS iteration 1: Global Deviance = 430.3

GAMLSS-RS iteration 2: Global Deviance = 430.3

P1 <- model.matrix(with(aids,formula(~poly(x, 5))))

b <- coef(m1)

b

(Intercept) poly(x, 5)1 poly(x, 5)2 poly(x, 5)3 poly(x, 5)4 poly(x, 5)5

200.49 961.16 46.19 -68.04 46.24 22.13

F <- t(rep(b,45) *t(P1))

Fit <- cbind(fitted(m1), F)

matplot(Fit, type="l", lwd=c(3,2,2,2,2,2,2), ylab="poly FIT",

xlab="x", main="(c)")

legend("bottomright", legend =c("fitted", "^0", "^1", "^2", "^3", "^4", "^5"),

col=c(1,2,3,4,5,6,7), lty=c(1,2,3,4,5,6,7), ncol=1, bg="white")

par(def.par)

0 10 20 30 40

0
20

0
40

0
60

0
80

0

(a)

x

po
ly

Ba
sis

types

^1
^2
^3
^4
^5

0 10 20 30 40

−0
.3

−0
.1

0.1
0.3

(b)

x

po
ly

Ba
sis

types

^1
^2
^3
^4
^5

0 10 20 30 40

−2
00

0
20

0
40

0

(c)

x

po
ly

FI
T fitted

^0
^1
^2
^3
^4
^5

R code on

page 186

Figure 8.3: Polynomial for aids data: (a) standard polynomials basis, (b) orthogonal polynomial

basis, (c) the fitted values are a linear function of the basis vectors i.e. ŷ = Xβ̂.

188 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

While orthogonal polynomials are more stable to fit they suffer from the problem of interpret-
ability. Occasionally we may have to go back to the standard polynomial in order to explain
the influence of the explanatory variable on the predictor.

The problem with polynomials in general is that, because their basis is defined globally in the
full range of values for x, they can be highly influenced by a few observations in the data. This
is a well known phenomenon and it is avoided by using smooth non-parametric functions. The
Section 8.8.1 provides an example of the use of orthogonal polynomials.

8.4 Fractional Polynomials

A polynomial, βxp, is called fractional if the power p is not necessarily a positive integer, e.g.
βx−1/2. Fractional polynomials were introduced by Royston and Altman [1994]. The idea is
that with only a few fractional polynomials you can get a very flexible base to fit a parametric
curve to your data. The GAMLSS implementation uses the functions fp() and bfp() which
are loosely based on the fractional polynomial function fracpoly() for S-PLUS given by Ambler
[1999]. The function bfp() generates the design matrix for fitting a fractional polynomial, while
the function fp() works in gamlss() as an additive ’smoother’ term.

The function fp() works as follows. Its argument npoly determines whether one, two or three
terms in the fractional polynomial will be used in the fitting. For example with npoly=3

the following polynomial functions are fitted β0 + β1x
p1 + β2x

p2 + β3x
p3 where each pj , for

j = 1, 2, 3 can take any value within the predetermined set (−2,−1,−0.5, 0, 0.5, 1, 2, 3) with
the value 0 interpreted as function log(x) (rather than x0). See Figure ?? for the shape of
these basis functions. If two powers, pj ’s, happen to be identical then the two terms β1jx

pj

and β2jx
pj log(x) are fitted instead. Similarly if three powers pj ’s are identical the terms fitted

are β1jx
pj , β2jx

pj log(x) and β3jx
pj [log(x)]

2
. Note that npoly=3 is rather slow since it fits all

possible 3-way combinations at each backfitting iteration.

Figure 8.4 x<-seq(-8,8,0.05)

plot(x, type="n",xlim=c(min(x), max(x)), ylim=c(-5,5),

main="fractional polynomial base", xlab="x", ylab="fractional poly")

ii<-1

for (i in c(-2, -1, -0.5, 0, 0.5, 1, 2, 3))

lines(I(x^i)~x, lwd=2, col=(ii<-ii+1), lty=ii)

legend("bottomright", legend=c("-2", "-1", "-0.5", "0", "0.5", "1", "2", "3"),

col=2:9, lty=2:9, lwd=2)

Fractional polynomials can be fitted within GAMLSS using the additive function fp(). It takes
as arguments the x variable and npoly (the number of fractional polynomial terms) which takes
the values 1,2,3. An example of using the function fp() within GAMLSS is shown in Section
8.8.2.

8.5 Piecewise Polynomials and Regression Splines

This section is an introduction to piecewise polynomials. Piecewise polynomials are a useful tool
in statistical modelling both on their own or in their penalised form. In fact fitting penalised

8.5. PIECEWISE POLYNOMIALS AND REGRESSION SPLINES 189

−5 0 5

−4
−2

0
2

4

fractional polynomial base

x

fra
cti

on
al

po
ly

−2
−1
−0.5
0
0.5
1
2
3

R code on

page 188

Figure 8.4: Showing the fractional polynomial basis used within GAMLSS that is polynomials
with power (−2,−1,−0.5, 0, 0.5, 1, 2, 3) where 0 corresponds to a log function.

piecewise polynomials is the most popular way of non-parametric smoothing due to the fact
that it works well in practice and is easy to implement. see Chapter ??

Sometimes we are confronted with data in which there is a change in the relationship between
the dependent and independent variables. For simplicity, we will only discuss the case where
there is only one explanatory variable x. This type of data can be modelled using piecewise
polynomials in x to describe the relationship. The value(s) of the explanatory variable where
the piecewise polynomials change are called breakpoints or knots, and these polynomials are
known as splines if continuity restrictions are placed on them at these breakpoints. The name
splines itself is derived from thin rods that engineers have used to fit curves through given
points. Smith [1979] referred to these piecewise polynomials as regression splines and examined
them as a tool in regression.

A simple example of a piecewise polynomial is the split line curve with a single breakpoint.
There are two types of split line curve models - continuous and discontinuous split lines. The
continuous split line case has the form

h(x) = β00 + β01x+ β11(x− b)H(x > b) (8.2)

where H(x > b) is the Heaviside function taking value 1 if x > b otherwise 0. β00, β01, and β11
are the linear parameters, and b, the breakpoint (or knot), being the non-linear parameter. In
a statistical modelling situation all four parameters need to be estimated. Figure 8.5(a) shows
a continuous split line curve with parameters β00 = 5, β01 = 0.5, β11 = 1 and b = 5. With a

190 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

0 2 4 6 8 10

6
8

10
12

14

(a)

x

h(x
)

h(x) = β0 + β1x + β3xH(x > b)

+

0 2 4 6 8 10

4
6

8
10

14
18

(b)

x

h(x
)

+

+

h(x) = β0 + β1x + β3H(x > b) + β4xH(x > b)

Figure 8.5: Piecewise linear, (a) continuous and (b) discontinuous lines.

discontinuous split line, the function has the form

h(x) = β00 + β01x+ [β10 + β11(x− b)]H(x > b) (8.3)

with β00, β10, β01, β11, and b being the parameters which need to be estimated. In real data
exhibiting piecewise linear behaviour the breakpoint parameter b is usually the parameter of
interest. Figure 8.5(b) shows a discontinuous split line curve with parameters β00 = 5, β01 = 0.5,
β10 = 3, β11 = 0.7 and b = 5.

A quadratic piecewise polynomial with one breakpoint will have the form

h(x) = β00 + β01x+ β02x
2 +

[
β10 + β11(x− b) + β12(x− b)2

]
H(x > b). (8.4)

The function is discontinuous at the breakpoint its first and second derivatives discontinuous,
[see Figure 8.6(a)]. By dropping the term β10 from the equation the function becomes continuous
but still has a discontinuous first and second derivatives at the breakpoint, [see Figure 8.6(b)].
The function becomes continuous and with continuous first derivative when the term β11(x− b)
is dropped, [see Figure 8.6(c)]. To create Figure 8.6 the following values for the parameters
were used: β00 = 5, β01 = −0.1, β02 = 0.1, β10 = 2, β11 = 1,β12 = −0.4 and b = 5.

More general piecewise polynomials are defined as

h(x) =

D∑
j=0

β0jx
j +

K∑
k=1

D∑
j=0

βkj(x− bk)jH(x > bk) (8.5)

where D is the degree of the polynomial in x and K is the number of break points b. The
presence or absence of the term βkj(x − bk)j in the above equation allows a discontinuity or

8.5. PIECEWISE POLYNOMIALS AND REGRESSION SPLINES 191

0 2 4 6 8 10

4
6

8
10

(a)

x

h(
x)

+

+

0 2 4 6 8 10

4
6

8
10

(b)

x

h(
x)

+

0 2 4 6 8 10

4
6

8
10

(c)

x

h(
x) +

Figure 8.6: Piecewise quadratic, (a) discontinuous and discontinuous first derivative, (b) con-
tinuous with discontinuous first derivative and (c) continuous with continuous first derivative.

192 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

continuity respectively at the break point bk in the jth derivative of the function. If continuity
is required in the jth derivative of the function at a particular breakpoint bk it would probably
be required also in all the lower-order derivatives at bk. This would be achieved by removing
all the terms βkm(x − bk)m, for m = 0, 1, . . . k, from the equation. The name spline is usually
applied to piecewise polynomials with all the lower derivatives than D continuous at bk. For
example

h(x) =

D∑
j=0

β0jx
j +

K∑
k=1

βk(x− bk)DH(x > bk) (8.6)

is a spline function of degree D. For D=3 we have the cubic splines

h(x) = β00 + β01x+ β02x
2 + β03x

3 +

K∑
k=1

βk(x− bk)3H(x > bk) (8.7)

Cubic splines are, because of their continuous first and second derivatives at the break points,
very smooth curves and therefore ideal for smoothing techniques.

In order to fit a spline curve as in equation (8.7) within a regression models you would need
K non-linear bk break point parameters and K + 4 linear β parameters to completely specified
the equation. A design X matrix basis based on equation (8.7) is called a truncated piecewise
polynomial basis. Figure 8.7 shows a truncated piecewise polynomial basis for degrees of poly-
nomials equal to 0 constant, 1 linear, 2 quadratic and 3 cubic. The x-variable here is in the
range from zero to one and there are five knots at (0.2, 0.3, 0.5, 0.7, 0.8).

For degree = 0, in Figure 8.7(a), the basis functions comprise six dummy variables corresponding
to the intervals (0 < x ≤ 0.2), (0, 2 < x ≤ 0.3), (0.3 < x ≤ 0.5) (0.5 < x ≤ 0.7) (0.7 < x ≤ 0.8),
(0.8 < x ≤ 1), having ones if the value of x belongs to the interval and zero otherwise. For
degree = 1 the basis functions, in Figure 8.7(b), comprise the constant plus six extra linear
functions. The first linear function is defined on the whole range of x while the rest five only
on a limited range, e.g. the second on the range (0.2 < x < 1). Figure 8.7(c) shows the basis
functions for degree= 2. Here we have, the constant, the linear plus 6 quadratic functions. The
constant linear and first quadratic functions are define on the whole range of x while the other
5 quadratics functions are defined on a limited range of x depending on the break points (or
knots). The same pattern appears in Figure 8.7(c) for degree= 3 where the basis functions
comprise of the constant, linear, quadratic and cubic functions defined on the whole range of x
while the other five cubic function are defined only on a limited range depending on the knots.
While the truncated basis of a spline function is intuitively simple, it suffers with the same
problem as a polynomial basis in that it is not numerically stable. The B-splines introduced in
the next section is numerically superior.

8.6 B-Splines basis

B-splines are to the truncated piecewise polynomials what orthogonal polynomials are to poly-
nomials, that is, an B-spline basis provides a superior numerical basis to equation (8.7). The
basic functions in B-spline are defined only locally in the sense that they are non-zero only on
the domain spanned by 2 + D knots, where D is the degree of the piecewise polynomial, see
de Boor [1978] for further details. The term ”B-spline” is short for basis spline. The important

8.6. B-SPLINES BASIS 193

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Tr
un

. S
pl

in
e

B
as

is

(a) degree=0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Tr
un

. S
pl

in
e

B
as

is

(b) degree=1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Tr
un

. S
pl

in
e

B
as

is

(c) degree=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Tr
un

. S
pl

in
e

B
as

is

(c) degree=3

Figure 8.7: Showing truncated piecewise polynomials basis functions for different degrees a)
constant, b) linear, c) quadratic and d) cubic, The x variable is defined from zero to one having
break points at (0.2, 0.4, 0.5, 0.6, 0.8).

194 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

thing here is that any function given by equation (8.7) of a given degree and for a given x range
can be uniquely represented as a linear combination of B-splines of the same degree within the
same range. There are several properties of B-splines worth noting:

• The B-splines are defined by local functions which have their domain within 2 +D knots
of the x range. For example for cubic splines with D = 3 each base function is defined
within 5 knots.

• Depending on the degree of the piecewise polynomial the B-splines could be

– local constants (D = 0) function of x,

– local (two piece) linear (D = 1) function of x,

– local (three piece) quadratic (D = 2) function of x,

– local (four piece) cubic (D = 3) function of x or

– any higher level (four D + 1) polynomial D => 4
Figure 8.8 show an example for D = 0, 1, 2, 3. Note that the basis functions of a
cubic spline are very similar in shape to the normal distribution.

• The knots do not have to be in equal distance, so general patterns of knots are possible.

• The number of knots determines the size of B-spline basis which make up the piecewise
polynomial function.

• B-splines are columns of basis matrix B. This matrix can be used in a regression frame-
work as the design matrix. The fitted coefficients in such regression ŷ = Bβ̂ produce a
flexible non-linear relationship between y and x. Figure 8.9 shows a regression fit using
the aids data. Figure 8.9(a) shows the B-spline basis functions with D = 3 for fitting
x (time) generated with 8 equal space knots. Figure 8.9(b) shows the fitted spline (solid
line) and the basis functions this time weighted by their fitted coefficients.

Models in which the break point parameters (or knots) bk are determine in advance, so only the
linear parameters β have to be estimated, are called regression spline models. If the position
of the knots (or the break points) is chosen uniformly over the range of the x-variable then
the regression spline are called Cardinal splines. Another method of regression splines is the
one which uses positions determined from the quantile values the x-variable. The number of
knots in both procedures effects the degrees of freedom for the fitted model and therefore the
complexity of the model. Parameters which determine the complexity of the model are usually
referred to as smoothing parameters. The degrees of freedom for the fitted model in this case are
1+D+K, One for the intercept, D for the degree of the polynomial in x and K for the number
of knots. This design matrix B has 1 + D + K independent columns. To create a B-splines
basis, the function bs() or ns() from package splines can be used. The first one generates
the B-spline basis matrix for a polynomial spline of any degree and the second generates the
B-spline basis matrix for a natural cubic spline. Natural cubic splines are cubic splines having
the extra condition that the behaviour of the function outside the range of x is linear. An
example of using bs() is given in Section 8.8.3.

Models in which the break points have to be estimated are called free knot models and they are
examined in next section.

8.6. B-SPLINES BASIS 195

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
pl

in
e

B
as

is

(a) degree=0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
pl

in
e

B
as

is

(b) degree=1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
pl

in
e

B
as

is

(c) degree=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
pl

in
e

B
as

is

(c) degree=3

Figure 8.8: Showing B-spline basis for different degrees a) constant, b) linear, c) quadratic and
d) cubic, The x variable is defined from zero to one having unequal spaced knots (break points)
at (0.2, 0.4, 0.5, 0.6, 0.8).

196 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

x

B
−

sp
lin

es
 b

as
is

0 10 20 30 40

0
10

0
20

0
30

0
40

0
50

0

(b)

x

B
−

sp
lin

es
 F

it

Figure 8.9: Showing B-splines fit of y (the number of aids cases) against x (time) for the aids

data using 8 equal space knots. a) Showing the B-splines basis for x, and b) showing the fitted

values for y in black plus the B-splines basis functions weighted by their coefficients β̂.

8.7. FREE KNOTS BREAK POINT MODELS 197

8.7 Free knots break point models

Free knots (or break point) models are piecewise polynomial models where the position and
number of knots have to estimated from the data. The models are useful if it is believed that
there is a structural change or changes in the relationship between the y and x and that the
time(s) or point(s) where the relationship changes are unknown. Estimation of the break points
is a highly non-linear problem. The likelihood function of the knot parameters is notorious
for its multiple maxima. In this section we concentrate on cases where there are relatively few
knots. For example Figure ??(a) is a typical example where at some point the linear relationship
between y and x is changing changes.

The gamlss.add packages provide few functions for break point modelling:

• fitFixedKnots() : for fitting a univariate regression model using piecewise polynomials
with known knots

• fitFreeKnots(): for fitting a univariate regression model using piecewise polynomials
with unknown knots

• fk(): for fitting a regression additive terms using piecewise polynomials with unknown
(or known) knots

The argument for the functions fitFixedKnots() and fitFreeKnots() are:

x the x variable (explanatory)

y the response variable

weights the prior weights

knots the position of the interior knots for fitFixedKnots() or starting values for fitFreeKnots()

data the data frame

degree the degree of the piecewise polynomials

base The basis functions for the piecewise polynomials, "trun", for truncated (default), and
"Bbase" for B-spline basis piecewise polynomials

trace controlling the trace of of optim(), only used for the function fitFreeKnots()

... for extra arguments

Those two functions return a S3 class object "FreeBreakPointsReg" and "FixBreakPointsReg"

respectively. This objects have methods print(), fitted(), residuals(), coef(), knots()
and predict(). The "FixBreakPointsReg" objects also have vcov and summary(). The func-
tion fk() provides an interface so those two functions can be utilised within gamlss(). The
main arguments of the function fk() are:

x the x variable

start starting values for the breakpoints. The number of break points is also determined by
the length of start.

while other arguments for "FreeBreakPointsReg" or "FixBreakPointsReg" can be pass through
control. An example of using the fk() function is given in Section 8.8.4.

198 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

8.8 Example: the CD4 data

Data summary: the CD4 data

R data file: CD4 in package MASS of dimensions 609× 2

variables

cd4 : CD4 counts from uninfected children born to HIV-1 mothers.

age : The age of child in in years

purpose: to demonstrate the use of linear parametric terms

This section gives an example on how some of the techniques described in the previous section
can be used. The data are given by Wade and Ades (1994) and they refer to cd4 counts from
uninfected children born to HIV-1 mothers and the age in years of the child. Here we input
and plot the data in Figure ??. This is a simple regression example with only one explanatory
variable, the age, which is a continuous variable. The response while, strictly speaking is a
count, is sufficiently large for us to treat it at this stage as a continuous response variable.

Figure 8.10 data("CD4")

plot(cd4 ~ age, data = CD4)

0 2 4 6 8

0
500

100
0

150
0

200
0

age

cd4

R code on

page 198

Figure 8.10: The cd4 data.

There are several striking features in this specific set of data in Figure ??.

1. The first has to do with the relationship between the mean of cd4 and age. It is hard to
see from the plot whether this relationship is linear or not.

2. The second has to do with the heterogeneity of variance in the response variable cd4. It

8.8. EXAMPLE: THE CD4 DATA 199

appears that the variation in cd4 is decreasing with age.

3. The final problem has to do with the distribution of cd4 given the age. Is this distribution
normal? It is hard to tell from the figure but probably we will need a more flexible
distribution.

Traditionally, problems of this kind were dealt with by a transformation in the response variable
or a transformation in both in the response and the explanatory variable(s). One could hope
that this would possibly correct for some or all the above problems simultaneously. Figure ??
(produced with the following code) shows plots where several transformations for cd4 and age

were tried. It is hard to see how we can improve the situation by transformations.

Figure 8.11op <- par(mfrow = c(3, 4), mar = par("mar") + c(0, 1, 0, 0),

pch = "+", cex = 0.45, cex.lab = 1.8, cex.axis = 1.6)

page <- c("age^-0.5", "log(age)", "age^.5", "age")

pcd4 <- c("cd4^-0.5", "log(cd4+1)", "cd4^.5")

for (i in 1:3) {
yy <- with(CD4, eval(parse(text = pcd4[i])))

for (j in 1:4) {
xx <- with(CD4, eval(parse(text = page[j])))

plot(yy ~ xx, xlab = page[j], ylab = pcd4[i])

}
}

par(op)

Within the GAMLSS framework we can deal with these problems one at the time. First we
start with the relationship between the mean of cd4 and age.

8.8.1 Orthogonal polynomials

We will fit orthogonal polynomials of different orders to the data and choose the best using a
GAIC criterion. For now we fit a constant variance and a default normal distribution.

m1 <- gamlss(cd4 ~ age, sigma.fo = ~1, data = CD4, trace = FALSE)

m2 <- gamlss(cd4 ~ poly(age, 2), sigma.fo = ~1, data = CD4, trace = FALSE)

m3 <- gamlss(cd4 ~ poly(age, 3), sigma.fo = ~1, data = CD4, trace = FALSE)

m4 <- gamlss(cd4 ~ poly(age, 4), sigma.fo = ~1, data = CD4, trace = FALSE)

m5 <- gamlss(cd4 ~ poly(age, 5), sigma.fo = ~1, data = CD4, trace = FALSE)

m6 <- gamlss(cd4 ~ poly(age, 6), sigma.fo = ~1, data = CD4, trace = FALSE)

m7 <- gamlss(cd4 ~ poly(age, 7), sigma.fo = ~1, data = CD4, trace = FALSE)

m8 <- gamlss(cd4 ~ poly(age, 8), sigma.fo = ~1, data = CD4, trace = FALSE)

First we compare the models using the Akaike Information criterion (AIC) which has penalty
k = 2 for each parameter in the model, (the default value in the function GAIC()):

GAIC(m1, m2, m3, m4, m5, m7, m8)

df AIC

m7 9 8963.263

m8 10 8963.874

m5 7 8977.383

200 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

+
++ ++ +

+++ + ++

+
+ ++ ++ ++

+
++++

++ ++

+

+
+

++++
++++ +

+
+

++
+++ + ++ ++

+

++
++

++ +
+ +
+

+++ +
++++ +++ ++ ++++

++
+

+

+

+

+ +
+ +

+

+ + +
+
++

+
++

+
+

++
++ +++ ++

+

+
+

++ ++++++ +
+ +

+++++ +
+ +++ ++ ++ +

+ +
++++ ++

+
+++ + ++ + ++++ +

+
+++ + + ++ +++ ++ + ++ ++

+
+++ +++++

++
+

+
+++

+ ++ ++ ++++ +
+

+

+
++ +++ ++++

+

++ +++++
+

+ ++

+

+
++

+ +
+

++ +

+++
+

+

+
++

+

+

++

+

+
+ ++

+

+
++

+

++++ ++
+
+

+
+ ++ ++

+
++

+ + ++++ +++ +
+

+
+

++ ++ +
+++ ++ ++ +++ +

+
+ + +

+

++ +
+
++ ++ ++ ++ ++

+ +++ ++ ++++ +++ ++ +++++ ++++ +
+ +++++

+
++ +++

++ + +++ +++ +++ ++ +
+
+ ++ +++ +++

+
+
+

+
+ ++++ +
+

+++ + ++++++ +++
+

++
+

+

+

++++
+

+

+

+++

+

++
+

+ +
+

++
+

+++ ++
+

+
++

+

+
++

+

+ ++ ++
+ + +

+
+

++ ++++ +
+ +

+
+

+ +
+

+
+

++ +

+
+++ ++

+
+
++
++++ +

+
++

+
+

+
+

+
+

++

+

+ +++
+++
+

+
+++

+
+
+

++

++++
+

++

++

+
++

+
+
+ ++

+ +
+
+

+ +
+++

++ ++
+

+

+
+

+++

+

++

+

+ +++
++ ++ +++ +++++ +++++ +

++
+ +
+ + +

+
++

+
+

+

0.5 1.0 1.5 2.0

0.0
0.2

0.4
0.6

0.8
1.0

age^−0.5

cd
4^

−0
.5

+
+ ++ ++

++
++++

+
++ ++ +++

+
+ ++ +

+ ++ +

+

+
+

+ + ++
+ + +++

+
+

++
+ ++++ +++

+

+ +
++

+++
++
+

++++
+++++ +++ ++ + ++

++
+

+

+

+

++
++

+

+++
+

++
+

+ +
+

+

++
+ +++ ++ +

+

+
+

+ ++++ ++ ++
++

++ +++
+

+++ ++ ++ ++
++

+++ ++ +
+
+++++ ++++ +++

+
++ ++++ +++ ++ +++ ++ +

+
++ +++++ +

++
+

+
++ +

++ ++ ++ ++++
+

+

+
+++ + ++ + ++

+

+ ++ + +++
+

++ +

+

+
+ +

++
+

+++

+ + +
+

+

+
+ +

+

+

+ +

+

+
+++

+

+
+ +

+

++ +++ +
+

+
+

++ +++

+
+ +

+++ ++ ++ + ++
+

+
+

+ ++ ++
+ +++ ++++ + ++

+
+++

+

+ ++
+

+ ++ ++ ++ ++ +
++ +++ ++ + ++++++ ++ + + ++
+ ++ ++

++++++
+

+ ++ + +
+ +++ +++ + ++ +++ ++

+
++++ + ++ ++

+
+

+
+

++ ++ ++
+

+ +++++ ++ + ++ ++
+

+ +
+

+

+

+ + ++
+

+

+

+ ++

+

+ +
+

++
+

++
+

++ ++ +
+

+
++

+

+
+ +

+

++ ++ +
+++

+
+

+ ++ ++ ++
++

+
+

++
+

+
+

+ ++

+
+ +++ +

+
+

+ +
+++ ++

+
+ +

+
+

+
+

+
+

+ +

+

++++
+ ++
+

+
+ ++

+
+

+

+ +

++ ++
+

++

+ +

+
++

+
+
++ +

++
+
+

++
+ ++

+ ++ +
+

+

+
+

+ + +

+

++

+

+++ +
+ ++ ++ + ++ +++ +++ + + ++

+ +
++

+++
+

++
+

+

+

−1.5 0.0 1.0 2.0

0.0
0.2

0.4
0.6

0.8
1.0

log(age)

cd
4^

−0
.5

+
+ ++ ++

++
++++

+
++ ++ +++

+
+ ++ +

+ ++ +

+

+
+

+ + ++
+ + +++

+
+

++
+ + +++ +++

+

+ +
++

+++
++
+

++++
++ +++ + ++ ++ + ++

++
+

+

+

+

++
++

+

+++
+

++
+

+ +
+

+

++
+ +++ ++ +

+

+
+

+ ++++ ++ ++
++

++ +++
+

+++ ++ ++ ++
++

+++ ++ +
+
++ +++ ++++ +++

+
++ ++++ +++ ++ +++ ++ +

+
++ +++++ +

++
+

+
++ +

++ ++ ++ ++++
+

+

+
+++ + +++ ++

+

+ ++ + ++ +
+

++ +

+

+
+ +

++
+

+++

+ + +
+

+

+
+ +

+

+

+ +

+

+
+++

+

+
+ +

+

++ +++ +
+

+
+

++ +++

+
+ +

+++++ ++ + ++
+

+
+

+ ++ ++
+ +++ ++++ + ++

+
+++

+

+ ++
+

+ ++ ++ ++ ++ +
++ +++ ++ + + +++++ ++ + + ++
+ ++ ++

++++++
+

+ ++ + +
+ +++ +++ + ++ +++ ++

+
++++ + ++ ++

+
+

+
+

++ ++ ++
+

+ +++++ ++ + ++ ++
+

+ +
+

+

+

+ + ++
+

+

+

+ ++

+

+ +
+

++
+

++
+

++ +++
+

+
++

+

+
+ +

+

++ ++ +
+++

+
+

+ ++ ++ ++
++

+
+

++
+

+
+

+ ++

+
+ +++ +

+
+

+ +
+++ ++

+
+ +

+
+

+
+

+
+

+ +

+

+++ +
+ ++
+

+
+ ++

+
+

+

+ +

++ ++
+

++

+ +

+
++

+
+
++ +

++
+
+

++
+ ++

+ ++ +
+

+

+
+

+ + +

+

++

+

+++ +
+ ++ ++ + ++ +++ +++ + + ++

+ +
++

+++
+

++
+

+

+

0.5 1.5 2.5

0.0
0.2

0.4
0.6

0.8
1.0

age^.5
cd

4^
−0

.5

+
+ ++ ++

++ ++++

+
++ ++ +++

+
+ ++ +

+ ++ +

+

+
+

+ + ++
++ +++

+
+

++
+ + +++ +++

+

+ +
++

+++
++

+
++++

++ +++ + ++ ++ + ++
++
+

+

+

+

++
++

+

+++
+

++
+

+ +
+

+

++
+ +++++ +

+

+
+

+ ++++ ++ ++
++

++ +++
+

+++ ++ ++ ++
++

+++ ++ +
+
++ +++ ++++ +++

+
++ ++++ +++ ++ +++ ++ +

+
++ +++++ +

++
+

+
++ +

++ ++ ++ ++++
+

+

+
++++ +++ ++

+

+ ++ + ++ +
+

++ +

+

+
+ +

++
+

+++

+ + +
+

+

+
+ +

+

+

+ +

+

+
+++

+

+
+ +

+

++ +++ +
+

+
+

++ +++

+
+ +

+++++ ++ + ++
+

+
+

+ ++ ++
+ +++ ++++ + ++

+
+++

+

+ ++
+
+ ++ ++ ++ ++ +

++ +++ ++ + + +++++ ++ + + ++
+ ++ ++

++++++
+

+ ++ + +
+ +++ +++ + ++ +++ ++

+
++++ + ++ ++

+
+

+
+

++ ++ ++
+

+ +++++ ++ + ++ ++
+

+ +
+

+

+

+ + ++
+

+

+

+ ++

+

+ +
+

++
+

++
+

++ +++
+

+
++

+

+
+ +

+

++ ++ +
+++

+
+

+ ++ ++ ++
++

+
+

++
+

+
+

+ ++

+
+ +++ +

+
+

+ +
+++ ++

+
+ +

+
+

+
+

+
+

+ +

+

+++ +
+ ++
+

+
+ ++

+
+

+

+ +

++ ++
+

++

+ +

+
++

+
+
++ +

++
+
+

++
+ ++

+ ++ +
+

+

+
+

++ +

+

++

+

+++ +
+ ++ ++ + ++ +++ +++ + + ++

+ +
++

+++
+

++
+

+

+

0 2 4 6 8

0.0
0.2

0.4
0.6

0.8
1.0

age

cd
4^

−0
.5

+

+

+

+

+

+

++

+

+
++

+

+
+

+
+

+ +
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

++
+

+

+

+

+

+

+
+ +

+
+

++

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+++ +

+

+

+++

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

++

+
+

+
+

+ +

+

+

+

+

+
+

+

+

+
++

+
+

+
+

+++
+

+

+

+

+++
+

+ +

+ +

+

+

+

+

+

+
++

+

+
+

+

+

+

+

+
++++ +

+

+
++

+ +
+

+

+
+

+

+

+

+ +
+

+

+

+

++

+

+
+++

+

++

+

+

+++

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+++
+

+

+
+ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+++

+
+

+

+

+

+

+

+ +

+

+

+

+

+

+

++++
++

+
+

+

+

+

++
+

+
+

+

++
++ +

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+ +

+ +

+ +
+

+
+

+ +
+

+

+

+

+
++

+

+++
+

+
++

+
+
+

+

++
+

+

+

++
+
+

+

+

++ +

+
+

+

+ +

++

+

+
+

+

+
+
+

++

+

+

+ +

+ ++

+
+

+

+

+

+

+

+

+

+
+
++ +

+

+
++ +

++
+
+

+

+
++

+

+

++

+

+

+

++

++

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+
+

+

+

++

+

+

+
+

+

+

+
+

++

+
+

+

+

+

+
+

+

+
++
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

++

+

++
+

+

+

++

+

+

+

+

+

+

++

+

+
+

++

+

+
+

+

+

+

++

+

+

+

++

+
+

+
+

+

++

+
+

+

++

+

+

+ +
+

+ +

+

+

+

+

+
++

+

+

++

+

+

+

+

+

+

+

+

++

+

+ +
++

+
+ +
+

+
+

+
+

++

+

+ +

++
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

++ ++++

0.5 1.0 1.5 2.0

0
2

4
6

8

age^−0.5

log
(cd

4+
1)

+

+

+

+

+

+

++

+

+
++

+

+
+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

++
+

+

+

+

+

+

+
++

+
+

++

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+ +++

+

+

+ ++

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

++

+
+

+
+

++

+

+

+

+

+
+

+

+

+
++

+
+

+
+

++ +
+
+

+

+

++ +
+

++

++

+

+

+

+

+

+
+ +

+

+
+

+

+

+

+

+
++ +++

+

+
+ +

++
+

+

+
+

+

+

+

++
+

+

+

+

++

+

+
+++

+

++

+

+

++
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+ + +
+

+

+
++

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+ ++

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+ ++ +
+ +

+
+

+

+

+

+ +
+

+
+

+

++
+ ++

+

+

+
+

+

+

+

+

+

+

+

++

+

+

++

++

++
+

+
+

++
+

+

+

+

+
+ +

+

+++
+

+
+ +

+
+

+

+

++
+

+

+

++
+

+
+

+

+ ++

+
+

+

++

+ +

+

+
+

+

+
+
+

+ +

+

+

++

++ +

+
+

+

+

+

+

+

+

+

+
+

+ ++

+

+
+++

++
+
+

+

+
+ +

+

+

+ +

+

+

+

+ +

++

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+
+

+

+

++

+

+

+
+

+

+

+
+

+ +

+
+

+

+

+

+
+

+

+
+ +
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+ +

+

++
+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

++

+

+
+

+

+

+

++

+

+

+

+ +

+
+

+
+

+

++

+
+

+

++

+

+

++
+

++

+

+

+

+

+
++

+

+

+ +

+

+

+

+

+

+

+

+

++

+

++
+ +

+
++

+

+
+

+
+

++

+

++

+ +
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+ +++ ++

−1.5 0.0 1.0 2.0

0
2

4
6

8

log(age)

log
(cd

4+
1)

+

+

+

+

+

+

++

+

+
++

+

+
+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

++
+

+

+

+

+

+

+
++

+
+

++

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+ + ++

+

+

+ ++

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

++

+
+

+
+

++

+

+

+

+

+
+

+

+

+
++

+
+

+
+

++ +
+

+

+

+

++ +
+

++

++

+

+

+

+

+

+
+ +

+

+
+

+

+

+

+

+
++ +++

+

+
+ +

++
+

+

+
+

+

+

+

++
+

+

+

+

++

+

+
+++

+

++

+

+

++
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

++ +
+

+

+
++

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+ ++

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+++ +
+ +

+
+

+

+

+

+ +
+

+
+

+

++
+ ++
+

+

+
+

+

+

+

+

+

+

+

++

+

+

++

++

++
+

+
+

++
+

+

+

+

+
+ +

+

+++
+

+
+ +

+
+

+

+

++
+

+

+

++
+

+
+

+

+ ++

+
+

+

++

+ +

+

+
+

+

+
+
+

+ +

+

+

++

++ +

+
+

+

+

+

+

+

+

+

+
+

+ ++

+

+
+++

++
+
+

+

+
+ +

+

+

+ +

+

+

+

+ +

++

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+
+

+

+

++

+

+

+
+

+

+

+
+

+ +

+
+

+

+

+

+
+

+

+
+ +
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+ +

+

++
+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+
+

+

+

+

++

+

+

+

+ +

+
+

+
+

+

++

+
+

+

++

+

+

++
+

++

+

+

+

+

+
++

+

+

+ +

+

+

+

+

+

+

+

+

++

+

++
+ +

+
++

+

+
+

+
+

++

+

++

+ +
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+ +++ ++

0.5 1.5 2.5

0
2

4
6

8

age^.5

log
(cd

4+
1)

+

+

+

+

+

+

++

+

+
++

+

+
+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

++
+

+

+

+

+

+

+
++

+
+

++

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+ + ++

+

+

+ ++

+
+
+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

++

+
+

+
+

++

+

+

+

+

+
+

+

+

+
++

+
+

+
+

++ +
+

+

+

+

++ +
+

++

++

+

+

+

+

+

+
+ +

+

+
+

+

+

+

+

+
++ +++

+

+
+ +

++
+

+

+
+

+

+

+

++
+

+

+

+

++

+

+
+++

+

++

+

+

++
+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

++ +
+

+

+
++

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+ ++

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+++
+

+ +
+

+

+

+

+

+ +
+

+
+

+

++
+ ++
+

+

+
+

+

+

+

+

+

+

+

++

+

+

++

++

++
+

+
+

++
+

+

+

+

+
+ +

+

+++
+

+
+ +

+
+

+

+

++
+

+

+

++
+

+
+

+

+ ++

+
+

+

++

+ +

+

+
+

+

+
+

+
+ +

+

+

++

++ +

+
+

+

+

+

+

+

+

+

+
+

+ ++

+

+
+++

++
+
+

+

+
+ +

+

+

+ +

+

+

+

+ +

++

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+
+

+

+

++

+

+

+
+

+

+

+
+

+ +

+
+

+

+

+

+
+

+

+
+ +
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+ +

+

++
+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+
+

+

+

+

++

+

+

+

+ +

+
+

+
+

+

++

+
+

+

++

+

+

++
+

++

+

+

+

+

+
++

+

+

+ +

+

+

+

+

+

+

+

+

++

+

++
+ +

+
++

+

+
+

+
+

++

+

++

+ +
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+ +++ ++

0 2 4 6 8

0
2

4
6

8

age
log

(cd
4+

1)

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+ +

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

++ +

+

+

+++

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

++

+

+

+
+

+
++

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
+ +

+

+

++

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

+++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++
+

+

+

+
+ +

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+ +

+

+

+
+

+

+

++
++

+
+

+
+

+

+

+

++
+

+

+

+

+
+ ++ +
+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+ +

+
+

+ +
+

+
+

+ +

+

+

+

+

+

++

+

+
+

+

+

+

+
+

+

+

+

+

++
+

+

+

++
+
+

+

+

++
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
++

+

+

+ +

+
++

+

+

+

+

+

+

+

+

+

+

+
++ +

+

+

++
+

++

+

+

+

+

+
+

+

+

++

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

++

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

++

+

+

+

+

+

+

++

+

+
+

++

+

+
+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

+
+

++

+

++

+

+

+ +
+

+ +

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

++
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

++ ++++

0.5 1.0 1.5 2.0

0
10

20
30

40
50

age^−0.5

cd
4^

.5

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+++

+

+

+ ++

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

++

+

+

+
+

+
+ +

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
++

+

+

+ +

++

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+ +
+

+

+

+
++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+ +
+ +

+
+

+
+

+

+

+

+ +
+

+

+

+

+
++ ++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+
+

++
+

+
+

++

+

+

+

+

+

+ +

+

+
+
+

+

+

+
+

+

+

+

+

++
+

+

+

++
+

+

+

+

+ +
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+ +

+

+

++

+
+ +

+

+

+

+

+

+

+

+

+

+

+
+ ++

+

+

++
+

++

+

+

+

+

+
+

+

+

+ +

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

++

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

++

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+
+

+

+
+

+ +

+

++

+

+

++
+

++

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+ +
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+ +++ ++

−1.5 0.0 1.0 2.0

0
10

20
30

40
50

log(age)

cd
4^

.5

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ ++

+

+

+ ++

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

++

+

+

+
+

+
+ +

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
++

+

+

+ +

++

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++
+

+

+

+
++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

++
+ +

+
+

+
+

+

+

+

+ +
+

+

+

+

+
++ ++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+
+

++
+

+
+

++

+

+

+

+

+

+ +

+

+
+
+

+

+

+
+

+

+

+

+

++
+

+

+

++
+

+

+

+

+ +
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+ +

+

+

++

+
+ +

+

+

+

+

+

+

+

+

+

+

+
+ ++

+

+

++
+

++

+

+

+

+

+
+

+

+

+ +

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

++

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+
+

+

+
+

+ +

+

++

+

+

++
+

++

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+ +
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+ +++ ++

0.5 1.5 2.5

0
10

20
30

40
50

age^.5

cd
4^

.5

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ ++

+

+

+ ++

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

++

+

+

+
+

+
+ +

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+
++

+

+

+ +

++

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++
+

+

+

+
++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

++
+ +

+
+

+
+

+

+

+

+ +
+

+

+

+

+
++ ++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+
+

++
+

+
+

++

+

+

+

+

+

+ +

+

+
+
+

+

+

+
+

+

+

+

+

++
+

+

+

++
+

+

+

+

+ +
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+ +

+

+

++

+
+ +

+

+

+

+

+

+

+

+

+

+

+
+ ++

+

+

++
+

++

+

+

+

+

+
+

+

+

+ +

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

++

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+
+

+

+
+

+ +

+

++

+

+

++
+

++

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+ +
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+ +++ ++

0 2 4 6 8

0
10

20
30

40
50

age

cd
4^

.5

R code on

page 199

Figure 8.11: The CD4 data with various transformations for cd4 and age

8.8. EXAMPLE: THE CD4 DATA 201

m4 6 8988.105

m3 5 8993.351

m2 4 8995.636

m1 3 9044.145

Next we compare the models using Schwartz Bayesian Criterion (SBC) which uses penalty
k = log(n):

GAIC(m1, m2, m3, m4, m5, m7, m8, k = log(length(CD4$age)))

df AIC

m7 9 9002.969

m8 10 9007.992

m5 7 9008.266

m2 4 9013.284

m4 6 9014.576

m3 5 9015.410

m1 3 9057.380

0 2 4 6 8

0
50

0
10

00
15

00
20

00

age

cd
4

Figure 8.12: The CD4 data and the fitted values using polynomial of degree 7 in age

Remarkably with both AIC and SBC select model m7, with a polynomial of degree 7, as the
best model. Unfortunately the fitted values for the mean of cd4 shown together with the data
in Figure 8.12 look rather unconvincing. The line is too wobbly at the ends of the range of age,
trying to be very close to the data. This is a typical behaviour of polynomial fitting.

8.8.2 Fractional polynomials

Now we will try alternatives methods, two parametric, using fractional polynomials. Fractional
polynomials were introduced by Royston and Altmam (1994). The function fp() which we are
going to use to fit them works in gamlss() as an additive smoother term. It can be used to

202 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

fit the best (fractional) polynomial within a specific set of possible power values. Its argument
npoly determines whether one, two or three terms in the fractional polynomial will be used in
the fitting. Here we fit fractional polynomials with one, two and three terms respectively and
we choose the best using GAIC:

m1f <- gamlss(cd4 ~ fp(age, 1), sigma.fo = ~1, data = CD4, trace = FALSE)

m2f <- gamlss(cd4 ~ fp(age, 2), sigma.fo = ~1, data = CD4, trace = FALSE)

m3f <- gamlss(cd4 ~ fp(age, 3), sigma.fo = ~1, data = CD4, trace = FALSE)

GAIC(m1f, m2f, m3f)

df AIC

m3f 8 8966.375

m2f 6 8978.469

m1f 4 9015.321

GAIC(m1f, m2f, m3f, k = log(length(CD4$age)))

df AIC

m3f 8 9001.669

m2f 6 9004.940

m1f 4 9032.968

to get the fitted GAMLSS model

m3f

##

Family: c("NO", "Normal")

Fitting method: RS()

##

Call:

gamlss(formula = cd4 ~ fp(age, 3), sigma.formula = ~1, data = CD4,

trace = FALSE)

##

Mu Coefficients:

(Intercept) fp(age, 3)

557.5 NA

Sigma Coefficients:

(Intercept)

5.929

##

Degrees of Freedom for the fit: 8 Residual Deg. of Freedom 601

Global Deviance: 8950.37

AIC: 8966.37

SBC: 9001.67

to get the fitted fractional polynomial (note that it is a lm class object)

getSmo(m3f)

##

Call:

lm(formula = y ~ x.fp, weights = w)

##

8.8. EXAMPLE: THE CD4 DATA 203

Coefficients:

(Intercept) x.fp1 x.fp2 x.fp3

-599.3 1116.8 1776.2 698.6

to get the power parameters

getSmo(m3f)$power

[1] -2 -2 -2

plot(cd4 ~ age, data = CD4)

lines(CD4$age[order(CD4$age)], fitted(m1f)[order(CD4$age)],

lty=1, col = "blue")

lines(CD4$age[order(CD4$age)], fitted(m2f)[order(CD4$age)],

lty=2, col = "green")

lines(CD4$age[order(CD4$age)], fitted(m3f)[order(CD4$age)],

lty=3, col = "red")

0 2 4 6 8

0
50

0
10

00
15

00
20

00

age

cd
4

Figure 8.13: The CD4 data and the fitted values using fractional polynomial of degree 1 (solid),
2 (dashed), 3 (dotted) in age

Both AIC and BSC favour the model m3f with a fractional polynomial with three terms. Note
that by printing m3f the model for µ gives a value of 557.5 for the ”Intercept” and NULL for
the coefficient for fp(age, 3). This is because within the backfitting the constant is fitted first
and then the fractional polynomial is fitted to the partial residuals of the constant model. As a
consequence the constant is fitted twice. The coefficients and the power transformations of the
fractional polynomials can be obtained using the mu.coefSmo component of the gamlss fitted
object. For the CD4 data all powers happens to be −2 indicating that the following terms are
fitted in the model, age−2, age−2 log(age) and age−2 [log(age)]

2
. Hence the fitted model m3f is

given by cd4 ∼ NO(µ̂, σ̂), where µ̂ = 557.5 − 599.3 + 1116.8 age−2 + 1776.2 age−2 log(age) +
698.6 age−2

[
log(age)2

]
and σ̂ = exp(5.929) = 375.8. Figure 8.13 shows the best fitted models

using one, two or three fractional polynomial terms. The situation remains unconvincing. None

204 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

of the models seem to fit particular well.

8.8.3 Piecewise polynomials

Next we will fit piecewise polynomials using the R function bs. We try different degrees of
freedom (effectively different number of knots) and we choose the best model using AIC and
SBC:

m2b <- gamlss(cd4 ~ bs(age), data = CD4, trace = FALSE)

m3b <- gamlss(cd4 ~ bs(age, df = 3), data = CD4, trace = FALSE)

m4b <- gamlss(cd4 ~ bs(age, df = 4), data = CD4, trace = FALSE)

m5b <- gamlss(cd4 ~ bs(age, df = 5), data = CD4, trace = FALSE)

m6b <- gamlss(cd4 ~ bs(age, df = 6), data = CD4, trace = FALSE)

m7b <- gamlss(cd4 ~ bs(age, df = 7), data = CD4, trace = FALSE)

m8b <- gamlss(cd4 ~ bs(age, df = 8), data = CD4, trace = FALSE)

GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b)

df AIC

m7b 9 8959.519

m6b 8 8960.353

m8b 10 8961.073

m5b 7 8964.022

m4b 6 8977.475

m2b 5 8993.351

m3b 5 8993.351

GAIC(m2b, m3b, m4b, m5b, m6b, m7b, m8b, k = log(length(CD4$age)))

df AIC

m5b 7 8994.904

m6b 8 8995.648

m7b 9 8999.225

m4b 6 9003.946

m8b 10 9005.191

m2b 5 9015.410

m3b 5 9015.410

Note that model m2b uses the default df = 3. The best model with AIC uses 7 degrees of freedom
while SBC uses 5. Figure 8.14 shows the fitted models using 5 and 7 degrees of freedom for the
piecewise polynomial in age.

plot(cd4 ~ age, data = CD4)

lines(CD4$age[order(CD4$age)], fitted(m7b)[order(CD4$age)], col = "blue",

lty=1, lwd=2)

lines(CD4$age[order(CD4$age)], fitted(m5b)[order(CD4$age)], col = "red",

lty=2, lwd=2)

8.8. EXAMPLE: THE CD4 DATA 205

0 2 4 6 8

0
50

0
10

00
15

00
20

00

age

cd
4

Figure 8.14: The CD4 data and the fitted values using piecewise polynomial with degrees of
freedom 5 (dashed line) and 7 (solid line) for age

8.8.4 Free knots

Here we are trying to model the relationship between cd4 and age using simple piecewise
polynomials. We fit four different models using linear (degree=1) and quadratic functions
(degree=2) and using one and two break points respectively. Note that starting values have to
be specified for the break points. The number of break points to fit is taken from the number
of starting values.

library(gamlss.add)

f1<-gamlss(cd4~fk(age, degree=1, start=2), data=CD4, trace = FALSE)

f2<-gamlss(cd4~fk(age, degree=1, start=c(2,5)), data=CD4, trace = FALSE)

f3<-gamlss(cd4~fk(age, degree=2, start=2), data=CD4, trace = FALSE)

f4<-gamlss(cd4~fk(age, degree=2, start=c(2,5)), data=CD4, trace = FALSE)

GAIC(f1, f2, f3, f4)

df AIC

f1 5 8984.558

f3 5 8984.558

f2 7 8988.357

f4 7 8988.357

GAIC(f1, f2, f3, f4, k = log(length(CD4$age)))

df AIC

f1 5 9006.617

f3 5 9006.617

f2 7 9019.239

f4 7 9019.239

206 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

From the GAIC it can be seen that there is no support for the quadratic models f3 and f4 and
that the data support only one break point parameter. To get the two different slopes and the
break point parameters use the getSmo() function as it illustrated below.

f1

##

Family: c("NO", "Normal")

Fitting method: RS()

##

Call:

gamlss(formula = cd4 ~ fk(age, degree = 1, start = 2), data = CD4,

trace = FALSE)

##

Mu Coefficients:

(Intercept) fk(age, degree = 1, start = 2)

557.5 NA

Sigma Coefficients:

(Intercept)

5.949

##

Degrees of Freedom for the fit: 5 Residual Deg. of Freedom 604

Global Deviance: 8974.56

AIC: 8984.56

SBC: 9006.62

getSmo(f1)

##

Call:

fitFreeKnots(y = y, x = xvar, weights = w, degree = degree, knots = lambda,

fixed = control$fixed, base = control$base)

##

Coefficients:

(Intercept) x XatBP1

809.1 -361.5 334.9

Estimated Knots:

BP1

2.87

The break point can also be found just using

knots(getSmo(f1))

BP1

2.869966

The fitted linear plus linear model for µ is given

µ = η1 = (557.5 + 809.1)− 361.5 age + 334.9 age if(age > 2.869)

= 1366.6− 361.5 age if(age ≤ 2.869)− 26.6 age if(age > 2.869)

The plot of the fitted model is given in Figure 8.15.

8.8. EXAMPLE: THE CD4 DATA 207

plot(cd4 ~ age, data = CD4)

lines(CD4$age[order(CD4$age)], fitted(f1)[order(CD4$age)], col = "blue", lty=1,

lwd=2)

0 2 4 6 8

0
50

0
10

00
15

00
20

00

age

cd
4

Figure 8.15: The CD4 data and the fitted values using piecewise linear fit with the knot esti-
mated from the data

208 CHAPTER 8. LINEAR PARAMETRIC ADDITIVE TERMS

Chapter 9

Additive Smoothing Terms

This chapter provides an introduction to smoothing techniques and how to use those tech-
niques within a GAMLSS model. In particular:

• univariate penalised smoothing techniques are introduced using local fits,

• the penalised approach to smoothing is explained,

• the GAMLSS smoothing additive terms are described.

9.1 Introduction

This chapter is dedicated to smoothing techniques and how they can be applied and used within
the GAMLSS framework. A univariate smoother, f(x) is where only one explanatory variable
x is used. A multivariate smoother, say f(x1, x2), is defined where two or more explanatory
variable are involved in the fitting. Both univariate and multivariate smoothers can be used as
additive terms with a GAMLSS model formula. We can think of the univariate smoothers as
the main (non-linear) effects of the explanatory variables on a distribution parameter while the
multivariate smoothers as their non-linear interaction effects.

We will classify all smoothers used within GAMLSS into two main categories:

the penalised smoothers: which use quadratic penalties on the fitted smooth model param-
eters to control the amount of smoothing and

all others smoothers: which use different ideas (i.e. locality) or non-quadratic penalties to
achieve the resulting smooth functions.

The distinction is illustrated in the diagram of Figure ??, where also the difference between
univariate and multivariate smoothers is highlighted.

The structure of this section is as follows. Section 9.2 is an introduction to smoothing techniques
in general. Section 9.3 describes local regression smoothers and serves as an introduction to
basic ideas in smoothing, like smoothing parameters and locality of the estimates. Sections 9.4

209

210 CHAPTER 9. ADDITIVE SMOOTHING TERMS

smoothing

penalised others

univariate multivariate

P-splines

cubic splines

tensor product splines

thin plate splines

loess

neural networks

decision trees

Figure 9.1: Diagram showing the different additive smoothing terms in GAMLSS

and 9.5 explain how the univariate and multivariate penalised smoothers can be used within
GAMLSS, respectively. The ”other” smoothers are explained in section 9.6.

9.2 What is a scatterplot smoother

Suppose we have n measurements of a response variable y = (y1, y2, . . . , yn)> and a single
explanatory variable x = (x1, x2, . . . , xn)> and we want to study their relationship. The first
thing we should do is to plot the variables y (vertically) against x (horizontally). A curve fitted
through the data show the kind of relationship existing between the two variables.

For demonstration purposes we return to the he Munich 1990’s rent data fist introduce in
Chapter ??. The Figure 9.2(a) is a plot of the rent against floor space, Fl, and 9.2(b) is a
plot of the rent against the age (i.e. year of construction) of the building, A. If we ignore the
fitted line smoothers shown in the plots for the moment, the left plot shows a clear positive
relationship between rent and floor space but between rent and age the relationship is not clear
cut.

Figure 9.2 data(rent)

m1 <- gamlss(R~pb(Fl), data=rent)

GAMLSS-RS iteration 1: Global Deviance = 28460.85

GAMLSS-RS iteration 2: Global Deviance = 28460.85

m2 <- gamlss(R~pb(A), data=rent)

GAMLSS-RS iteration 1: Global Deviance = 28831.01

9.2. WHAT IS A SCATTERPLOT SMOOTHER 211

GAMLSS-RS iteration 2: Global Deviance = 28831.01

op<-par(mfrow=c(1,2))

plot(R~Fl, data=rent, pch = 15, cex = 0.5, col = gray(0.7), main="(a)")

lines(fitted(m1)[order(rent$Fl)]~rent$Fl[order(rent$Fl)], col="red", lwd=2)

plot(R~A, data=rent, pch = 15, cex = 0.5, col = gray(0.7), main="(b)")

lines(fitted(m2)[order(rent$A)]~rent$A[order(rent$A)], col="red", lwd=2)

par(op)

40 60 80 100 120

0
50

0
10

00
15

00
20

00
25

00
30

00

(a)

Fl

R

1900 1940 1980

0
50

0
10

00
15

00
20

00
25

00
30

00

(b)

A

R

R code on

page 210

Figure 9.2: The Munich 90’s rent data set: a) rent prices against floor space b) rent places
against age of the building with smooth curves fitted

Scatterplot Smoothers are statistical devices which could help us to fit curves in situations like
this.

Definition: A scatterplot smoother, or for convenience, a smoother summarizes the trend
of the response variable as a function of x by not assuming any parametric functional form
for the dependence of y on x.

It is this help in interpreting relationships which makes the smoothers important in statistics.
For example, the fitted smoother in Figure 9.2(a) confirms our belief of a positive (almost linear)
relationship between the rent and the floor space. From the smoother in Figure 9.2(b), we can
conclude that for flats build between the 1900 to 1960 the rent values are relatively constant
while there is a strong positive relationship between the rent and the age of the building after
the 1960.

The following example shows that smoothing is also helpful in cases where the response variable

212 CHAPTER 9. ADDITIVE SMOOTHING TERMS

is not a continuous variable but binary. Consider the data in Figure 9.3, kindly provided by
Prof Brian Francis of Lancaster University. Here we have a scatter plot of 10590 observations
The response variable is whether a particular crime was reported (y = 1) or not (y = 0) in the
media. The explanatory variable is the age of the victim of crime. The scatter plot in this case
(ignoring for the moment the fitted smoothing curve in the middle) is uninformative due to the
nature of the data. The smoothing curve in the figure is obtained using the additive function
pb() and a binomial error for the response variable. The curve shows the fitted or estimated
probability of reporting a crime in the media according to age. It shows that the estimated
probability that a crime is reported is higher when the crime is committed on a young person,
with a peak at around age ten. The estimated probability then declines until the victim reaches
the age of twenty. From then on, the estimated probability, remains constant until the age of
sixty after which the reporting probability rises steadily with age.

Figure 9.3 data(VictimsOfCrime)

m1<- gamlss(reported~pb(age), data=VictimsOfCrime, family=BI)

GAMLSS-RS iteration 1: Global Deviance = 11775.11

GAMLSS-RS iteration 2: Global Deviance = 11775.13

GAMLSS-RS iteration 3: Global Deviance = 11775.13

plot(reported~age, data=VictimsOfCrime, type="n",

xlab="Age of victims of crimes", ylab="Estimated probability")

points(VictimsOfCrime$reported~jitter(VictimsOfCrime$age), pch="|", col="blue")

with(VictimsOfCrime, lines(fitted(m1)[order(age)]~age[order(age)],

col="red", lwd=2))

There was an explosion of statistical smoothing techniques at the late 80’s and early 90’s section
and the reader is referred to books like Hastie and Tibshirani [1990], Green and Silverman
[1994] Fahrmeir and Tutz [2001] Ruppert et al. [2003] Wang [2011] and Fahrmeir et al. [2013]
for more details. The smoother originally was used to estimate of the conditional expected
value of y given x, E(y|x). This was extended over the years to any location parameter of the
distribution of y, e.g.. the median and more generally, smoothers are used for the estimation
of quantiles or expectiles of the distribution for y given x, Schnabel and Eilers [2013a,b] The
important property of a smoother is that it does not assume a parametric functional form for
the dependence between y and x but lets the data indicate the functional form. They are several
ways to do that: for example to rely on local estimators or to put penalties on the behaviour
of the parameters. The fact that they are called non-parametric is a bit misleading since all
smoother do estimate parameters but also contain a dominant parameter which determines the
amount of smoothing to the data. This parameter is called the smoothing parameter. How to
chose the smoothing parameter is an essential issue in any smoothing technique.

A simple univariate smoother is a generalization of the simple linear regression model and can
be written formally as a statistical model as:

E(Yi) = a+ f(xi) (9.1)

for i = 1, . . . , n where f(.) is an arbitrary function which we assume to exist, α is a constant
which most of the time we absorb into the function f(.), say µi = f(xi), and f(xi) is the trend
that we would like to estimate. Typically, for a continuous response variables Yi ∼ N(µi, σ

2)
for i = 1, . . . , n and that Yi’s are independent. The function f(.) is arbitrarily defined but we
assume, that it has some properties. For example a cubic spline smoother assumes that the
function f() has continuous first and second derivatives.

9.3. LOCAL REGRESSION SMOOTHERS 213

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

Age of victims of crimes

Es
tim

ate
d p

rob
ab

ility

|| || || || |

|

||| || ||

|

| | ||

| ||

|

|

|

|

| ||

| |

|

|

|| |

|| |

|| |

| |

| |

| ||

|| | |

|

||| || |

|

| | || |||| ||

|

|

|

||| ||| ||

|

| || | ||| | ||

|

|| |

| |

|

|

|

|

|

|

| | |

|

|||| | ||| |

|| | |

| | || ||

|

| | | |

||

| |

|

|

|

|

|

|| |||| | || |

|

|

|

| | ||

|

||

|

|

| |

|

||

|

|| |

| || || | | |

|

| || | ||| | |||

|

| ||| ||

|

|||

| |

|| || |

|

| | | || || || ||

|

|| || |

|

||| || |

|

|| |

| |

| |

| | |

| || ||

|

|| | |

|

|

|

|| |||

||

|

|

|||

||

|| | |

|

| ||

|

|

|

|

|

|

|

|| | |

|

|| | | || || |||

| |

||| |

|

| | ||

|

|

| |

| |

|

| |

|

| ||| ||

|

|| || || | || || |

|

|| |

|

|||| ||

|

||| || | |

| || | |

| |

|

| |

|

| |||

|

| | ||

|

| || || | || || |

|

| | |

|

| | |||| | | |||

|

|| || || || |||| | || |||| | | | |||

|

|

| |

|

||

|

||

| |||| | || || | |

|

|

|

|| | |

|

|

|

| |

|

|

|

|| | || |

| |

| | || |

|

| | |

|

| || ||| ||

|

| || | || ||

|

| | ||

|

|| |||

||

| || | ||| || | |||| ||

|

||

||

||

|

| | | || | || | ||

|

| ||

||

|

|

|| |

|

||| || |||| |

||

|||| || |

|

||

|

|||

|

| |

| |

|| |||

| | | |

| || ||| ||

|

||| |

||

|

| |

| || |

|

| |

|| |

|

|

|

|

|||

|

||||

||

||

|

|

|

| ||

|

| |

|

|

| |

|||

||

|| || |

|

| |

|

|| ||

|

|| |

|| |

| | | |

|

| | |

||

| | || || |

|

|| ||

| ||

| |

|

| |

|

||

|

| |

| |

||

|

| || |

| || ||

|| |

|

|||

| |

|

|

||

| |

||| |

|

|| |

| |

|

|

||| || ||

|

||| | ||| |

|

| || | |

|

|

| |

| | | ||

|

|

|

| || || || || |

|

||| | ||

| |

|

|

|

|

| | |

|

|

|

||

|

||

|

||

|

||| || |

|

|| || | |

| |

| |||| | ||

|

|

|

|

|

| ||

|

|| |

||

||

| |

| |

| |

|

|

|

|

||

| ||

| ||

| |

|

||

| |

|

||

|

|| | || || ||

|

| ||||| |

|

|

|

| | | |

|

|| || || ||||| ||| |

| |

| ||| || || | | |

||

| || |

|

|

||

|

|

| | || |

||

|

|

|

|

| |

|

||||

|

| |

|

| | |

|

|| ||| ||

||

| | |

|

|| || |

| |

||

|

||| ||

|

| |

|

||

|

|| || ||

||

|| || |

|

| | |||

| |

|

|

|

|

|| ||

|

|| |

|

| || || |

||

|| |

|

||

|

||| |

|

|

|

|||

|

||

||

|

|

|| | || || | || |

|

||| || | ||

|

| ||

|

|

|

|

|

|

|

|

|

||

|

| |

|

|| |

|

|

||

|

| |

|| ||| |||

|

| | | | || | || || | |||

|

|| | |

||

| | ||| | | |

|

|

|

| |

|

|| | ||| ||

||

| ||| | ||| | |||

|

| ||

|

|

|

||

||

||

|

|

|

||

|

|

| ||

||

|

|| ||

| |

| || ||

|

|

| |

||| |

|

| |

|

|

| |

| ||

|

|

| |

|

|

||| |

||

||| || || ||| |

|

|

| |

|| ||

|

|

||

|

|

|

|

|

|

| |

|

|

|

||| | | |||

||| |

|| | || ||

|

|||| ||

| |

| || |

|

|

| |

| ||

|

|

|

||

| |

|| ||

| |

|| ||

|

|

| |||

|

|

|

|

| |||| |

|

| |

||

|| ||

|

| |

|

||| ||

|

||

|

| ||

|

|| |

|

|

|

|| || |||

|

| |

|

| |

|

||| | |||

|

| |

|

||

||| ||

|| ||

| |

|||||| | | |

|

|

|

|

|

| ||

| |

|| |

|

| || || || | | |||| ||

|| |

|| | ||

|

||| |

|

|

|

| |

|

||

|

|| || |

|

|| || ||| |||||

|

||| | | ||

|

|

|

| || ||| | ||

|

| || |

|||

| | || || |

|

| ||| || || || | |

|

|

|

|

|

|| ||| | || || || |

|

| | |

|

|

|

|

|

| || |

|

|| | |

|

|| ||| |

|

|| | |

|

|

|

|| || |

|

| ||| |

||

|

|

| | |

|

|| || ||| || | ||

|

|

||

| ||

| |

||| | ||

|

|

|

|||

|

|

|

| || || | || ||| ||

|

||

|

| | || || |

|

| || || | ||

| | |

| || ||

|

|

||

|| | |

|

|

|

| |

|

||

||

||| || |

||

|| || ||| |

|

|

|

| || |||| | |

|

|

||

||

|

|||

|

|

|

| | |

| |||

| |||| ||| | | || |

|

|

| |

|

|

||

|| |

| || ||

|

|

| ||

| || |||

|

|

|

| || |||

|||

||| || || |

|

|| |

|

| | || |

|

|| |

| |

|||| || || ||| |

| |

| |

|| |

| | | |

|

|| |||

|

||| ||

|

|||

||

|| || ||| |

|

|

|

| ||

|

|

|

| || | |

||

||

|

|||||

|

| ||| || || | |

|

|

|

||

|

|| |||

|

| || | |

||

| ||

|

||| | ||

|

|

|

||

|

|

|

| |

|

|

| |

|| | ||| |||

|

||| ||| |||

|

| | ||| || || || || | ||

|

|| | |

|

|||| | || ||| || || ||| ||

|

| ||

||

|||

|

| |

|

|

| |

| |

|

|| |||

|

|||

|

||| || | ||| | ||| | || |

|

|

|

|||

|

| ||||| | ||

| |

| | ||

|

|| |

||

|

|

|| | ||

|

| || | ||

|

|| ||| ||| |

| |

|| || || ||

|

|| || |

|

| ||| |||

|

||

|

|| | |

|

||

|

|

|

||

|

|| || ||| || |

|

|

|

|| | |

|

| |

|

| | |

||

|

|

| ||| || | | |

|

|

|

| || |

|| |

|

|

|

|

||

||

|

| |

|

|

||| | || ||

||

||

| ||

|

|

|

| |

||

|

| || | |

||

| || |

||

|| || ||| ||

|

|

|

||

|

| |

|

|

| |

| | |||| |

|

||| |

|

| | |

||

||| ||| ||

|

|

|| ||

| | ||

|

|

||

| ||

|

|

|

| ||| ||

| | || || |

| ||

|

| || || |

|

| |

|

| ||

|

|| ||

||

|

|

|||| |

|

|||| || ||| ||

|

|||

|

|

|

| | |

| |||

|||| ||| | ||

||

|

|

| ||||

| |

||| | |

|

|| | | | |

|

|

||

|

|

| || ||||| || | |

| | |

|||

| |

|

|

| |

|

|||

||

| |

|

|| ||| ||

|

| |

|

| | | |

|

|

|

| ||

|

|

|

| | ||

|

| || |

|

| ||

|

| ||||||

|

| ||| || |||| ||| | || |||| || | || ||

| ||

| ||| | || ||

|

||| |

|

|

|

|| | |

|

|

|

| |

|

|| |

|

|| |

|

| || | ||| |||

|

| ||| |

|

| | |

|

| | || |

|

|

|

|

|

| ||

||

| |

|

| |

|

| |

|

|

|

|| |

|

|||

|

| |

|

| || |

|

|| |

|

||| ||

|

|

|

||| | ||

|

| | ||

|

|

|

|| |

|

| || |

|

|| | || | |

| || |

|| || || || ||| | || |

|

|||| |

|

|

|

| | ||| | |

|

| | || |

||

| |

|

| |

|

| ||

|

| | ||

||

| ||| | ||

|

|

|

|| | |

|

|

|

| ||

|

||| | |

||

|| | || | |||

|

| || || || || ||| | |||

|

|

| |

|| || |

|

||

|

|| || ||

|

|| |||

||

|| || | |

|

||

|

|

|

|| || || || || |

||

| | | |||| ||

||

|

|

|

|

| |

|

|

|

|| || || | |

|

|| || || | || |

||

|

||

| || | |||

||

| |

||

|||

|

|

| |

|

|

||

|

|| ||| ||| | ||

|

|

|

|| ||

|| |

|| | | || | |

|

|

|

||

|

|

|| |

|

| ||

| | || |

|

|

|

||

| |

|

|

|

|

| |

|

|| |

|

||| | |

|

|

|

| | || || || |

||

|| |

|

| |||| ||

||

|| || ||

| |

||| |

|

| |

|

| || |

|

||| ||

|

|

|

|| | |

|

||

|

|| | || |

|

|||

||

|| || ||| | || | |

|

||| | || ||| ||| | | |||| ||

|

| | || |||

|

| | || | | ||||

|

| | ||

|

|| || | | || |

||

|

|

|

|

| |

|

||

|

| ||

|

| | | |

|

||| ||

|

|| ||

|

| ||||| |

|

|

|

|| ||| |

|

|

|

| |

|

| || |

|

|

|

|

||

|| ||| ||||

|

|

|

| |

| |

||

|

||

|

|

|

|| | ||| ||| ||

| |

|| |

||

| ||

|

|

||

| |

|

| |

|

|| | | ||| |

| ||

| ||

|

|| |

|

|

|

|

|

| |

||

| || |

|

|

|

|| || |

|

|

|

|||

||

| ||

|

|

| |

| ||| ||||| |

|

|

|

| | ||

|

| ||| | || || || ||| || || |||

|

||| |||| || || |||| | || || | || |

|

| |

|

|

|

|

|

|

|

| | ||

|

| ||| |

| |

|| || |

|

| |

| ||

| | |

|

||| |

|

|| ||

|

| || || |

|

|| |

|

||

|

|

||

|

|

|| || |

|

|| | |

|

|| | ||

||

| |

|

| | |

|

|||| ||

|| |

||||

||

| | |

|

| || | ||| ||| | | || || |

|

|

|

| ||| | |||

|

| |

|

|||| ||| || | |

||

| | || |||

|

|| |

|

||

|

|| ||

|

| || ||| || ||

|

||

|

| | || ||

| |

| |||

|

| ||| ||||||| ||

|

|| ||| || | || || ||

|

| |||

|

|| || | ||| || | |||| |||

|

|| |

||

| ||| || ||

|

| | ||| | || || | | ||| |

|

| || ||

|||

|

|| |

|

|

| || ||

|

|| ||| | || || ||| ||

|

|

|

|| ||||

|

|| | | |

|

| | ||

|

| ||

||

|| |

|

|

|

| || |

|

| || ||

|

| ||||| || |

|

|

||

| | | |

|

|

|

||

|

| | || || || ||| || || ||

||

||| | |

|

|||

|

| || |||| || |

|

|

|

| || || || | |||||

||

|

|

| |||

|

| || ||

||

| |

|

| ||| | || |

|

| | ||| || || ||

|

| ||| | || |

|

||

| |

| || |||| |

|

| || | | |||

|

|| || || | || ||

|

| || ||||

|

| || || | || || |

|

|| | || |||

|

|

||

|| |

|

|| |

|

| ||||

|

| |

|

|

|

|||

|

|

| | |

| | |

| | ||

||

|

| ||

|

| |

|

|| | |

|

||| | ||

| |

|

|

||

||

| | | || |

|

| | || |

||

|| || | || || ||||

|

|

|

|

||

| |

|

| |

|||

|| |

|

||| || ||| || ||| ||

|

|| ||

|

| | || ||| ||| ||

|

|| |

|

| ||

||

| || || |

| |

| || |

|

||

|

||| || || || | |

|

|||| | || |

|

| | ||| | |

||

|||| |

| |

|

|||

| | || || || |

|

|

|

| || || | || |

|

||| || | || ||| || | | ||||| || ||| || | | |||| |||| |

|

| || ||

|

|||

|

| ||| || ||

|

| ||

|

|

|

|| | |

| |

||| |

|

|

|

||

|

||| || |

|| |

|

|

|| | | | |

|

| || | |||| || |

|

|| |||

| |

| | |

| |

|

|

||

||

| |

||

| |

|

| || | || || ||

|

|| |

||

|

|

||| || |

|

|

|

| | |||| || ||

|

||| | || | |

|

|| || | || | |

|

| ||

|

| |

|

||| |||

|

| |

|

|

|

|

|

|||| |

|

|| || | |

|

|

| ||

| |

|

|

|

| ||

|

| | || ||

|

|

|

|||

|

| || ||

|

|||

|

|

|

| || |

||

||

|

|| | || | ||| |

|

| || |

|

|||

||

|| || |||

|

| ||

|

| |

|

| |

| |

| |

|

|

||

|

|

||| | || | ||

|

|

|

| |

|

|

|

| || ||

||

||

|

| || |

||

|

|

|| ||

| |

|

|

|

|

|| |

|

|

| |

| | |

|

||

|

||| |

| ||

| | ||| |

|

|| | | |

|

| ||

|

|

| ||

|

|

| | || ||

|

|

||

|

|

|| | | || | | ||

|

| || | || | ||

|

||| | |||

|

| ||| || ||| | | || | ||

|

| ||

|

| || | |

|

|| | |

|

| || ||| |

|

|| |

|

| || || || ||| || ||

|| |

| |

|

|

|

|

| ||

| |

|

||

|

| || |

|

|| ||||| |

|

|

|

| | | |||| | || || ||

|

| ||| || || |

||

| ||| || || ||

|

| ||

|

|||

|

| || ||| || | || | ||| |

| |

|

|

||| ||||

|

||

|

|

|

| | | | |

|

|| | ||||| |

|

|

|

| | |

|

| ||| | ||| |

|

|

| |

|| || | || | |||| || | |||| |

| |

|

|

|| | ||| || |

|

| |||| | | |||| | | | ||| ||

|

|

|

|

|

| || ||||

||

||| || | |||| ||| ||| ||

|

|||

|

||| ||| |

|

|

|

|| | |

|

| ||||

|

|

| |

||

||

|

|

|| |

||

||| |||

|

|| | ||

|

|| | |

|

|| | ||

|

|||| |

| ||

| | |

|

||| | || || | || | ||| || || ||| | ||

|

| ||

|

| | ||| |||| |

|

| ||

|

|

|

|

| | |

|| | ||

|

|

|

||

|

| || ||| ||

|

|

|

| | |

|

| || | || | |||

|

| |

|

|

||

|

|

|

|

|

|

|||

|

|

|

| ||| |

|

| ||| |||

|

| | ||| | ||

|

|| ||

||

||| |

|

| | |

| |

|| ||

|

| |

|

|

||

| ||

|

|

|

| |

|

|

|

|| || | |

|

||

|

|||

||

|| | | |

|

|

||

| || | || |

|

| |

|

|

|

||| || |

| ||

|

| ||

| |

|

| |

|

|| | | || |

|

| |

|

|||| | ||| |

|

| |

|

| |

|

| || ||| |

|

|

|

| ||

|

| | | || ||| ||

|

| || |

|

|||

|

|| |

|

||| || | ||

|

||

| |

|| | || |

|

|

|

| |

| |

|| || ||

|

|

|

||| ||

|

|| | || | | ||

|

|

| |

|

| ||

| || | ||

|

| |

|

|

| ||

|| || ||

|

||

|

|||

| ||

| | |

|

|| |

|

| || | | ||| |

|

| || || || ||| | || | |||| || | | || |

|

|| || ||| | || || |

|

| |

| |

| |||

|

| ||

|

| ||

||

|| | |||

|

|| || | | || |

|

|| |

|

|| |

|

| |||

|

||

|

|

|

||

|

|||

|

|| ||| ||

|

|

|

| ||| | ||

||

|

|

|| ||

|

| | ||

| ||

| ||| ||| ||| ||

|

|| |||

|

|| ||| |

|

|

| |||

| |

|

|| |

| |

|

|

||

|

|| | || ||

|

|| | |||

| |

||

|

|| || | || | | || |

|

| || ||

|

| ||

||

|

| |

| || ||| | |

|

| | ||

|

||| |

|

| | |

|

||| || ||

|

| |

||

|

|

||

|

| ||| |

|

| | ||| || ||||

|

| | ||

|

|| | | || ||| | ||| |

|

|

||

|

|

|

| |

||

|

| |

|

|| || | |||| | ||||

|| |||

| || | ||| || | |

|

|

| ||

| | ||| | ||| | || || | ||||

|

|

| |

|| | | | | ||||| |

|

| | || |||

|

|

|

|

|

| |||| || |||

|

|

||

|

|

|| |

|

||

|

|||| || ||

|

|| || | | |

|

|

| | | |

||| || || || | | ||

|

| |

| | ||

|

|

||

|

|| || ||| |

|

|

|

||

|

|| ||| | || | | ||||

|

| ||

|

|

|

| |

|

| ||| | ||| |

|

|| | || || |

|

| | |

|

|

|

|

|

| ||

|

|

|

| ||

|

| | || |

|| | |

| ||

| | || |

|||

|

|

|

|

||

| |

|

||

|||

| |

|

|| | |

|

|

|

|

| |

||

| | ||

| || |

|

|

|

|

|

|| ||

|

| |

| |

|

|

|

|

||| ||| |

|

||| | ||

|

||

|

| ||| || || |||| | | ||||| | || ||| || ||| ||| | |

|

|| | ||| || | ||| || | | || ||| ||| |

|

|| | |||

|

|

|

| | || ||

| |

|| || | ||

|

|

|

|| |

|

|| |

|

||

|

|| || | ||

| |

|| |||

|

|||

|

||

|

|

|

| |||

|

|

|

| | |

|

|| |||| || |

|

|

|

||| |

| |

||| || |||| |

||

| || |

|

| | ||

|

| |

|

|

|

||

|

||

|

||| |

|

|

|

|| ||| | ||

|

|

|

|| || ||| || ||

|

|

| |

|

|

| | || | | || || | ||| | || | || |

||

| || | ||

||

| | |||

||

|

|

||| || || || ||

| |

| | || ||

|

|| | || ||

|

|

|

| ||| ||

|

| |

|

||

|| |

|

| |

| || ||| ||

|||

| |

|

| || ||| |

|| |

|| ||

|

|

|

| || || ||

|

||

| || |

| || |

||

| |||

|

||| | |

||

| || ||

|

||

|

|

|

| |||

|

|

|

|

|

|| || | |

||

| ||

|

||

||

| || ||| || ||| ||| || | ||

|

| |||

|

|

|

||

|

|

|

| | | ||

|

|

|

|

|

| || |

|

| ||| |||| | || ||| ||

|

| |

|

|||

||

|| | || ||

|

|| || |||

| |

|| | || |

|

| || | ||

|

|

||

|| ||| ||

|

| |

||

|

||

||| || || | |||

|

|

|

|

|

|| | ||

|

|

|

|||| | |

|

| |

|

| |

|

|

||| |

||| |

|||

| |

|

| | |

|

|

| |

|

|

|

| |

|

| ||

||| ||| ||| || || || | || | | |

|

|| ||| | | || ||||

| |

| | | || | | ||| |||

|

|| ||| ||| ||| || | || || |||| || | || | |

|

|||

|

| || ||

|

| || | ||

|

|

|

|| || || || |||||

|

| ||

|

|||

|

|

||

|

|

|| || | |

|

| ||| | |||

|

| | || | |||| | || |

| |

|||| |

|

| |

|

|

| |

|

|

||| ||| | || |

| |

|

||

|

|

| || ||

||

|| | || |

| |

|| | | | || | || ||

|

|||

|

|| || || || | ||

|

||

|

| |

|| |

||||| |

|

|| |||

|

|

|

| |

|

| |||

|

| |

| |

||| || || || | || | | || || |

||

|||

|

|| || | || |

| |

||

|

|

|

|

|

|

||

|| ||

|

|| | ||| | |

|

| |||

|

|| |

||| |

|

|

|

|

||| || ||

| |

| ||| || ||

| | || |

| ||

| |

| ||

| ||

| || | ||||

|

|

|

|| | || || |||

|| |

|

|

|| |

||

| || ||| | || |

|

| |

| |

| ||

|

|| ||

| | |

||

|

|

|

|| ||| || |

| |

| || ||

|

|

|

|

|

|| ||

|

||

| |

||

|

| ||

|

| ||| ||

|

|

|

|| |

|| |

|

|

| | |

|

||

|| ||||

| ||

||

| | || | ||| | || | | || ||

|

|

|

|| || |

|

|| | ||| ||

|

| |||

|

||

|

| ||

|

| || || ||

|

|| | | || | ||

|

|| ||

|

||| || | || || || ||| || ||| |||

|

||||

|

|

|

| | || | || | ||||| ||

||

| |

|

||

|

| ||

|

| |

|

| ||

|

|| |

|

|| || ||

|

| |

|

||

|

| | |

|

| | |

|

|||

|

| | || ||

|

| ||

|

| | ||| || || | || || | || |

|

| || || || ||

|

||| ||| | | |

||

|

|

|| || | ||||

| ||

|| || |

|

| | |

|| |

||

|

|

|| ||

||| | |

|

| | |||

| |

|

|

||

||

| | |

|

|

| |

| | |||

|

|

|

|||| || | ||| || ||||

|

||

|||

| ||| || |

|

||

|

| ||

|

|| | ||

|

| || |

|

|| |

| |

| || |

|

| |

|

| |||| ||| | |

| |

| |

|

|| ||||

|

||| | ||| ||| |

|

|

|

|| |

| |

|| |||| | || || ||| | ||

|

|

|

| || | |

|| |

| |

||

| | |

|

||

|

||| ||

| |

| | ||

|

| || ||

||

|

|

||

|

| || || | ||| || ||

|||

| |

|

| || |

|

|

|

| || | | |||

| |

| || | | || | |

| |

|| |||

||

| || |

|

|

|||

|

|

|

| |

| |

| |

|

|

|

|

|||| ||

|

||||

|

||

|| |

|

| | || ||

| || |||

|| ||

||| |

|

|| |||

|

||| |

|

|

|

|| | |

||

||

|

|| ||

|

|| ||| || |||

|

| ||| | || |

||| |

||

|

|

|

| || | | || |

|

| || ||

|

||

| |

|| | ||

||

|

|

|

|

||| || |

| |

| ||

| | |

|

| |

|| || || ||

| ||

||| || | |

|

| || | || ||

|

| | ||| | ||| | || |

|

|| | || || ||| || | ||| ||

|

|| | ||

|

|| ||| | || |

|

||| | || ||| ||

||

|

|

|

| |

|| | |

||

| || ||| |

|

||

|

|| ||

|

| |

|| |

|| |

||

| | || | | |

|

| |

|

|| | |

|

| | || | || ||| || ||

||

| || |

||

|

|

|| || | ||

|

| |

| |

|| || |||||

| |

|| | | | | |

|

|| || || ||| ||

|

| |

|

|

| ||

|

|

|||

| ||

|| |

|

|

|

|

|

|

|

|||

|

| |

|||

||

|

|

|

| ||| |

||

| ||| || ||

|

| | | | || || ||

|

| ||

|| |

| || ||

||

| | || |

| |

||

|

|| |

|

|| |

| | |||

| || |

|| | |

||| |||| ||| |

|

|

|

|

|

|

|

| |

|

| |||

|

|

|

| || | ||

|

|

|

| || |

|

||

|| |

||

|

| || | ||| ||

|

| ||

|

||| | |

|

|||

|

||

|

| | |

| |

||

|

|

|

| || | ||| || ||||| ||

|

|

|

|

|

|

|

| || |

|

| ||

|| |

|| || | ||| || || |

|

|||

|

|

|

|| |

|

|| | | ||

|

| |

|

| |

|| |

|| | ||

| |

|

|

| |

|

|| |||

|

|||| ||| || ||| |

|

|| || || || || ||

|

|

|

|

| |

|

|

|

|

| | |||

|

|| | |

| |

|

| |

||| ||

|

||| |

||

| ||

||

|| |

|

|| |||

|

| ||| ||| ||

|

| | |

||

| || |

|

| | ||

|

|

| |

| ||| | |

|

|| || ||| |

|

| |

|| ||

| || |||| || | | |||

|

| |||| |

|

|

|||

|||| |

|

|| ||

|

| | | | ||

|

|

|

|

| |

|

||

||

|

|

|

||

|| |

|| | |||

|

|| |

||

|| | ||

|

| | |

|| |

|| ||| | ||| | ||

|||

|| | | || | | | || |

||

| || |||| || | | || | ||| |||

|

|| | | |

| ||

| | ||

||

||

|

||

||

| | |

|

| ||| | |

|

|| | || | | |

||

||

| |

| ||

|

|

||

|| ||

|

| |

|

|||

|

|

|

|| || ||

|

| | |

|||

| ||

|

|

|

| | |

|

|

|

|||| | |

|

|

|

|| |

||

| |

|

||| ||

|

|

|

|

| ||

| |

|

| |

|

|| | ||

|

| |

|

|

|||

| || ||

|

|

|

|| | ||

|

|| ||

|

|

|

|

| |

| | || || |||| | ||| |

|

|

|

|

|

| |

|

| | ||

|

| |

|

|| ||

|

|| | | ||

|| |

||

|

|

|

|

| |

||

||

||

|

|| || || |

| |

|| |

|

| | |

| |

| | ||

|

| |

| |

| | | ||

|

|

|

||| ||| || | ||

|

|| | |

|

||| |

|

|| ||

|

| ||

|

|

|

||| || |||

|

|| | ||

|

||| |

|

| |

| ||

||

|

|||

|

|

|| ||

|

|

|

|

||| ||

|

||

|

| ||

|

||| |

| |

||| | |

| |

|

| |

|

|

|

|

| |

|

|| | | ||| |

|

| | ||| |

|

| |

|

|

|

|| |

|

|

|

| | ||

||

|

|

| || || |

|

|||| | || |||| |||| ||

|

|| |

|

|

|

| |

|

|

||

|

|

| ||

|

|| | |

|

|

|

| ||

|

| |

|

||||

|

| | ||| |

|

||| |||| |||||

|

|| ||

|

||| |

|

| |

|

|

|

| || |

|||

|

|

| |

|

| || | || |

|

||

|

|| || | |

|

|| ||

||

|

| |

|

|

| |

|

|

||

| |

|

||| | || || |

||

||

|

|

|

| | || |

|

||| ||

|

|

|

| ||

|

|| | |

|

|| ||| |

|

|| | ||| |

|

|| || |

| |

|

|

|| || || |

|

| ||| ||

|

| |

|

| | | || |

|

|

|

|

|

| | |

|

||| || | |

|

|| |

|

| || |

|

|

|

| |

|

|

|

||

|

|

|

| |||

|

| ||| | | |

|

||

||

|

| | | |

|| |

| |

|

|

| ||| |

|

||

|

| | || |

|

||

||

|

|

|

| |

| |

|

| |

|||

|||

||

|| | || | |

|

| || |

|

|| |

| |

|||| | ||

|

|

||

| |

|

| |

|

| ||

|

| ||

| |

|| | |

|

||

|

| |||| |

|

||| ||| ||

|

| |

|

|| || ||

|

||

|

|

|

|

|

| |||| ||

|

|| |

|

| |

|

|

|

|

|

||

|

||| | |||

||

| || ||| |

|

| ||| |

|

| |

|

|

|

||| |

|

|

| |

|

|

|

|

| |

|

|| |

|

|

|

| ||

|

|| ||

|| |||

|

|

|| | |

|

|||| |||

|

| ||||

|

||

||

|||

|

|

|

|

| |

| |

|

||

|

| ||

| |

| || |

|

| || ||

| || |

|

|

||

| ||

||

|

|

||

|

|

|

|

|

|

||

|| |

| | ||

| |

| || ||| |

|

| |

| |

|

| |

|| |

|

| | ||

| |

|

|

| | |

|

|

| |

|

|

|||

|

|

|

|

|

|

|

|

| ||

|

| |

| |

| |

||

|

|

|

| |||

|

|

|

| ||

|

||| |||

|

|

|

| |

|

| | |

| |

| |||

||

|

||

|| ||

|

|| |

||

||||

|

||

| |

|| ||

|||

| ||| | |

|

|

|

| |

|||

|||

|

|

||| |

| |

| || || |

|

|

| |

|

||| |

|

| || |

|

|

|

|

| |

||

|

||

|

| |

||

||

|| |

|

|

|

|

|| |

|

| | ||

|

|| |||

| |

|

|

|

|

||

| |

|

|

||

|| ||

||| |

|

| |

|

|

|

|

| |

|

|

|| |

| |

|

|

|

||| |

||| |||

| ||

| ||| | || |

|

|

||

| |

|

|| || | |

|

|| | || ||

| |

|

|

| |

|

||

|

| ||

|

|| || ||| ||

|

||| || ||| |

||

| | ||| ||| |

|

||| || | || || ||

|

|

| |

| ||| ||

|

||| |

|

|

|

|| |

|

|

|

|

|

|| || | | |

|

|

||

| | || |

||

| |

||

|

|

||

||

|| || || ||| || | ||

|

| |

|

||

|

| | || ||

|

| |

||

| || |

|

|

|

| |

| |

||

|

|

|

|| | |||

||

|

|

||

|

|

| |

|

|

|

||

|

||

|| ||

| || |

|

| |

| || ||

|

||

|

| | |

||

| ||

| |

||| |

|

|| ||| || || ||

|| |

|

| |

| | |||

|

|

|

|||

|

| ||

| |

|| |||

|

| ||

| |

|| |

|

|

|

|

|| |

|

| |

||| ||

|

|

|

||||

|

|

|

| |

|

| ||| |||

| ||

|| |

|

||| || |

||| |

| ||

|

| | |

|

||

|| |

| | | ||| | |

|

|

| ||

|

|

|| |

|

|

|

|

||

||| |

| || |

| || ||

| |

|

| |

|

|

|

|

| |

||

||| |||

|

|

| | |||

|| || |

|

| | | |

|

||

| |

|||

|

|

|

|

|

| ||

| |

|| || | || || | |

| |

|| | |

|| ||

| | || |

|

|||

|||

|

|

|

| | |||

|| | || ||| || |||| || || | ||| |

|| || |||| | ||| |||

||

||

|

|

|

|

|| |

||

|| || |

|

|

|

| | |

| |

|| | ||| || | | ||||

|

| |

|

| |

|

|| | | ||| || | ||

|| ||

| | ||

|

|

|

|||

||

||

|

|

|

| | || | ||

||

|

|

|

|

|

|

| ||

|

|

|

|

|

|

|

|

||

|| ||

| |

|

| ||

| || |

|

| | | ||

|

|

|

| | | || ||

| |||

| ||

|

|| |

|

||| |

| |

|||

|

|

||

| ||| ||| | |

|

| ||

|

| | | | || | ||| |

|

|

|

|

||

| ||| | |

| |

||||

|

|

|

| ||

|

||

|

|| | | |

R code on

page 212

Figure 9.3: Whether crime was reported in the media (1 =yes, 0 =no) against the age of the
victim, together with smooth curve of the fitted probability crime was reported in the media.

An advantage of a smoother over a parametric fitting function is its local behaviour. Smoothers
are effected by local observations more than by observations far way. Some of the basic ideas
of smoothing can be introduced through local regression models and this is what next section
is doing.

9.3 Local regression smoothers

The idea with the local smoother is that instead of using all available data to obtain a suitable
estimate of the current value, only part of the data is used at a time. This part is determined by a
window, which is an interval of the explanatory variable x. The window allows only observations
that fall within it to count in the calculation of the current smoothed value. Except near the
ends of the range of x, the window is a ‘symmetric’ two sided window where a neighbourhood
of the target x is used with an equal number of observations on each side of the target value.
Note that here we describe only a two sided window compared to one sided used extensively in
time series analysis.

The bigger the window, the smoother the values of the estimates usually are (and the smaller
the variance of the estimates). With smaller widows the estimates are more wiggly (but the
estimates are less biased). The size of the window in the unweighed smoothers (see below
for the definition of weighted smoothers) plays the role of the smoothing parameter. Large
widows produce an estimate of the trend that is low in variance but high in bias. Small widows,

214 CHAPTER 9. ADDITIVE SMOOTHING TERMS

conversely, produce an estimate that is high in variance but low in bias. Hence there is always
a ’trade-off’ between bias and variance. The windows is controlled in the unweighed local
regression by the span = (2k + 1)/n, where k is the number of observations in the left/right of
the target (middle) value. The span can take values from 0 to 2. For a very small value close to
zero, the window will contain only one observation, while at a value of 2 it will contain all data
points. The span for local unweighed polynomial regression is the smoothing parameter.

Definition: A smoothing parameter determines how smooth the fitted curve is and it is
effectively striking a balance between bias and variance in the estimation the curve. We
shall use the Greek letter λ to denote the smoothing parameter in general.

How to choice the smoothing parameter λ is one of the most important topics in the literature
of smoothing techniques.

In any local regression scatterplot smoother there are three main decisions that need to be made:
i) the size of the window (i.e. the choice of the smoothing smoothing parameter) ii) the degree
of polynomial and iii) how the response values are averaged. The second is dealt by fitting
different degree polynomial functions in x to the data. The third by deciding whether to used
unweighed or weighted polynomial regression. For weighted local regression the specification of
a kernel function and its smoothing parameter λ is required. Kernels are positive symmetric
functions, looking usually similar to the normal distribution, having as a smoothing parameter
a scaling parameter which make the shape of the function narrower or wider. For example,
if the normal distribution is chosen as kernel, then the the standard deviation λ = σ is used
as a smoothing parameter. It is well known in the smoothing literature that to determine the
smoothness of the fitted curve, it is the smoothing parameter λ rather the choice of the kernel
that matters. The following describes how the local regression smoothing with a symmetric
window works.

• Start by ordering the pair of values (yi, xi) for i = 1, 2, . . . , n with respect to x.

• Use the smoothing parameter to select the size of the window or how wide the kernel
function should be.

• Focus on a single observation (with the target x value) and fit a polynomial regression
model only to observations falling into the current window (for unweighed local regression)
or weight the observations according to the kernel function.

• Use the fitted values ŷ of y for the x value of the target observation (x, y) as the fitted
value for the smoother (at the target x value).

• Repeat this for all observations.

Figure 9.4 demonstrates some aspect of this process. Each plot shows:

I The current target observation (x, y) in bold and with a pointed arrow,

II The fitted polynomial. For example, Figure 9.4(a) shows a constant fit (or moving aver-
age), Figure 9.4(b) a linear fit, Figure 9.4(c) a quadratic fit and finally Figure 9.4(d) a
cubic fit.

The plots in Figure 9.4 (a) and (b) are using an unweighed fit and therefore show the chosen
windows as shaded areas. Note that the symmetry of the window (that is, containing an equal
number k of observations on the left and on the right of the target value) breaks down at the
two extreme ends of the range of x. For example, if there are less than k observations on the

9.3. LOCAL REGRESSION SMOOTHERS 215

left of the target value, the window will contain less observations on the left of the target value
than on the right, as demonstrated in Figure 9.4(a). The opposite behaviour will happen in
the right part of the data. Note also that a span value close to zero will interpolate the data
since there will be left as many observations in the window as the degree of the polynomial. A
value of span equal to 2 will fit a global polynomial to all the data, while a value equal to 1
will fit a global polynomial for the middle point of the ordered data but not for the rest of the
target points. Usually span = 0.5 is a good starting point and this is the value used in Figures
9.4 (a) and (b). The plots in Figure 9.4 (c) and (d) use a weighted fit using a normal kernel
with smoothing parameter σ = 0.25. The shaded area in the plot shows how much weight an
observation has in determining the fitted value of y at the target observation. Observations far
for the target x value have negligible effect since their weights are close to zero.

Figure 9.4library(gamlss.demo)

Loading required package: rpanel

Loading required package: tcltk

Package ‘rpanel’, version 1.1-3: type help(rpanel) for summary information

n <- 100

x <- seq(0, 1, length = n)*1.4

set.seed(123)

y <- 1.2 + .3*sin(5 * x) + rnorm(n) * 0.2

op <- par(mfrow=c(2,2))

LPOL(y,x, deg=0, position=5)

title("(a) moving average")

LPOL(y,x, deg=1, position=75)

title("(b) linear poly")

WLPOL(y,x, deg=2, position=30)

title("(c) quadratic poly")

WLPOL(y,x, deg=3, position= 50)

title("(b) cubic poly")

par(op)

There are several demos within the package gamlss.demo which show how different local regres-
sion models work. Readers with less experience in smoothing techniques are encouraged to use
them into order to understand the basic ideas behind local regression smoothing. Table 9.1 gives
the names of these functions and emphasise their functionality. The demos can be obtained by
typing the name of the R functions, e.g. demo.LocPoly(), or can be accessed using the function
gamlss.demo() and following the menu for ‘Demos for local polynomial smoothing’.

Table 9.1: Showing different ways of using local regression smoothers

unweighed weighted
mean moving average kernel smoothers

(demos) demo.LocMean() demo.WLocMean()

linear simple regression weighted linear regression
(demos) demo.LocPoly() demo.WLocPoly()

polynomial polynomial regression weighted polynomial regression

The following are general comments on local polynomial smoothers:

216 CHAPTER 9. ADDITIVE SMOOTHING TERMS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4
0.8

1.2
1.6

x

y

(a) moving average

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4
0.8

1.2
1.6

x

y

(b) linear poly

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.5

1.0
1.5

x

y

(c) quadratic poly

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.5

1.0
1.5

x

y

(b) cubic poly

R code on

page 215

Figure 9.4: Showing different aspects of fitted local polynomial regression: i) Plots (a) and (b)
show unweighed local regression fits with span = 0.5 while plots (c) and (d) show a weighted
fit using a normal kernel with smoothing parameter σ = 0.25. Plot (a) uses a constant fit (i.e.
a moving average), plot (b) uses a local linear fit, plot (c) a local quadratic fit and plot (d) a
local cubic fit.

9.4. PENALISED SMOOTHERS: UNIVARIATE. 217

1. Weighted local polynomial smoothers using a kernel function as weights produce much
smoother fits than unweighed local regression using a window. The latter produce rather
wiggly functions.

2. The running-mean smoothers (that is, moving average and kernel smoothers shown in the
top row of Table 9.1) tend to flatten out the trends at the endpoints of the x variable and
thus the fitted values produced are biased at the end points.

3. Every univariate smoother has a smoothing parameter which controls the amount of
smoothing done to the data, i.e. the span or λ.

4. All the local polynomial regression smoothers discussed up to now are linear in the sense
that we can write the vector of fitted values as ŷ = Sy.

5. Smoothers are affected differently when the region of the x values is sparse, for example,
in the local weighted window, the values of the weights are affected by the sparseness of
the x-values. Also the kernel smoother can misbehave at the end of the range of x-values
where data are sparse and more generally when the x-values are unevenly spaced.

6. The smoother takes its values locally since only local observations take part on the fit.
As a consequence, the smoother is generally robust to extreme x-values since those values
will only contributed locally to the fit. This is contrary to the say polynomial regression
fits where extreme x-values have great influence on the whole fitted curve.

7. Influential observations in the y-axis do effect the smoothers. That is why, for example,
one of the most successful algorithms for weighted local regression, the loess algorithm,
provides also a robust version. The implementation of the loess function within GAMLSS
is discussed later in Chapter ???? [Influential observations in the y-axis are dealt in
GAMLSS by fitting robust distributions to the data.]

9.4 Penalised smoothers: univariate.

The penalised smoothers are the most important smoothers within the GAMLSS family of
smoothers because of their flexibility and the fact that they can be applied in a variety of
different situations. All of the smoothers considered in this section can be thought of as the
solution to the following least squares minimisation problem, where certain quadratic constraints
apply to the parameters.

Let Z be a n×p basis matrix (bases are defined in Chapter ??), γ a p×1 vector of parameters, W
a n×n diagonal matrix with weights, G an p× p penalised matrix, λ the smoothing parameter
and y the variable of interest. Then penalised smoothers are the solution to the minimisation
of the following quantity Q with respect to γ:

Q = (y − Zγ)
>

W(y − Z) + λγ>Gγ. (9.2)

The solution to the minimisation problem in equation (9.2) is:

γ̂ =
(
Z>WZ + λG

)−1
Z>Wy. (9.3)

Different Z’s and G’s will produce different smoothers (as we will try to explain in this section),
while within GAMLSS different W are used iteratively within the backfitting algorithm of

218 CHAPTER 9. ADDITIVE SMOOTHING TERMS

GAMLSS (to fit different distributions for the response variable). The fitted values for y are
then given by:

ŷ = Z
(
Z>WZ + λG

)−1
Z>Wy

= Sy (9.4)

where S is the smoothing matrix which plays the same role as the hat matrix plays in least
square estimation. Another quantity of interest within GAMLSS is the trace of S since it is
used as the effective degrees of freedom of the smoother,

tr(S) = tr
[
Z
(
Z>WZ + λG

)−1
Z>W

]
= tr

[(
Z>WZ + λG

)−1
Z>WZ

]
(9.5)

The form of the penalty matrix G is also of great interest. Very often is defined as G = D>k Dk,
where the matrix Dk is a difference matrix of order k. The D1 and D2 matrices of order 1 and
respectively look like:

D1 =


−1 1 0 . . . 0
0 −1 1 . . . 0
.
0 0 . . . −1 1


and

D2 =


−1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
.
0 0 . . . 1 −2 1

 .
Those matrices can be generated easily in R using the diff() function as the following code
shows (no output is given).

D1 <- diff(diag(10), diff=1)

D1

D2 <- diff(diag(10), diff=2)

D2

t(D1)%*%D1

t(D2)%*%D2

An important feature of the order k is that it introduces a different type of stochastic dependency
for the coefficients γ. For example, k = 0 treats the γ as a random effects, k = 1 as a random
walk of order 1, k = 2 as random walks of order 2 and so on.

For people familiar with simple least square estimation is worth point out that the penalised
least square can be solved by expanding the original data and them use standard least squares
software to do the analysis. This can be demonstrated as follows.

Let ỹ =

(
y
0

)
, X̃ =

(
Z√
λD

)
and W̃ =

(
W 0
0 Ip

)
where 0 in ỹ is of length p. Then it is easy

to so that minimising the quantity Q1 =
(
ỹ − X̃γ

)>
W̃
(
ỹ − X̃γ

)
leads to the same solution

9.4. PENALISED SMOOTHERS: UNIVARIATE. 219

as in Equation 9.3, γ̂ =
(
Z>WZ + λG

)−1
Z>Wy. since

(
X̃>W̃X̃

)
=
(
Z
√
λD
)(W 0

0 Ip

)(
Z√
λD

)
= Z>WZ + λD>D

and (
X̃>W̃ỹ

)
=
(
Z
√
λD
)(W 0

0 Ip

)(
y
0

)
= ZWy

.

There are several ways of estimating the smoothing parameter within GAMLSS and they are
described in Section 11.2. The methods used here are local and they are:

• Generalised cross validation (GCV), Wood [2006].

• GAIC ,

• Maximum likelihood method.

This needs to be connected with the chapter in model selection

9.4.1 Demos on penalised smoothers

There are several demos within the package gamlmss.demo for helping to understand how
penalised smoothers works. They can be accessed by typing gamlss.demos() and then clicking
on the menu ”Demos for smoothing techniques” or by typing the names of the functions below:

demo.BSplines(): This function is designed for exploring the B-splines basis ideas. The user
can control the amount of knots for the basis and also the degree of the B-spline. The
demo also shows, by clicking the button ”random”, different shapes of curves than can be
generated from a linear combination of such a B-spline basis.

demo.RandomWalk() : This function demonstrates the most basic penalised smoother, the
random walk. Random walks are appropriate for time series data when the observations
are defined at equal space in time and there is no explicit explanatory variable. It can
be seen as the solution of the problem of minimising the quantity Q with respect to µ

in Q = (y − µ)>(y − µ) + λµD>Dµ. The solution is µ̂ =
(
I + λD>D

)−1
y where D

is usually a difference matrix of order 1. These smoothers are also called the Whittaker
smoothers, Whittaker [1922], Eilers [2003].

demo.interpolateSmo(): This function explores how the fitted values of a random walk be-
have in the case of interpolation and extrapolation, that is when data are missing at time
points or when we are trying to predict outside the current values of time respectively.
The user will find that the interpolation is done by a polynomial of degree 2d− 1, while
extrapolation is done by a polynomial of degree d−1. Both are done by introducing extra
data (at the missing or extrapolation time points) with weights zero.

demo.histSmo(): This function shows the power of penalties when we are trying to smooth
a histogram. It is using an old trick within the GLM literature of treating the counts
within the histogram bin of as Poisson distributed observations, Eilers and Marx [2010]
indexsmoothers!penalised!demo!histogram

220 CHAPTER 9. ADDITIVE SMOOTHING TERMS

demo.PSplines() This demo shows the effect on the fitted P-spline curve of changing i) the
number of knots in the B-spline basis, ii) the degrees of the polynomial used iii) the order
k of the penalty matrix Dk and vi) more importantly the smoothing parameter λ.

Next we will consider all univariate penalised smoothers implemented with GAMLSS.

9.4.2 The pb(), pbo() and the ps() functions for fitting a P-splines
smoother

The pb() stands for Penalised B-splines and it is an implementation in GAMLSS of the Eilers
and Marx (1996) P-splines methodology. The functions pb() and pbo() give identical results
but pb() is faster than the earlier version which is now under he name pbo(). P-splines uses
Z = B in equation (9.2) where B is a B-spline basis of a piecewise polynomial of degree d with
equal spaced knots over the x range. The coefficients γ are penalised using the penalty matrix
G = D>k Dk of appropriate order k.

The function pb() has only three arguments, while the rest can be passed through the control

option:

x The single explanatory variable.

df The desired effective degrees of freedom (trace of the smoother matrix minus
two for the constant and linear part). This does not need to be an integer but
must be positive.

lambda the smoothing parameter.

control the function pb.control() which sets the smoothing parameters.

If both df and lambda are set to NULL, then the smoothing parameter is estimated using one of
the methods described below. If df is set, then the smoother will have fixed degrees of freedom,
df. If lambda is set, then its value is used for smoothing. If both df and lambda are set, the
lambda takes priority.

The pb.control() function has the following options:

inter the number of equal spaced intervals in x to be used as knots for the creation
of the B-splines basis B. The default value os 20.

degree the degree of the piecewise polynomial used for the basis B. The default is 3.

order the required difference k in the difference matrix Dk with default 2.

start the starting value for the smoothing parameters lambda if it is estimated.

quantiles if TRUE the quantile values in x are use to determine the knots rather than
equally spaced knots.

method The method used in the (local) estimation of the smoothing parameters.
Available methods are "ML", "GAIC" and "GCV". The older version pbo()

has in addition the methods "ML-1", "EM". The "ML" method is described
in Rigby and Stasinopoulos [2013]. The "ML-1" is an experimental method
identical to "ML" with the exception that the σe parameter is set to 1. This
seems to make the algorithm unstable, so it is not recommended. The "EM"

9.4. PENALISED SMOOTHERS: UNIVARIATE. 221

is based on the method described by Fahrmeir and Wagenpfeil [1997], which
should give identical results with ”ML” but is generally slower.

The ps() function is an earlier version of pb() and there is no option for estimation of the
smoothing parameters. It is based on an original Splus function of Brian Marx. The ps() uses
as default fit a smooth function in x using 3 extra degrees of freedom i.e 5 degrees of freedom
overall, 3 for smoothing, one for the linear part and one for the constant.

The following code demonstrates that different methods could lead to slightly different fitted
curves. In general for large data use SBC as a smoothing method, for example method=GAIC)

and k=log(n).
Figure 9.5

p1 <- gamlss(bmi~pb(age, method="ML"), data=dbbmi, trace=FALSE)

p2 <- gamlss(bmi~pb(age, method="GCV") , data=dbbmi, trace=FALSE)

p3 <- gamlss(bmi~pb(age, method="GAIC", k=2) , data=dbbmi, trace=FALSE)

p4 <- gamlss(bmi~pb(age, method="GAIC", k=log(length(dbbmi$bmi))),

data=dbbmi, trace=FALSE)

plot(bmi~age, data=dbbmi, cex=.2, col="gray")

lines(fitted(p1)~dbbmi$age, lty=1, col=2, lwd=2)

lines(fitted(p2)~dbbmi$age, lty=2, col=3, lwd=2)

lines(fitted(p3)~dbbmi$age, lty=3, col=4, lwd=2)

lines(fitted(p4)~dbbmi$age, lty=4, col=5, lwd=2)

0 5 10 15 20

15
20

25
30

35

age

bm
i

R code on

page 221

Figure 9.5: Different fitted curves using different methods of estimating the smoothing param-
eters in pb().

Important: For large data use method SBC for a smoother fitted curves.

222 CHAPTER 9. ADDITIVE SMOOTHING TERMS

9.4.3 The pbm() function for fitting a monotonic smooth functions

indexsmoothers!P-splines!monotonic

The function pbm() can be use to fit monotone curves to the data. It is a modified P-splines
fit so like the function pb() it uses Z = B in equation (9.2) where B is a B-spline basis of a
piecewise polynomial of degree d with equal spaced knots over the x range. The modification is
in the penalty part of the fitting The coefficients γ are penalised using two penalties matrices:
i) one for the smoothness of γ, G = D>k Dk and ii) one which penalised the γ ’s if the monotonic
property of the fitted function is violated. The later penalty has the form P>k WPPk where the
matrix Pk is defined similar to the penalty matrix Dk while WP is a diagonal matrix of weights
which takes the values 1 if the monotonic property of he function is violated and 0 otherwise.
Note that the resulted monotonic function is achieved after several iteration of the penalised
least square algorithm.

The arguments of the function are almost identical to pb() apart for the argument mono which
can take the values "up" (the default) or "down".

Figure 9.6
set.seed(1334)

x = seq(0, 1, length = 1000)

p = 0.4

y = sin(2 * pi * p * x) + rnorm(1000) * 0.1

op <- par(mfrow=c(1,2))

plot(y~x, cex=.2, col="gray")

m1 <- gamlss(y~pbm(x), trace=FALSE)

lines(fitted(m1)~x, col="red")

yy <- -y

plot(yy~x, cex=.1, col="gray")

m2 <- gamlss(yy~pbm(x, mono="down"), trace=FALSE)

lines(fitted(m2)~x, col="red")

par(op)

9.4.4 The cy() function for fitting a cycle smooth functions

The function cy() produces smooth fitted curves with the property that the two ends (left and
right) of the fitted smooth function have identical values. This behaviour is ideal for fitting
periodic functions when do not expect the start of a new period to vary considerable from the
end of the last one.

Figure 9.7 set.seed(555)

x = seq(0, 1, length = 1000)

y<-cos(1 * x * 2 * pi + pi / 2)+rnorm(length(x)) * 0.2

plot(y~x, cex=.2, col="gray")

m1<-gamlss(y~cy(x), trace=FALSE)

lines(fitted(m1)~x, col=2)

9.4. PENALISED SMOOTHERS: UNIVARIATE. 223

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−1.
0

−0.
5

0.0

x
yy

R code on

page 222

Figure 9.6: Monotone fitted curves using the functionpbm().

0.0 0.2 0.4 0.6 0.8 1.0

−1.
5

−1.
0

−0.
5

0.0
0.5

1.0

x

y

R code on

page 222

Figure 9.7: Fitted curves ending in the same value they started using the function cy().

224 CHAPTER 9. ADDITIVE SMOOTHING TERMS

9.4.5 The cs() and scs() functions for fitting cubic splines

Both cubic splines functions are based on the smooth.spline() function of R and can be used
for univariate smoothing. They fit a cubic smoothing spline function, see for example Hastie
and Tibshirani [1990], Green and Silverman [1994] page 46 or Wood [2006] pages 124 and 149.

The cubic splines are the solution to the following minimisation problem. Let g(t) be a twice
differential function of t in the interval [a, b] and λ a smoothing parameter. Define the penalised
sum of squares function

Q2(g) =

n∑
i=1

wi (yi − g(ti))
2

+ λ

∫ b

a

{g′′(x)}2 dx

where wi for i = 1 . . . n are prior weights and g′′ are the second derivative of the function.
It turns out that the minimiser of the function Q2(g) over the class of all twice-differentiable
functions g are cubic splines. Also Q2(g) can be written as

Q2 = (y − g)
>

W (y − g) + λgKg

for a suitable defined K matrix, see for details Green and Silverman [1994].

There are two main differences between cubic spline smoothers cs() and P-splines pb(). The
basis function used for cubic smoothing splines fitting is similar to the P-splines. it is a B-spline
basis, B of a piecewise polynomial of degree 3. But while in P-splines we take equal distance
knots in the x-axis in cubic smoothing splines the knots are at the distinct x-variable values.
The second difference is in the penalty. P-splines achieve smoothness in the fitted function
by penalise the parameters γ. Cubic smoothing splines achieve smoothness by penalised the
second derivative of the function. The resulting smoothing curves are usually very similar.

The functions cs() and scs() behave differently at their default values when the degrees of
freedom df and lambda are not specified. For example cs(x) by default will use 3 extra degrees
of freedom for smoothing for x (5 all together, if you include the linear and the constant).
scs(x) by default will estimate lambda (and therefore the degrees of freedom) automatically
using generalised cross validation (GCV). Note however that for small data sets the GCV can
create instability in the algorithm.

The cs() function has the following arguments

x the univariate vector of an explanatory variable.

df the desired equivalent number of degrees of freedom [trace of the smoother
matrix minus two (for the constant and linear fit)]. The real smoothing pa-
rameter (spar below) is found such that df=tr(S)-2, where S is the smoother
matrix which depends on spar. Values for df should be greater than 0, with
0 implying a linear fit. The default is df = 3, i.e.. 3 degrees of freedom for
smoothing x on top of a linear and constant term in x giving a total of 5
degrees of freedom.

spar smoothing parameter, typically (but not necessarily) in the default range for
spar (-1.5,2]. The coefficient lambda of the integral of the squared second
derivative in the fitted (penalized log likelihood) criterion is a monotone func-
tion of ‘spar’, see the details in ’smooth.spline’ in R.

9.4. PENALISED SMOOTHERS: UNIVARIATE. 225

c.spar This specifies minimum and maximum limits for the smoothing parameter,
the default limits being −1.5 to 2. This is an option to be used when the
degrees of freedom of the output fitted gamlss object are different from the
ones given as input in the option df, which is caused by the default limits for
the smoothing parameter being too narrow to obtain the required degrees of
freedom. The default values used are the ones given the option control.spar

in the R function ’smooth.spine()’ and they are ’c.spar=c(-1.5, 2)’. For very
large data sets e.g. 10000 observations, the upper limit may have to increase
for example to ’c.spar=c(-1.5, 2.5)’. Use this option if you have received the
warning ’The output df are different from the input, change the control.spar’.
’c.spar’ can take both vectors or lists of length 2, for example ’c.spar=c(-1.5,
2.5)’ or ’c.spar=list(-1.5, 2.5)’ would have the same effect.

The scs() function has identical arguments plus arguments which can be passed to smooth.spline()
function.

As an example we used the smoothing cubic spline functions cs() and scs() to the rent
data. We remind the reader that the response variable R, is the monthly net rent (rent minus
calculated or estimated utility cost). We fit an additive model for floor space Fl and the year
of construction age A.

Figure 9.8# fitting cubic splines with fixed degrees of freedom

rcs1<-gamlss(R~cs(Fl)+cs(A), data=rent, family=GA, trace=FALSE)

fitting cubic splines by estimating the smoothing parameter

rcs2<-gamlss(R~scs(Fl)+scs(A), data=rent, family=GA, trace=FALSE)

term.plot(rcs1, pages=1)

40 60 80 100 120

−0.
4

−0.
2

0.0
0.2

0.4
0.6

Fl

Par
tial

 for
 cs

(Fl)

1900 1940 1980

−0.
4

−0.
2

0.0
0.2

0.4
0.6

A

Par
tial

 for
 cs

(A)

R code on

page 225

Figure 9.8: Fitted curves using the function cs() (cubic splines).

Next we use predict to create the fitted surfaces and plot them as contour plots.
Figure 9.9

226 CHAPTER 9. ADDITIVE SMOOTHING TERMS

newrent<-data.frame(expand.grid(Fl=seq(30,120,5),A=seq(1890,1990,5)))

pred1<-predict(rcs1, newdata=newrent, type="response")

new prediction

pred2<-predict(rcs1, newdata=newrent, type="response")

new prediction

Fln<-seq(30,120,5)

An<-seq(1890,1990,5)

op<-par(mfrow=c(1,2))

contour(Fln,An,matrix(pred1,nrow=length(Fln)),nlevels=30,

ylab="year of construction", xlab="floor space", main="(a)")

contour(Fln,An,matrix(pred2,nrow=length(Fln)),nlevels=30,

ylab="year of construction", xlab="floor space", main="(b)")

par(op)

(a)

floor space

yea
r of

 co
nst

ruc
tion

 500 550
 600 650

 700

 750
 800

 850
 900

 950

 1000

 1050 1100

 1150 1200

 1250

 1250
 1300

 1350

 1400 1500

 1550

40 60 80 100 120

190
0

192
0

194
0

196
0

198
0

(b)

floor space

yea
r of

 co
nst

ruc
tion

 500 550
 600 650

 700

 750
 800

 850
 900

 950

 1000

 1050 1100

 1150 1200

 1250

 1250

 1300

 1350

 1400 1500

 1550

40 60 80 100 120

190
0

192
0

194
0

196
0

198
0

R code on

page 225

Figure 9.9: Fitted additive curves surface using (a) cs() and (b) scs() for the rent data. The
fitted surfaces are almost identical.

Three dimensional plots of the fitted surfaces can be created as follows:

Figure 9.10 library(lattice)

p1<-wireframe(pred1~Fl*A, newrent, aspect=c(1,0.5), drape=TRUE,

colorkey=list(space="right", height=0.6))

p2<-wireframe(pred2~Fl*A, newrent, aspect=c(1,0.5), drape=TRUE,

colorkey=list(space="right", height=0.6))

print(p1, main = "(a)", split = c(1, 1, 2, 1),more = TRUE)

print(p2, main = "(b)", split = c(2, 1, 2, 1))

9.4. PENALISED SMOOTHERS: UNIVARIATE. 227

FlA

pred1

400
600
800
1000
1200
1400
1600
1800
2000

FlA

pred2

400
600
800
1000
1200
1400
1600
1800
2000

R code on

page 226

Figure 9.10: Three dimensional additive surfaces using cs() and scs() for the rent data.

9.4.6 The ri() function for fitting ridge and lasso regression terms

Ridge regression is a simple example of how shrinkage methods can be used for selection of
variables. By ‘selection of variables’ we mean the process in which only a subset of the initial
explanatory variables available is selected to put in the final model for a specific parameter of
the distribution. Methods on how this can be done in general, are explained in more detail in
Chapter ??. One of the methodologies for selecting explanatory variables which enter linearly
in the predictor equation of is the shrinkage methods see. Hastie et al (2009) page 61.

The shrinkage methods impose a penalty on the size of the linear coefficients of the explanatory
variables. For example, let us consider the simple least squares regression problem where the
quantity (y −Xβ)>(y −Xβ) is minimised with respect to β, and where the matrix X contains
all the explanatory variables and β are the linear coefficients of the regression. The solution to
the above least squares problem is given by β̂ = (X>X)−1X>y.

Ridge regression coefficients are the solution to the ‘penalised’ least squares problem

(y −Xβ)>(y −Xβ) + λβ>β (9.6)

with solution

β̂ = (X>X + λI)−1X>y. (9.7)

The effect of the quadratic penalty λβ>β is to shrink the least square coefficients towards zero.
It is not difficult to see that equation (9.6) is similar to equation (9.2) with Z, γ and D replaced
by with X and β and I respectively and that equation (9.7) is similar to 9.3.

The penalty in equation (9.6) can be replaced with a more general penalty in the form of:

(y −Xβ)>(y −Xβ) + λ|β|pp (9.8)

228 CHAPTER 9. ADDITIVE SMOOTHING TERMS

where |β|pp =
∑
J |βJ |p and where the summation is over all the elements of β. Different p

values define different norms of penalties: e.g. p = 2 defines the L2 norm with a quadratic
penalty, p = 1 defines the L1 norm with an absolute value penalty, etc. Note L1 is known
as the lasso penalty. Different penalties shrink the least squares coefficients towards zero in
different ways. The way least squares coefficients are shrunk towards zero for different penalties
is described nicely in Hastie et al. (2009) pages 69-73. The effective degrees of freedom used in
the shrinkage is given by the trace of the smoothing matrix.

Ridge regression can be fitted within gamlss using the ri() function. The most important
arguments of the ri() are:

X the design matrix of the explanatory variables X (whose columns are stan-
dardised automatically to mean zero and standard deviation one).

df, lambda effective degrees of freedom and smoothing parameter which act the same way
as in all other smoothers

method with only local ”ML” and ”GAIC” as supporting methods for automatic se-
lection of variables.

Lp the type of shrinkage penalty with Lp=2, i.e. ridge regression, as default.

In the example below, we use the usair data, which has six explanatory variables x1:x6 and
only 41 observations. First, we create the matrix X containing all the explanatory variables and
we standardised it using the R function scale(). We then fit four different models. The first
is the least squares model, and the rest are different shrinkage approaches i) ridge ii) lasso and
iii) ‘best subset’.

X<-with(usair, cbind(x1,x2,x3,x4,x5,x6))

standarise the data

sX<-scale(X)

least squares

m0<- gamlss(y~sX, data=usair, trace=FALSE)

ridge

m1<- gamlss(y~ri(sX), data=usair, trace=FALSE)

lasso

m2<- gamlss(y~ri(sX, Lp=1), data=usair, trace=FALSE)

best subset

m3<- gamlss(y~ri(sX, Lp=0), data=usair, trace=FALSE)

AIC(m0,m1,m2,m3)

df AIC

m2 5.336309 341.2492

m0 8.000000 344.7232

m1 5.884452 345.6097

m3 2.838310 350.1807

Note that instead sX above we could have given just X with the same results as it standardised
automatically. Model m2, the lasso, seems more appropriate here. The different coefficients of
the four fitted models are displayed below.

cbind(

zapsmall(coef(m0)[-1], digits=4),

9.5. PENALISED SMOOTHERS: MULTIVARIATE 229

zapsmall(coef(getSmo(m1)), digits=3),

zapsmall(coef(getSmo(m2)), digits=3),

zapsmall(coef(getSmo(m3)), digits=3))

[,1] [,2] [,3] [,4]

sXx1 -9.16 -9.44 -8.76 -6.69

sXx2 36.58 18.54 26.54 13.39

sXx3 -22.75 -5.43 -12.95 0.00

sXx4 -4.55 -4.16 -3.94 0.00

sXx5 6.03 4.71 4.73 0.00

sXx6 -1.38 0.70 0.00 0.00

The ridge regression, Lp=2, just shrinks the least squares coefficients towards zero. The lasso,
Lp=1, does the same, but also sets the coefficient of x6 to zero. The best subset, Lp=0, sets
four coefficients to zero leaving only x1 and x2. Next we plotting the fitted coefficients from
the three different shrinkage methods.

Figure 9.11
library(lattice)

op <- par(mfrow=c(3,1))

plot(getSmo(m1)) #

plot(getSmo(m2))

plot(getSmo(m3))

par(op)

9.5 Penalised smoothers: multivariate

9.5.1 The pvc() function for fitting varying coefficient models

The varying coefficient terms were introduced by Hastie and Tibshirani [1993] to accommodate
a special type of interaction between explanatory variables. This interaction takes the form of
γ(x)z, Mikis: should I use γ or β here?? that is the linear coefficient of the explanatory variable
z is changing smoothly according to another explanatory variable x. In time series data x can
be time so the linear relationship between the parameters and x varies over time. More general
x should be a continuous variable while z can be either continuous or categorical.

The pvc() function has the following arguments

x represents the vector of the explanatory variable x which effects the coefficients
of the explanatory variable, z i.e. γ(x) ∗ z.

df as in function pb().

lambda as in function pb().

by the explanatory z variable. [Note that if z is continuous variable(rather than a
factor) then it is centred automatically i.e z− z̄ by pvc() due to the invariance
of varying coefficient models to location shifts in z, see comments of Green in
the discussion of Hastie and Tibshirani [1993]

control options for controlling the P-splines fitting.

230 CHAPTER 9. ADDITIVE SMOOTHING TERMS

1 2 3 4 5 6

−1
0

0
5

15

Lp = 2

x−variables

co
eff

ici
en

ts

1 2 3 4 5 6

−1
0

0
10

20

Lp = 1

x−variables

co
eff

ici
en

ts

1 2 3 4 5 6

−5
0

5
10

Lp = 0

x−variables

co
eff

ici
en

tsR code on

page 229

Figure 9.11: Plotting the fitted linear coefficients using three different shrinkage approaches: i)
ridge (top plot) ii) lasso (middle plot) and iii) best subset (bottom plot).

9.5. PENALISED SMOOTHERS: MULTIVARIATE 231

Using z as continuous variable

As an example of using the function pvc() where the by argument is a continuous variable,
consider the model in which smooth functions for age A and floor space Fl are fitted but in which
we are also like to investigate whether linear or varying coefficients interaction exist between
the two variables.

main smoothing effect for Fl and A

m0<-gamlss(R~pb(Fl)+pb(A), data=rent, family=GA, trace=FALSE)

linear interaction between A and Fl

m1<-gamlss(R~pb(Fl)+pb(A)+A:Fl, data=rent, family=GA, trace=FALSE)

varying coefficients interaction b(A)Fl

m2<-gamlss(R~pb(Fl)+pb(A)+pvc(A, by=Fl), data=rent, family=GA, trace=FALSE)

varying coefficients interaction b(Fl)A

m3<-gamlss(R~pb(Fl)+pb(A)+pvc(Fl, by=A), data=rent, family=GA, trace=FALSE)

linear interaction plus varying coefficients interaction b(A)Fl

m4<-gamlss(R~pb(Fl)+pb(A)+A:Fl+pvc(A, by=Fl), data=rent, family=GA, trace=FALSE)

AIC(m0, m1,m2,m3, m4)

df AIC

m2 10.925246 27927.36

m4 11.925247 27929.36

m1 8.059831 27938.16

m0 7.371373 27938.35

m3 10.315233 27938.37

Model m2 with varying coefficient interaction, γ(A)Fl seems the more appropriate here. Note
however that the ultimatum interaction model is the one which a ”smooth” surface fitted for
both explanatory terms, as discussed in section 9.5.2. The term.plot() function for continuous
z in the varying coefficient situation plots the relationship of the estimated beta coefficients γ(x)
against x as Figure 9.12 is shown.

Figure 9.12
term.plot(m2, pages=1)

The relationship of the estimated beta coefficients γ(x) against x of Figure 9.12 does provides
some information for on how the γ is changing but as with all two-way interactions of continuous
variables a more informative plot is a a contour plot or a three-dimensional of the relationship.
In our case since only two explanatory variables are involved a contour plot of the fitted varying
coefficient interaction is easy to produce.

Figure 9.13
newrent<-data.frame(expand.grid(Fl=seq(30,120,5),A=seq(1890,1990,5)))

newrent$pred<-predict(m2,newdata=newrent, type="response", data=rent)

new prediction

Fln<-seq(30,120,5)

An<-seq(1890,1990,5)

op <- par(mfrow=c(1,1))

contour(Fln,An,matrix(newrent$pred,nrow=length(Fln)),nlevels=30,

ylab="year of construction", xlab="floor space")

232 CHAPTER 9. ADDITIVE SMOOTHING TERMS

40 60 80 100 120

−0
.4

0.0
0.2

0.4
0.6

Fl

Pa
rtia

l fo
r p

b(F
l)

1900 1920 1940 1960 1980

−0
.4

0.0
0.2

0.4
0.6

A

Pa
rtia

l fo
r p

b(A
)

1900 1920 1940 1960 1980

−0
.00

6
−0

.00
2

0.0
02

varying coef.

x

b(x
)

R code on

page 231

Figure 9.12: The term plot for the varying coefficient interaction model m2.

floor space

ye
ar

of
co

ns
tru

cti
on

 45
0

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950
 1000

 1050
 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1450

 1500

 1550

 1600

 1650

 1700 1800

40 60 80 100 120

19
00

19
20

19
40

19
60

19
80

R code on

page 231

Figure 9.13: The fitted surface plot of the varying coefficient interaction model m2

9.5. PENALISED SMOOTHERS: MULTIVARIATE 233

Using z as factor

When, the z variable used in the argument by, is a factor, the varying coefficient function fits
separate smooth curves for each level of the factor z against x. In the next example we use the
factor loc, which identify different locations, (below, average or above average), to demonstrate
the point.

g1<-gamlss(R~pb(Fl)+pb(A)+pvc(Fl,by=loc), data=rent, family=GA, trace=FALSE)

g2<-gamlss(R~pb(Fl)+pb(A)+pvc(A,by=loc), data=rent, family=GA, trace=FALSE)

g3<-gamlss(R~pb(Fl)+pb(A)+pvc(Fl,by=loc)+pvc(A,by=loc), data=rent, trace=FALSE,

family=GA)

AIC(g1,g2,g3)

df AIC

g1 11.38144 27858.10

g2 11.97336 27859.57

g3 15.88057 27859.64

Figure 9.14 shows the results of using the term.plot() function for model g1.
Figure 9.14

term.plot(g1, pages=1)

40 60 80 100 120

−0
.4

0.0
0.2

0.4
0.6

Fl

Pa
rtia

l fo
r p

b(F
l)

1900 1920 1940 1960 1980

−0
.4

0.0
0.2

0.4
0.6

A

Pa
rtia

l fo
r p

b(A
)

40 60 80 100 120

−0
.4

−0
.2

0.0
0.2

var. coef.

x

f(x
)

R code on

page 233

Figure 9.14: The term plot figures from model g1

The three different smooth fits are cramped within the third panel of Figure 9.14. Individual
fitted smooth curves can be shown using the following commands:

Figure 9.15

234 CHAPTER 9. ADDITIVE SMOOTHING TERMS

op<- par(mfrow=c(2,2))

plot(getSmo(g1, para="mu", which=3), factor.plots = TRUE)

par(op)

40 60 80 100 120

−0
.4

−0
.2

0.0
0.2

var. coef.

x

f(x
)

40 60 80 100 120

−0
.4

−0
.2

0.0
0.2

var. coef.

x

f(x
)

40 60 80 100 120

−0
.4

−0
.2

0.0
0.2

var. coef.

x

f(x
)

R code on

page 233

Figure 9.15: Plotting the individual fitted smooth curves from model g1

9.5.2 Interfacing with gam(), the ga() function

The ga() function is an additive smoothing function which be used within a GAMLSS models.
It is an interface for the gam() function of package mgcv of Simon Wood. The function can be
found in the extra package gamlss.add where other interfaces of this kind can be also found.
The function ga() allows the user to use all the available smoothers of the gam() function of the
package mgcv within the GAMLSS framework. To see which smoothers are available within the
package mgcv use ?formula.gam. The great advantage of course of using the smoothers within
GAMLSS comes from the fact that this way the fitting models can be outside the exponential
family.

For simple one dimensional smoothers using pb() or the ga() interface make little difference
in the resulting fitted smoothing terms. In our experience, for exponential family models, the
fitted smoothing curves using a single smoother in gam() within mgcv or pb() within gamlss
produce very similar results. Therefore the great advantage of the interface function ga() is
the use of more than one dimensional smoothers like thin plate cubic splines, s() or tensor
product, tp(), which are efficiently implemented within the package mgcv.

The function ga() has two arguments. The first is a gam() type of formula and the second is

9.5. PENALISED SMOOTHERS: MULTIVARIATE 235

the gam() control.

Here we demonstrate the use of the function ga() by fitting different models for floor, Fl, and
age of construction, A, to the Munich rent data. Firstly we used smooth additive terms for Fl

and A (main effects) and later we fit a smooth surface which explores the interaction between
them.

Additive terms

We use the normal and the gamma error distributions as examples. Three different models are
fitted using first the function gam() and then using gamlss, calling the interface with gam()

and the smoothing function pb() respectively. The resulting deviances and effective degrees of
freedom of the fitted models are displayed using GAIC().

library(mgcv); library(gamlss.add)

data(rent)

additive fits

normal distribution

ga1 <- gam(R~s(Fl)+s(A), method="REML", data=rent)

gn1 <- gamlss(R~ga(~s(Fl)+s(A), method="REML"), data=rent, trace=FALSE)

gb1 <- gamlss(R~pb(Fl)+pb(A), data=rent, trace=FALSE) # additive

AIC(ga1, gn1, gb1, k=0)

df AIC

ga1 9.258644 28264.38

gn1 8.351358 28264.38

gb1 8.372701 28264.19

gamma distribution

ga2 <- gam(R~s(Fl)+s(A), method="REML", data=rent, family=Gamma(log))

gn2 <- gamlss(R~ga(~s(Fl)+s(A), method="REML"), data=rent, family=GA,

trace=FALSE)

gb2 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA, trace=FALSE)

AIC(ga2, gn2, gb2, k=0)

df AIC

ga2 8.295446 27924.42

gn2 7.370424 27923.69

gb2 7.371373 27923.61

For the normal errors model the fitted deviance are identical but with slightly different degrees
of freedom for the gam() model. For the gamma error model the gamlss() function models
give almost identical results but slightly different to the gam() model.

Figure 9.16 shows the three resulting plots of the fitted terms for the different models using the
gamma distribution for the response. The top rows shows the model fitted using gam(), the
middle shows the model fitted using gam() within gamlss() while the bottom row shows the
gamlss() using the pb() function. For all practical purposes the three plots leads to identical
conclusions.

Figure 9.16

236 CHAPTER 9. ADDITIVE SMOOTHING TERMS

op<-par(mfrow=c(3,2))

plot(ga2, scheme=1)

term.plot(gn2)

term.plot(gb2)

par(op)

40 60 80 100 120

−0
.4

0.0
0.4

Fl

s(F
l,1

.26
)

1900 1920 1940 1960 1980

−0
.4

0.0
0.4

A

s(A
,4.

05
)

40 60 80 100 120

−0
.4

0.0
0.4

Fl

s(F
l,1

.29
)

1900 1920 1940 1960 1980

−0
.4

0.0
0.4

A

s(A
,4.

08
)

40 60 80 100 120

−0
.4

0.0
0.4

Fl

Pa
rti

al
for

 pb
(F

l)

1900 1920 1940 1960 1980

−0
.4

0.0
0.4

A

Pa
rti

al
for

 pb
(A

)R code on

page 235

Figure 9.16: The plotting of terms of a Gamma distribution models fitted using alternative
methods: i) Top rows: using gam() ii) Middle row: using gam() within gamlss() and iii)
bottom row: Using pb() within gamlss().

Smooth surface fitting

For surface fitting the package mgcv provides several options.For example, s() for thin plate
splines, te() for tensor products, ti() which is a variant of tensor product designed to be used
for interaction terms when the main effects (and any lower order interactions) are present. Next
we use thin plate splines:

Figure 9.17
ga4 <-gam(R~s(Fl,A), method="REML", data=rent, family=Gamma(log))

gn4 <- gamlss(R~ga(~s(Fl,A), method="REML"), data=rent, family=GA)

GAMLSS-RS iteration 1: Global Deviance = 27892.31

GAMLSS-RS iteration 2: Global Deviance = 27892.34

9.5. PENALISED SMOOTHERS: MULTIVARIATE 237

GAMLSS-RS iteration 3: Global Deviance = 27892.34

AIC(ga4,gn4, k=0)

df AIC

ga4 17.43153 27893.40

gn4 17.10712 27892.34

op<-par(mfrow=c(1,2))

vis.gam(ga4)

vis.gam(getSmo(gn4))

par(op)

Fl

A

linear predictor

Fl

A

linear predictor

R code on

page 236

Figure 9.17: Surface fitting of the Gamma distribution models fitted using: i) left: gam() ii)
right: gam() within gamlss() .

Note that term.plot() will produce a contour plot similar to the plot(getSmo(gn4)) com-
mand.

Figure 9.18
term.plot(gn4)

For tensor products smoothers the gam() function te() can be used.
Figure 9.19

ga5 <- gam(R~te(Fl,A), data=rent, family=Gamma(log))

gn5 <- gamlss(R~ga(~te(Fl,A)), data=rent, family=GA)

GAMLSS-RS iteration 1: Global Deviance = 27887.83

GAMLSS-RS iteration 2: Global Deviance = 27887.83

AIC(ga5,gn5, k=0)

238 CHAPTER 9. ADDITIVE SMOOTHING TERMS

 −0.4

 −0.2

 0

 0.2

 0.4
 0.6 0.8

s(Fl,A,15.11)

40 60 80 100 120

19
00

19
20

19
40

19
60

19
80

Fl

A

 −0.4

 −0.2

 0

 0.2

 0.4

 0.6

 0.8

−1se

 −0
.6

 −0.4

 −0.2

 0

 0.2

 0.4

 0.4

 0.6

+1se

R code on

page 237

Figure 9.18: Contour plot for a gam() model fitted within gamlss().

df AIC

ga5 18.14628 27889.38

gn5 18.61222 27887.83

vis.gam(getSmo(gn5))

9.6 Other smoothers

9.6.1 Interfacing with nnet(), the nn() function

Neural networks provides a flexible way of fitting non-linear regression models, see Bishop et al.
[1995] and Ripley [1993, 1996]. They are over-parametrised non-linear statistical models, a
fact which allows them to be very flexible and therefore can approximate any smooth function.
Because of the over-parametrisation nature of the neural network, they are very difficult model
to interpreted compared to the more traditional smoothing models. They are typical ‘black box ’
models, a name refer to models who work in practice but difficult to show why. On the other
hand, they can pick up hight level interactions among the explanatory variables that are very
difficult to find otherwise through the more classical regression approach.

The package gamlss.add provides an interface with the standard R function nnet() from the
package nnet. More information about the use of the nnet() function can be found at Venables
and Ripley [2002]. The GAMLSS interface is called nn() and it takes as arguments a formula
plus other control arguments needed for nnet().

9.6. OTHER SMOOTHERS 239

Fl

A

linear predictor

R code on

page 237

Figure 9.19: Contour plot for a gam() model fitted within gamlss().

Note that because the neural network models are over-parametrised different initial values can
result to different final fitted model. This is more apparent within a GAMLSS model where
the nnet() function is called repetitively within the backfitting algorithm. Setting the random
generating seeds in the beginning of the GAMLSS fit will insured that the same model can be
repeated later. Also one way to help the optimisation precess and possibly to avoid over-fitting
is the use of the argument decay. decay is a smoothing parameter within nnet.

Here we demonstrate the use of the nn() function by fitting three different models: Firstly, we
fit a surface models for floor, Fl, and age of construction, A, to the Munich rent data. In the
second model we add the main effects of the factors B, whether there is a bathroom, H, whether
there is a central heating, L whether the kitchen equipment is above average, and loc for three
different locations. In the last model and in order to explore the interactions facilities of the
neural network we fit a neural network model with all explanatory continuous and categorical
variables.

library(gamlss.add)

set.seed(1432)

mr1 <- gamlss(R~nn(~Fl+A, size=5, decay=0.01), data=rent, family=GA,)

GAMLSS-RS iteration 1: Global Deviance = 27961.17

GAMLSS-RS iteration 2: Global Deviance = 27961.17

mr2 <- gamlss(R~nn(~Fl+A, size=5, decay=0.01) +H+B+loc, data=rent, family=GA)

GAMLSS-RS iteration 1: Global Deviance = 27737.82

GAMLSS-RS iteration 2: Global Deviance = 27737.82

240 CHAPTER 9. ADDITIVE SMOOTHING TERMS

mr3 <- gamlss(R~nn(~Fl+A+H+B+loc, size=5, decay=0.01), data=rent, family=GA)

GAMLSS-RS iteration 1: Global Deviance = 27700.95

GAMLSS-RS iteration 2: Global Deviance = 27700.95

AIC(mr1, mr2, mr3)

df AIC

mr3 43 27786.95

mr2 27 27791.82

mr1 23 28007.17

AIC(mr1, mr2, mr3, k=log(1969))

df AIC

mr2 27 27942.62

mr3 43 28027.12

mr1 23 28135.63

The AIC select the mr3 model while BIC select mr2. The side argument is the number of
hidden layer of the neural network. The nnet fitted object can be retrieved using the function
getSmo(). For example to get the fitted coefficients use:

summary(getSmo(mr3))

a 6-5-1 network with 41 weights

options were - linear output units decay=0.01

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1

-0.65 -0.04 0.00 0.62 0.27 1.55 -3.82

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2

0.13 1.91 -0.11 0.75 0.00 0.75 -0.44

b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3

0.72 -0.47 0.03 2.03 0.00 -0.08 0.97

b->h4 i1->h4 i2->h4 i3->h4 i4->h4 i5->h4 i6->h4

-3.56 0.01 0.00 -0.28 -0.35 0.29 -0.24

b->h5 i1->h5 i2->h5 i3->h5 i4->h5 i5->h5 i6->h5

-0.13 -0.86 0.05 0.84 0.00 -1.43 2.07

b->o h1->o h2->o h3->o h4->o h5->o

-0.28 -0.68 -0.24 -2.39 3.64 1.33

A visual presentation of the fitted neural network model can be obtained as follows:
Figure 9.20

plot(getSmo(mr3), y.lab=expression(g[1](mu)))

Thinker lines represent coefficients with high values while ‘black’ and ‘grey’ colours represent
positive and negative values respectively.

The function term.plot() works in general with nn() and it produces a sensible output as the
following plot for model mr2 shows:

Figure 9.21
term.plot(mr2, pages=1)

Next we fit a neural network model to the σ parameter of the gamma distributions and compare
the model with the previously fitted models where only µ was modelled as a function of the

9.6. OTHER SMOOTHERS 241

I1

I2

I3

I4

I5

I6

Fl

A

H1

B1

loc2

loc3

H1

H2

H3

H4

H5

O1 g1(µ)

B1 B2

R code on

page 240

Figure 9.20: Visual representation of the neural network model fitted for µ in model mr3.

I1

I2

Fl

A

H1

H2

H3

H4

H5

O1 η

B1 B2

I1

I2

Fl

A

H1

H2

H3

H4

H5

O1 y

B1 B2

−0
.4

−0
.2

0.0
0.1

H

Pa
rtia

l fo
r H

0 1

−0
.4

−0
.2

0.0
0.1

B

Pa
rtia

l fo
r B

0 1

R code on

page 240

Figure 9.21: Visual representation of the neural network model fitted for µ in model mr3.

242 CHAPTER 9. ADDITIVE SMOOTHING TERMS

explanatory variables.

mr4 <- gamlss(R~nn(~Fl+A+H+B+loc, size=5, decay=0.1),

sigma.fo=~nn(~Fl+A+H+B+loc, size=5, decay=0.1),data=rent,

family=GA, gd.tol=1000)

GAMLSS-RS iteration 1: Global Deviance = 27585.52

GAMLSS-RS iteration 2: Global Deviance = 27534.82

GAMLSS-RS iteration 3: Global Deviance = 27529.57

GAMLSS-RS iteration 4: Global Deviance = 27529.57

GAMLSS-RS iteration 5: Global Deviance = 27529.57

AIC(mr2, mr3, mr4)

df AIC

mr4 84 27697.57

mr3 43 27786.95

mr2 27 27791.82

AIC(mr2, mr3, mr4, k=log(1969))

df AIC

mr2 27 27942.62

mr3 43 28027.12

mr4 84 28166.73

Again the AIC favours the more complicated model mr4 while the BIC the simpler model mr2.

The graphical representation of the fitted mr4 model is displayed below:

Figure 9.22 par(mfrow=c(2,1))

plot(getSmo(mr4), y.lab=expression(g[1](mu)))

plot(getSmo(mr4, what="sigma"), y.lab=expression(g[2](sigma)))

par(op)

9.6.2 Interfacing with rpart(), the tr() function

The function tr() provides an interface for the rpart() function of package rpart. This way,
decision trees can be fitted as additive terms within GAMLSS. Here we give a small example
on how this function can be used. Note however that the function, is rather experimental and
of no unique solution is guaranteed on convergence.

r1 <- gamlss(R ~ tr(~Fl+A+H+B+loc), data=rent, family=GA, gd.tol=100)

GAMLSS-RS iteration 1: Global Deviance = 27824.91

GAMLSS-RS iteration 2: Global Deviance = 27833.9

GAMLSS-RS iteration 3: Global Deviance = 27833.9

r2 <- gamlss(R ~ tr(~Fl+A+H+B+loc), sigma.fo=~tr(~Fl+A+H+B+loc), data=rent,

family=GA, gd.tol=100, c.crit=0.1)

GAMLSS-RS iteration 1: Global Deviance = 27779.77

GAMLSS-RS iteration 2: Global Deviance = 27754.62

GAMLSS-RS iteration 3: Global Deviance = 27754.53

9.6. OTHER SMOOTHERS 243

I1
I2
I3
I4
I5
I6

Fl
A

H1
B1

loc2
loc3

H1
H2
H3
H4
H5

O1 g1(µ)

B1 B2

I1
I2
I3
I4
I5
I6

Fl
A

H1
B1

loc2
loc3

H1
H2
H3
H4
H5

O1 g2(σ)

B1 B2

R code on

page 242

Figure 9.22: Visual representation of the neural network model fitted for µ and σ in model mr4.

244 CHAPTER 9. ADDITIVE SMOOTHING TERMS

AIC(r1,r2)

df AIC

r2 12 27778.53

r1 9 27851.90

Note that for the second model we have increased the convergence criterion to 0.1. The plot-
ting of the fitted decision trees can be achieves or by using the term.plot() function or by
individually plotting the fitted objects as it is demonstrated below:

Figure 9.23
term.plot(r2, parameter="mu", pages=1)

|Fl< 69.5

H=b

Fl< 44.5

A< 1972

H=b

Fl< 84.5

A< 1980−0.4335

−0.2729

−0.07639 0.2357

−0.09005

0.1543
0.34 0.6164R code on

page 244

Figure 9.23: Visual representation for the µ parameters of the decision tree model r2.

Figure 9.24 plot(getSmo(r2, parameter="sigma"))

text(getSmo(r2, parameter="sigma"))

9.6.3 Interfacing with loess(), the lo() function

Under Construction

9.6. OTHER SMOOTHERS 245

|A>=1964

−0.1645 0.08366

R code on

page 244

Figure 9.24: Visual representation for the µ parameters of the decision tree model r2.

246 CHAPTER 9. ADDITIVE SMOOTHING TERMS

9.7 How to add new smooth functions in gamlss()

Under Construction

Additive terms R function names
cubic splines based cs(), scs()
decision trees tr()

fractional and power polynomials fp(), pp()
free knot smoothing (break points) fk()

loess lo()

neural networks nn()

non-linear fit nl()

penalized Beta splines based pb(), ps(), cy(), pvc()
random effects random()

ridge regression ri(), ridge()
Simon Wood’s gam ga()

Table 9.2: Additive terms implemented within the gamlss packages

Exercises

1. Demonstrate that the penalised least squares quantity in 9.2 is equal to the following
augmented least square quantity.

∣∣∣∣∣∣∣∣[√W 0
0 I

]([
y
0

]
−
[

Z√
λD

]
γ

)∣∣∣∣∣∣∣∣2
where ||z||2 = z>z, D is any square root of the matrix G such that G = D>D and W a
diagonal matrix of weights. Discuss the implications of this result.

2. Let

Z̃ =

[
Z√
λD

]
an augmented model matrix as above. Show that the sum of the first n elements on the

diagonal of Z̃
(
Z̃>Z̃

)−1
Z̃> is tr

{
Z
(
Z>Z + λG

)−1
Z>
}

.

Chapter 10

Random effects

This chapter explains how random effects models can be used within GAMLSS. In partic-
ular:

• it introduces the different ways random effects can be fitted within a gamlss models

• it explains the advandages and disadvandages for such modelling

• it uses examples to demostrate the differences

10.1 Introduction

THIS CHAPTER IS UNDER CONSRUCTION

There are three distinct ways in which random effects can be introduced within a GAMLSS
model:

• random effects at the observational level for µ

• random effects at the factor level for µ and

• random effects for all parameters of the distrbution.

10.2 Random effects models for µ at the observational
level

The section describes the use of random effects at the observational level, that is, when there
are as many random effects as the number of observations in the data. The main application
of random effects of this type is to deal with overdispersion, that is, when extra variability is
present in the data which can not be explained purely by the use of the distribution of the
response variable itself. We distinguish three types of random effect model at the observational
level:

247

248 CHAPTER 10. RANDOM EFFECTS

(i) when an an explicit continuous mixture distribution exists.

(ii) when a continuous mixture is not explicit but approximated using Gaussian quadrature
points

(iii) when a ’non-parametric’ mixture [effectively an finite mixture] is assumed

These different types are described in Sections 10.2.1, 10.2.2 and 10.2.3 respectively.

Section ?? describes the use of random effects at a factor level, that is when we have repeated
observations within the same subject and we want the model to take this into account. Both the
current and the next Chapters are dealing mainly with random effects affecting the predictor
for the parameter µ of a gamlss family distribution. The more general case where a random
effect could be present in any of the distributional parameters is discussed in Sections ?? and
?? and in Chapter ??.

Assume that, given the random effect variable γ, y has conditional probability (density) function
f(Y|γ) and marginally γ has probability (density) function f(γ). Then the marginal density of
Y is given by

f(y) =

∫
f(y|γ)f(γ)dγ. (10.1)

Note that γ may be a univariate or multivariate random effect variable. Assume observations
(Y1, Y2, . . . , Yn) are conditionally independent given the observational level random effect vari-
ables (γ1, γ2, . . . , γn) and that the random effect variables are a random sample from f(γ) and
therefore also independent, then marginally (Y1, Y2, . . . , Yn) are independent since

fY (y) =

∫
f(y|γ)f(γ)dγ

=

∫ [n∏
i=1

f(yi|γi)

][
n∏
i=1

f(γi)

]
dγ

=

∫ n∏
i=1

[f(yi|γi)f(γi)] dγ1, dγ2, . . . , dγn

=

n∏
i=1

[∫
f(yi|γi)f(γi)dγi

]

=

n∏
i=1

fYi(yi) (10.2)

where yT = (y1, y2, . . . , yn) and γT = (γ1, γ2, . . . , γn). Hence the likelihood function is a product
of the (marginal) likelihoods of each observation Yi for i = 1, 2, . . . , n, which are obtained by
integrating out the random effect for each observation.

10.2.1 Fitting an explicit continuous mixture distributions

For specific combinations of the conditional density function f(y|γ) and f(γ) the marginal
density fY (y) can be obtained explicitly and the likelihood maximized directly.

10.2. RANDOM EFFECTS MODELS FOR µ AT THE OBSERVATIONAL LEVEL 249

Example 1: Continuous Poisson mixture distribution. Let the conditional distribution
of Y given the random effect γ be PO(γµ) and γ ∼ GA(1, σ1/2) then Y ∼ NBI(µ, σ).
Note that provided γ has mean 1, then µ will be the marginal mean of Y , a desirable
property for interpretation of the fitted model.

Example 2: Continuous normal mixture distribution. Let Y |γ ∼ N(µ, σ2γ) and γ−1 ∼
χ2
ν then Y ∼ TF (µ, σ, ν).

10.2.2 Fitting non-explicit continuous mixture distributions using Gaus-
sian quadrature

For many combinations of f(y|γ) and f(γ), the marginal density fY (y) cannot be obtained
explicitly. In this case fY (y) can be obtained by numerical integration (at considerable compu-
tational cost) or can be obtained approximately by other methods. One approximate method
is called Gaussian quadrature, where ”Gaussian” refers to the originator of the method and not
to any specific (e.g. normal) distribution for f(γ). Effectively Gaussian quadrature replace the
continuous distribution f(γ) with a discrete distribution taking values γk with probability πk
for k = 1, 2, . . . ,K.

Fitting a normal random effect model in the predictor for µ using Gaussian quadra-
ture

Here we assume that the random effects γ1, γ2, . . . , γn (at the observational level) are a random
sample from a normal distribution. For i = 1, 2, . . . , n, let Yi ∼ D(µi, σi, νi, τi) be conditionally
independent given random effects γi for i = 1, 2, . . . , n where

g1(µ) = η1 = X1β1 + γ

g2(σ) = η2 = X2β2 (10.3)

g3(ν) = η3 = X3β3

g4(τ) = η4 = X4β4.

where γT = (γ1, γ2, . . . , γn) and γ ∼ N(0, σ2
γ) independently for i = 1, 2, . . . , n. Let γi = σγZi

then Zi ∼ N(0, 1) independently for i = 1, 2, . . . , n.

Gaussian quadrature effectively approximates the continuous N(0, 1) distribution for each Zi
by a discrete distribution, i.e.

Zi = zk with probability πk for k = 1, 2, . . . ,K. (10.4)

See, for example, Figure 10.2.2 for a visual explanation of the Gaussian quadrature discrete
distribution approximation to N(0, 1) when K=10. The model (10.3) with (10.4) can now be
considered as a finite mixture of K components in which the prior (or mixing) probabilities
πk’s are fixed and known and the zk’s are also fixed and known (once K the total number of
quadrature points has been chosen). Hence g1(µik) = xTikβ1 + zkσkγ with probability πk with
k = 1, 2, . . . ,K.

250 CHAPTER 10. RANDOM EFFECTS

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Z

N(
0,1

)

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

π5 π6

π4 π7

Figure 10.1: Plot showing an example of non-parametric (discrete) distribution.

10.2.3 Non parametric random effects models

Non parametric random intercept in the predictor for µ

Here assume that the random effects γ1, γ2, . . . , γn in model (10.3) are a random sample from
a (non-parametric) distribution which is modelled as a discrete distribution given by

γi = uk with probability πk for k = 1, 2, . . . ,K (10.5)

for i = 1, 2, . . . , n. The uk’s and πk’s are assumed to be fixed unknown constants. See Fig-
ure 10.2.3 for an example plot of a ’non-parametric’ distribution (10.5) with K = 5. The
resulting (marginal) model for yi is just a finite mixture of GAMLSS models with parameters
(β1,β2,β3,β4) in common, but different intercept parameters (u1, u2, . . . , uK) in the predictor
for µ. The model can be fitted using the EM algorithm of Section 7.5. and using the R function
gamlssNP().

Non parametric random coefficients in the predictor for µ

Model (10.3) can be amended to a model with non-parametric random intercept and slope in
the predictor for µ, i.e.

g1(µi) = η1 = xT1iβ1 + γ0 + γ1x1i (10.6)

(10.7)

10.2. RANDOM EFFECTS MODELS FOR µ AT THE OBSERVATIONAL LEVEL 251

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

gamma

pro
ba

bil
ity

π1

π2

π3

π4

π5

u1 u2 u3 u4 u5

Figure 10.2: Plot showing how the continuous distribution NO(0, 1) is approximated by Gaus-
sian quadrature with K = 10

for i = 1, 2, . . . , n where γT0 = (γ01, γ02, . . . , γ0n), γT1 = (γ11, γ12, . . . , γ1n) and (γ0i, γ1i) for
i = 1, 2, . . . , n are a random sample from a bivariate ’non-parametric’ distribution, taking values
(u0k, u1k) with probability πk for k = 1, 2, . . . ,K, i.e. (γ0i, γ1i) = (u0k, u1k), with probability
πk for k = 1, 2, . . . ,K for i = 1, 2, . . . , n. As an example of a two dimensional non-parametric
distribution see Figure (10.2.3) where a hypothetical ’non-parametric’ distribution is plotted
with K = 10. The prior probabilities πk, for k = 1, 2, . . . ,K. are assumed constant over i.
Again the resulting model is a finite mixture model (with parameters in common) and can
be fitted using the EM algorithm of Section 7.5. Additional random coefficients can easily be
included in the predictor for µ.

The function gamlssNP() can be used to fit the model using the argument random to declare
which of the explanatory variables for µ should have random coefficients.

10.2.4 Non parametric random coefficients in the predictor for all
distribution parameters

Model (10.3) can be amended to include ’non-parametric’ random coefficients (e.g. intercept
and slopes) in the predictor for any one or more of the distributional parameters µ, σ, ν and τ
of a GAMLSS model. The model is fitted using the EM algorithm of Section 7.5. For example
model (10.3) could be amended to model

252 CHAPTER 10. RANDOM EFFECTS

intercept

slo
pe

probability

Figure 10.3: Plot showing a non parametric mixture distribution in two dimensions with K = 10

g1(µi) = xT1iβ1 + γ10 + γ11x1i

g2(σi) = xT2iβ2 + γ20

g3(νi) = xT3iβ3

g4(τi) = xT4iβ4.

for i = 1, 2, . . . , n. In the function gamlssNP() the above model for σ can be fitted by adding
the factor MASS in the formula for the predictor of σ, e.g. sigma.fo=∼x+MASS.

10.3 Random effects models for µ at the factor level

Part V

Model selection and diagnostics

253

Chapter 11

Model selection techniques

This chapter explains the model selection techniques in gamlss. In particularly it explains:

1. The different components of a GAMLSS model important for selecting an appropriate
model

2. The different stepwise selection functions and techniques used for selecting explana-
tory terms

3. The different techniques for selecting smoothing parameters

This chapter is important to understand the statistical modelling process within GAMLSS.

11.1 Introduction: Statistical model selection

This chapter will discuss what available statistical modelling techniques and functions exist
within the GAMLSS framework. We start with a general discussion about selecting an appro-
priate statistical model and then we move specifically to GAMLSS models.

Statistical models are built to:

• explore the data where no theory exists, exploratory models,

• explain or verify a theory, explanatory models,

• predict future values, predictive models

or any combination of the above situations. In general it is recognised that an overfitted model,
that is, a fitted model which is very close to the current data, is not very good for prediction.
Therefore in any model selection and depending on the purpose of the study a balance has
to be made between over fitting (over-interpreting the current data) and underfitting (under-
interpreting the data). In statistical inference terms, this turns out to be a balance between
variance and bias of the estimators. Overfitted model estimators have big variance and therefore
are bad for predicting future values while underfitted model estimators are biased but with
smaller variance and can therefore sometimes be better for prediction.

255

256 CHAPTER 11. MODEL SELECTION TECHNIQUES

LetM be a statistical model. For a parametric statistical model and within a likelihood based
inferential procedure, each fitted model M can be assessed by its fitted global deviance, GD,
given by GD = −2`(θ̂) where θ are the parameters of the model, and `() is the fitted (or
maximized) log-likelihood function.

LetM0 andM1 be two different statistical models with fitted global deviances GD0 and GD1

and degrees of freedom df0 and df1 respectively.

Definition: Model M0 is nested within M1 if M0 is a subclass of model M1.

Two nested parametric statistical models,M0 andM1, may be compared using the (generalized
likelihood ratio) test statistic

Λ = GD0 −GD1

which has an asymptotic χ2-squared distribution under the null hypothesis that the correct
model is M0, with degrees of freedom d = df0 − df1. (given that some regularity conditions
reference, like that the maximum does not occur on the boundary space of the parameters, are
satisfied).

When the statistical models M0 andM1 contain non-parametric additive terms the same test
can be used as a guide to fitted model selection in the same way that Hastie and Tibshirani
[1990] (Ch 3.9) compare ’nested’ Generalized Additive Models (GAM) fits. The degrees of
freedom used here is the trace of the smoothing matrix S in the fitting algorithm, called the
effective degrees of freedom, see Chapter ?? or Hastie and Tibshirani [1990].

For comparing non-nested GAMLSS models, to penalize over-fitting the generalized Akaike In-
formation Criterion (GAIC), Akaike [1983], can be used. This is obtained by adding to the
fitted deviance a fixed penalty k for each effective degree of freedom used in a model, i.e.
GAIC(k) = GD + (k × df), where df denotes the total effective degrees of freedom used in the
model and GD is the fitted global deviance. The model with the smallest value of the crite-
rion GAIC(k) is then selected. The Akaike information criterion (AIC), Akaike [1974], and the
Schwartz Bayesian criterion (SBC), Schwarz [1978], are special cases of the GAIC(k) criterion
corresponding to k = 2 and k = log(n) respectively. The two criteria, AIC and SBC, are asymp-
totically justified as predicting the degree of fit in a new data set, i.e. approximations to the
average predictive error. Justification for the use of SBC comes also as a crude approximation
to Bayes factors, Raftery [1996, 1999]. In practice it is usually found that the original AIC leads
to overfitting in model selection while the SBC leads to underfitting. Our experience suggests
that a value of the penalty k in the range 2.5 ≤ k ≤ 4 works well. ? suggested using k ≈ 2.8.
A selection of different values of k, e.g. k = 2, 2.5, 3, 3.5, 4, could be used in turn to investigate
the sensitivity or robustness of the model selection to the choice of the value of the penalty k.
Using GAIC(k) allows different penalties k to be tried for different modelling purposes. The
sensitivity of the selected model to the choice of k can also be investigated. Claeskens and Hjort
[2003] consider a focused information criterion (FIC) in which the criterion for model selection
depends on the objective of the study, in particular on the specific parameter of interest.

Cross validation techniques play an important role in model selection especially when prediction
is important. The idea of K-fold cross validation is simple. First randomly divide your data
into K subsets, S1, S2, . . . , SK .

• Then, for j = 1, 2, . . . ,K, omit the Sj data set and fit a model to all other data.

• Calculate a measure of goodness of predictive fit to the Sj data set.

11.2. GAMLSS MODEL SELECTION 257

• Combine the K measures of goodness of fit.

• Choose between models using the combined measurement of goodness of fit.

The comparison can be done using the deviance or any other measure of disparity and the model
with the smallest overall value is the best for prediction purposes (for the chosen measure of
discrepancy). A cross validation performed this way is called a K-fold cross validation. A
simple cross validation is defined when only one observation is omitted in each fit and hence
k = n, the number of observations. For linear models the simple cross validation can be
achieved efficiently without having to refit n models, since the ‘leave one out’ fitted values can
be calculated easily from the fitted values and the diagonal of the hat matrix of the original fit
including all observations.

The GAIC and cross validation techniques are used for reasonably small data sets where the full
data sample is used for both model fitting (minimizing GD) and for model selection (minimizing
a penalized criterion, e.g. AIC or SBC, or a cross valuation criterion). For very large data sets,
the data could be randomly split into:

(i) training data set

(ii) validation data set

(iii) test data set

The training data is used used for model fitting, the validation data set is used for model selection
and the test data set is used for model assessment. This split is now routinely available in data
mining statistical packages such as SAS Enterprise Miner SAS Institute Inc. [2000]. Some of
these procedure are now implemented in the gamlss packages and they will described later in
this chapter.

Inference about quantities of interest can be made either conditionally on a single selected
’final’ model or by averaging between selected models. If the purpose of the study is to describe
the data parsimoniously, then a single ’final’ model is usually sufficient. Conditioning on a
single final model was criticized by Draper [1995] and Madigan and Raftery [1994] since it
ignores model uncertainty and generally leads to the underestimation of the uncertainty about
quantities of interest. Averaging between selected models can reduce this underestimation,
Hjort and Claeskens [2003].

Different model selection strategies can be used to build a statistical model but more impor-
tantly the determination of the model adequacy should always be carried out with respect to the
substantive questions of interest and not in isolation. This means that different problems could
possibly require different model strategies.

11.2 GAMLSS model selection

Let M = {D,G, T ,Λ} represent a GAMLSS model as defined in section ??. The components
of M are defined as follows:

(i) D specifies the distribution of the response variable,

(ii) G specifies the set of link functions,

(iii) T specifies the terms appearing in all the predictors for µ, σ, ν and τ ,

258 CHAPTER 11. MODEL SELECTION TECHNIQUES

(iv) Λ specifies the smoothing hyper-parameters which determine the amount of smoothing in
the hjk() functions of equation (??) .

In the search for an appropriate GAMLSS model for any new data set, all the above four
components have to be specified as objectively as possible.

We will next discuss how the components D, Λ, T and Λ can be specified analysing different
data.

11.2.1 Component D: Selection of the distribution

The selection of the appropriate distribution can be done in two stages, the fitting stage and
the diagnostic stage. The fitting stage involves the comparison of different fitted models using
a generalised Akaike information criterion, (GAIC). The model with the smallest value of the
criterion GAIC(k), for a chosen value of k (see section 11.1) is then selected.

The diagnostics stage involves the use of worm plots. Worm plots were introduced by van Buuren
and Fredriks [2001] and are in effect de-trended normal QQ plots of the quantile residuals (i.e.
z-scores) see section ?? for more details. The worm plot allows detection of inadequacies in the
model globally or within specific ranges of one (or two) explanatory variable.

11.2.2 Component G: Selection of the link functions

The selection of the link function for each distribution parameter is usually determined by the
range of the parameter in hand. For example in the Pareto II, (PARETO2), distribution both µ
and σ take values in the positive line so a log link function is a natural way of ensuring that
parameters µ and σ remain positive (whenever the values of their predictors). For a normal
distribution, NO, −∞ < µ <∞ and 0 < σ <∞, so an identity for µ and a log link for σ insures
that µ and σ are always within their ranges.

There are occasions in which the choice of the link function is important from the interpretation
point of view. For example if we believe that the explanatory variables effect the distribution
parameter multiplicatively rather than additively, then a log link is more appropriate.

The choice of link may improve the model fit considerably. Different link functions can be com-
pared directly using the global deviance. The best link function results in the lowest deviance.

11.2.3 Component T : Selection of the additive terms in the model

Let Xi be a pool of terms available for consideration for the parameter θi for i = 1, 2, 3, 4
where θ = (θ1,θ2,θ3,θ4) = (µ,σ,ν, τ). Typically Xi will contain both linear and smoothing
additive terms. For example, let f1 and f2 represent factors and x1, x2, x3 and x4 continuous
explanatory variables. Then, for example,

Xi = {f1 ∗ f2 + s(x1) + s(x2, x3) + x4}

allows second order interactions for the two factors, a smooth functions for x1, a smooth inter-
action for x2, x3 and linear term for x4. There are a few points to emphasise here:

11.2. GAMLSS MODEL SELECTION 259

• For a given distribution for the response variable, the selection of the terms has to be done
for all the parameters of the assumed distributions, not only the location parameter. The
usual forward, backward and stepwise procedures can be applied here for each parameter
but also some thought has to be given on how those procedures can be applied when we
choose terms for all the parameters.

• The additive terms can influence the distribution parameter in different ways. For example
in above example the interaction of the factors f1 and f2 affects the parameter of interest.
The variable x4 influence the parameter linearly, the variable x1 non-linearly while a
smooth non-linear interaction between x2 and x3 affects the parameter of interest.

• The size of available terms Xi, relatively to the number of observations in the sample
matters as far as selection of terms is concerned. For example, if the number of continuous
explanatory variables is small, say 5, all 25 = 25 different combinations of how those
5 variables can influence a parameter can be tried. On the other hand when we are
dealing with say 50 continuous explanatory variables, there are 250 = 1.13×1015 different
combinations which can not all be fitted, so we have to implement a different strategy.

There are several functions within GAMLSS to assist with selecting explanatory variable terms
when all the data points are used for the selection of variables (see Section 11.2.5 for when this
is not the case). The basic functions are addterm() and dropterm(), which allow the addition
or removal of one term in a predictor of a parameter model respectively. The functions add1()
and drop1() are identical to addterm() and dropterm() respectively, but used different default
values for one of the arguments, see section 11.3. The functions addterm() and dropterm() are
the building blocks for the function stepGAIC() suitable for stepwise selection of terms for one
of the distribution parameters of a GAMLSS models using a Generalized Akaike Information
Criterion (GAIC).

There are many different strategies that could be applied for the selection of the terms used to
model all the parameters µ, σ, ν and τ of a GAMLSS model. In the current implementation
we have two strategies for selecting a terms for all the parameters. We call them strategy A
and strategy B. They are implemented in the stepGAICAll.A() and stepGAICAll.B() function
respectively. BOOSTING, and shrinkage methods

11.2.4 Component Λ: Selection of the smoothing parameters

Each smoothing term selected for any of the parameters of the distribution has at least one
smoothing (or hyper) parameter λ associated with it. We denote by Λ the set of all smoothing
parameters e.g. Λ = {λµ,1, λµ,2, λσ,1, λν,1},

The smoothing parameters can be fixed or estimated from the data. The standard way of
fixing the smoothing parameters, as suggested in Hastie and Tibshirani [1990], is by fixing the
effective degrees of freedom for smoothing. A lot of the smoothing procedures within the gamlss
packages allow the user to do that.

More generally it is desirable to estimate the smoothing parameter automatically. The following
are three common methods of estimating the smoothing parameters:

• Generalised cross validation (GCV),

• GAIC ,

260 CHAPTER 11. MODEL SELECTION TECHNIQUES

• Maximum likelihood method.

Each method can be done in two ways:

locally: when the method is applied each time within the iterative GAMLSS algorithm.

globally: when the method is applied outside of the iterative GAMLSS algorithm

Table 11.1 shows where information about the different methods can be obtained.

Global Method Reference
Global ML /REML Rigby and Stasinopoulos [2005]

(e.g. Laplace)
Global GAIC Rigby and Stasinopoulos [2004, 2006a]

(e.g. AIC, SBC)
Global Validation Global Stasinopoulos and Rigby [2007]

Deviance (VGD)
Local ML Rigby and Stasinopoulos [2013]
Local GAIC Rigby and Stasinopoulos [2013]
Local Generalized Cross Wood [2006]

Validation (GCV)

Table 11.1: Showing references for the different approaching of choosing the smoothing param-
eters

In our experience the local methods are much faster and often produce similar results to the
global methods. The global methods can sometimes be more reliable.

11.2.5 Selection of all components using a validation data set

For large data sets, within the GAMLSS framework, the statistical modeller can afford to split
the data into different parts. For example:

i) the training data could be used for model fitting (minimizing its GD)

ii) the validation data could be used for model selection, in particular selection of the distri-
bution, link functions, predictor terms and smoothing parameters (by minimizing its GD,
denoted by V GD)

iii) the test data could be used for the assessment of the predictive power of the model chosen
by (ii) and fitted by (i) and applied to the test data (again using its GD, denoted by
TGD).

There are several functions within the gamlss package to assist the model selection in those
cases. For example the function gamlssVGD() fits a model to the training data set and then
calculates the validation global deviance for the validation data set. Different models fitted this
way can be compared using the function VGD() which is behaving similarly to GAIC() function.
If we already have GAMLSS fitted models, and we want to see how well they are doing on a
new (validation or test) data set, then the function getTGD() can be used to get their validation
or test global deviance and the function TGD() can be used to compared them.

11.3. THE ADDTERM() AND DROPTERM() FUNCTIONS 261

Component All data K-fold cross Validation and
validation test data

D GAIC()∗ gamlssCV(), gamlsVGD(),
wp() ∗ CV() VGD()

getTGV()

TGD()

G deviance() ∗ gamlssCV(), as above
GV()

drop1(), gamlssCV(), drop1TGD()

add1(), CV() add1TGD()

add1ALL(),
drop1ALL(),

T stepGAIC() stepTGD()

stepGAICAll.A()

stepGAICAll.B()

Λ global findhyper() optim()∗ optim()∗

optim()∗

Table 11.2: Showing the different model selection functions described in this Chapter according
to which part of a GAMLSS model used and according to different data set up. Functions with
asterisk are not covered in this Chapter

The basic functions for selection of variables, when we have training and validation data sets
exist are add1TGD() and drop1TGD() which allow the inclusion or exclusion of a single term
in the model. The function for stepwise selection of variables for a single parameter of the
distribution of the response is called stepTGD(). At the moments there are no functions im-
plementing different strategies for selecting explanatory variables for all the parameters of the
response.

11.2.6 Summary of the GAMLSS functions for model selection

Table 11.2 provides a summary of the different model selection functions described in this
Chapter according to which part of the GAMLSS model can be used, and according to which
purpose. The functions with an added asterisk are function covered in other part of the book
and therefore are not described specifically in this Chapter.

The next four sections of this Chapter describe the gamlss package functions which can be used
if all the data points are used for model selection. Section 11.3 describe the addterm() and
dropterm() functions which are the building blocks for a full model selection strategy. The
add1() and drop1() functions are identical to the addterm() and dropterm() with different
default values for the argument test.

11.3 The addterm() and dropterm() functions

The functions addterm() and dropterm() are generic R S3 object functions with their original
definitions defined in the package MASS of of Vendable and Ripley (2002). This package is

262 CHAPTER 11. MODEL SELECTION TECHNIQUES

attached, so their method for classes gamlss can be used. Note that the functions addterm()

and dropterm() have a parallel argument which can be used for parallel computations. This
can be beneficial for large data sets when the fitting of each individual model can take several
minutes (assuming of course that the computer have multiple CPUs).

The dropterm() and addterm() functions in GAMLSS have the following arguments

object a gamlss object.

scope a formula giving terms which might be dropped or added. For the function
dropterm the default is the model formula. For the function addterm the
scope is a formula specifying a maximal model which should include the
current one. Only terms that can be dropped or added while maintaining
marginality are actually tried.

what the parameter of the distribution (equivalent to parameter)

parameter a different way to specify the parameter of the distribution rather than what

scale scale is not used in gamlss

test it takes value "none" for no test and "Chisq" for a χ2 test statistic relative to
the original model. Note that the default values is "none" for the functions
dropterm() and addterm() while it is "Chisq" for the equivalent drop1()

and add1() functions.

k the penalty for each extra degree of freedom used in the GAIC. Note k = 2

gives the original AIC while k = log(n) gives SBC.

sorted If TRUE, (the default), the results are sorted in the order of the GAIC from
the lowest (the best model) to the highest (the worst model).

trace if ’TRUE’, (the default), additional information may be given on the fits as
they are tried.

parallel The type of parallel operation to be used with alternatives ”no”, ”multicore”
and ”snow”. The default is ”no”.

ncpus the number of processes to be used in parallel operation: typically one would
chose this to the number of available CPUs in the computer.

cl This is optional name of a parallel or snow cluster if parallel = "snow" is
used. If the argument is not supplied, a cluster on the local machine is created
for the duration of the call.

. . . arguments passed to or from other methods.

The functions drop1() and add1() are identically to the functions dropterm() and addterm()

respectively with the argument test="Chisq" is used.

In order to demonstrate how dropterm() and addterm() (or their equivalent drop1() and
add1()) are working we are using the US pollution data set taken from Hand et al. (1994) and
the aids data.

11.3. THE ADDTERM() AND DROPTERM() FUNCTIONS 263

11.3.1 drop1()

Data summary: US pollution data

R data file: usair in package gamlss of dimensions 41× 7

variables

y : sulphur dioxide concentration in air in mgs. per cubic meter

x1 : average annual temperature in degrees F

x2 : number of manufacturers employing ¿ 20 workers

x3 : population size in thousands

x4 : average annual wind speed in miles per hour

x5 : average annual rainfall in inches

x6 : average number of days rainfall per year

purpose: to demonstrate term selection techniques

Preliminary analysis has shown that it is better to model the distribution of the response
variable Y in the usair data using the gamma rather the normal distribution. We start by
fitting the full linear model for µ including all six explanatory variables:

data(usair)

mod1<-gamlss(y~., data=usair, family=GA, trace=FALSE)

summary(mod1)

Family: c("GA", "Gamma")

##

Call: gamlss(formula = y ~ ., family = GA, data = usair, trace = FALSE)

##

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.3164944 1.3681744 5.348 6.61e-06 ***

x1 -0.0622829 0.0168679 -3.692 0.000798 ***

x2 0.0013416 0.0003506 3.826 0.000550 ***

x3 -0.0008132 0.0003546 -2.294 0.028323 *

x4 -0.1562766 0.0557698 -2.802 0.008429 **

x5 0.0196006 0.0101839 1.925 0.062928 .

x6 0.0002016 0.0047788 0.042 0.966601

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

264 CHAPTER 11. MODEL SELECTION TECHNIQUES

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.9022 0.1713 -5.268 8.36e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 41

Degrees of Freedom for the fit: 8

Residual Deg. of Freedom: 33

at cycle: 2

##

Global Deviance: 303.1602

AIC: 319.1602

SBC: 332.8687

The ‘.’ in the command selects all variables other than y in the data.frame usair as explana-
tory variables. Now we use the drop1() function to check whether any linear terms can be
dropped.

dd<-drop1(mod1)

dd

Single term deletions for

mu

##

Model:

y ~ x1 + x2 + x3 + x4 + x5 + x6

Df AIC LRT Pr(Chi)

<none> 319.16

x1 1 327.58 10.4245 0.001244 **

x2 1 326.92 9.7557 0.001788 **

x3 1 321.39 4.2299 0.039717 *

x4 1 324.08 6.9247 0.008501 **

x5 1 320.57 3.4141 0.064642 .

x6 1 317.16 0.0017 0.966960

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The above output gives also the likelihood ratio test Λ, (LRT given in Section 11.1) and its
Chi-square p-values for removing each of the six variables from the full model. In the specific
example above, given all other linear terms in the model, the variable x6 is the first to be
dropped since it has the highest p-values, 0.967, given by column Pr(Chi), and so is the least
significant.

For a full parametric models (like the one above) and with only continuous terms in the model
the Chi-square using drop1() and the t-values using summary() should produce identical con-

11.3. THE ADDTERM() AND DROPTERM() FUNCTIONS 265

clusions. However when factors or smooth terms are in the model, summary() do not provide
the right information for testing if a term can be excluded or not from the model given the rest
of the terms in the model. This is where drop1() can very useful in model selection. Next we
demonstrate the use of drop1() when a smoother and a factor are in the model using the aids

data sets.

data(aids)

aids1<-gamlss(y~qrt+pb(x), data=aids, family=NBI, trace=FALSE)

summary(aids1)

Family: c("NBI", "Negative Binomial type I")

##

Call: gamlss(formula = y ~ qrt + pb(x), family = NBI, data = aids,

trace = FALSE)

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.659646 0.057763 46.044 < 2e-16 ***

qrt2 -0.162258 0.046546 -3.486 0.00139 **

qrt3 0.024024 0.045395 0.529 0.60015

qrt4 -0.121794 0.045385 -2.684 0.01124 *

pb(x) 0.093858 0.001597 58.786 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.272 0.433 -12.18 7.82e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

NOTE: Additive smoothing terms exist in the formulas:

i) Std. Error for smoothers are for the linear effect only.

ii) Std. Error for the linear terms maybe are not accurate.

No. of observations in the fit: 45

Degrees of Freedom for the fit: 11.58886

Residual Deg. of Freedom: 33.41114

at cycle: 5

##

Global Deviance: 366.9258

266 CHAPTER 11. MODEL SELECTION TECHNIQUES

AIC: 390.1036

SBC: 411.0407

drop1(aids1)

Single term deletions for

mu

##

Model:

y ~ qrt + pb(x)

Df AIC LRT Pr(Chi)

<none> 390.10

qrt 4.0778 403.95 22.003 0.0002168 ***

pb(x) 6.5889 576.91 199.983 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The t-tests provided from the summary() function should be use with caution. For example
the t-values of 0.529 of the third quarter qrt3 is testing whether the third quarter is significant
different from the first quarter [which here is the value given by the (Intercept)]. This is not
a test whether overall the factor qrt contributes significantly to the model or not. The drop1()
Chi-square test for qrt provides this and with a p-value less than 0.001 it shows that qrt is
highly significant.

A more serious problem could arise for the misinterpretation of the value of the t-statistic
provided for smoothing terms. In our case the smoothing term for pb(x) in the summary()

table has a t-value. This is not a test whether the overall smooth function for x is significant
or not. Instead this test checks whether the linear part in x is significant, given the factor qrt

and the non-linear contribution of x are already in the model. That is a rather peculiar test
and arises due to the way that the GAMLSS backfitting algorithm works. The real question
is whether the smoother for x is significant given qrt and this is given from the Chi-square
test output of drop1(). With a p-value of close to 0 the smooth function for x has a highly
significant contribution to the model.

11.3.2 add1()

To demonstrate the function add1() consider adding a two way interaction term into the linear
model mod1 of the usair data. Note that when add1() is used the scope argument has to be
defined explicitly.

add1(mod1, scope=~(x1+x2+x3+x4+x5+x6)^2)

Single term additions for

mu

##

Model:

y ~ x1 + x2 + x3 + x4 + x5 + x6

Df AIC LRT Pr(Chi)

<none> 319.16

11.3. THE ADDTERM() AND DROPTERM() FUNCTIONS 267

x1:x2 1 320.09 1.0689 0.3012045

x1:x3 1 319.40 1.7626 0.1843028

x1:x4 1 320.60 0.5623 0.4533271

x1:x5 1 316.94 4.2226 0.0398901 *

x1:x6 1 320.93 0.2351 0.6277906

x2:x3 1 320.48 0.6786 0.4100846

x2:x4 1 319.75 1.4138 0.2344256

x2:x5 1 318.17 2.9873 0.0839194 .

x2:x6 1 321.13 0.0310 0.8603147

x3:x4 1 317.38 3.7783 0.0519200 .

x3:x5 1 320.19 0.9672 0.3253680

x3:x6 1 320.85 0.3061 0.5800599

x4:x5 1 307.07 14.0870 0.0001745 ***

x4:x6 1 320.33 0.8346 0.3609322

x5:x6 1 318.74 2.4188 0.1198894

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Among the two way interactions x4:x5 is highly significant with a p-value of less that 0.001.

The next code is to demonstrate how smoothers can be used. In the beginning we create a
formula containing all the explanatory variables in the data usair using the smoother pb().
Them we fit the null model containing only the constant and then we add each smoother one
at a time. The resulting LRT shows whether the smooth functions of the explanatory variables
can explain on their own the response variables. With p-values less than 0,05 shows that all
the explanatory variables can explain the response well.

FORM <- as.formula(paste("~",paste(paste(paste("pb(", names(usair[-1]),

sep=""),")", sep=""), collapse="+")))

FORM

~pb(x1) + pb(x2) + pb(x3) + pb(x4) + pb(x5) + pb(x6)

mod0 <- gamlss(y~1, data=usair,family=GA, trace=FALSE)

add1(mod0, scope=FORM)

Single term additions for

mu

##

Model:

y ~ 1

Df AIC LRT Pr(Chi)

<none> 353.71

pb(x1) 1.0000 338.04 17.6792 2.615e-05 ***

pb(x2) 1.0000 343.05 12.6660 0.0003724 ***

pb(x3) 1.6664 348.02 9.0249 0.0073307 **

pb(x4) 3.3633 345.59 14.8494 0.0028119 **

pb(x5) 3.0057 341.75 17.9793 0.0004471 ***

pb(x6) 1.1863 343.82 12.2658 0.0006515 ***

268 CHAPTER 11. MODEL SELECTION TECHNIQUES

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11.4 The stepGAIC() function

In order to build a model for any of the parameters of the distribution of the response vari-
able using a forward, backward or stepwise procedure the functions stepGAIC() can be used.
stepGAIC() is based on the function stepAIC() given in the library MASS of Venables and
Ripley [2002] (where more details and examples of the function can be found). The additional
argument parameter is designed to allow selection of terms for a specific parameter of the distri-
bution. The function has been also changed to allow parallel computations. [The older version
of stepGAIC() function with no parallel facilities can be found under the name stepGAIC.VR()].
The main arguments of the function stepGAIC() are:

object a gamlss object which is used as the initial model in the stepwise search

scope The scope defines the range of models examined in the stepwise search. The
set of models searched by stepGAIC() is determined by the scope argument
and its lower and upper components. The scope should be either a single
formula, or a list containing components upper andlower, both formulae.
The terms defined by the formula in lower component are always included
in the model. The formula in upper is the most complicated model that
the procedure would consider. The lower model must be a sub-model of the
upper model. The initial fitted model specified in the object option must
be the lower or upper model or a model lying between them. If the scope

is missing then a backward elimination starts from the model define by the
gamlss object.

direction the mode of stepwise search, can be one of both, backward, or forward, with
a default of both which performs a stepwise model selection. If the scope

argument is missing the default for direction is backward

trace if positive, information is printed during the running of stepGAIC. Larger
values may give more information on the fitting process

keep a filter function whose input is a fitted model object and the associated AIC

statistic, and whose output is arbitrary. Typically keep will select a subset
of the components of the object and return them. The default is not to keep
anything.

steps the maximum number of steps to be considered. The default is 1000 (essen-
tially as many as required). It is typically used to stop the process early.

The extra arguments what, parameter, k, parallel, ncpus and cl operate similarly to the
ones described in Section 11.3 for dropterm() and addterm() functions.

The set of models searched by stepGAIC() is determined by the scope argument and its lower
and upper components. The lower and upper components are model formulae. The terms
defined by the formula in the lower component are always included in the model. The formula
in upper is the most complicated model that the procedure would consider. The lower model
must be a sub-model of the upper model. The model given the the argument object must

11.4. THE STEPGAIC() FUNCTION 269

be the lower or upper model or a model between them. That is, the fitted model specified
should lie between the lower and upper models. If the scope is missing then a backward
elimination starts from the model define by the gamlss object. In the following example a
backward elimination is performed on the model given by mod1. Note that mod2 has a new
component called anova showing the steps taken in the search of the model.

11.4.1 Selecting model for µ

In the following example a backward elimination is performed on the model given by mod1.
Note that mod2 has a new component called anova showing the steps taken in the search of the
model.

mod2<-stepGAIC(mod1)

mod2$anova

Distribution parameter: mu

Start: AIC= 319.16

y ~ x1 + x2 + x3 + x4 + x5 + x6

##

. . .

Step: AIC= 317.16

y ~ x1 + x2 + x3 + x4 + x5

##

Df AIC

<none> 317.16

- x3 1 319.39

- x4 1 322.48

- x5 1 324.14

- x2 1 324.92

- x1 1 336.11

Stepwise Model Path

Analysis of Deviance Table

##

Initial

mu

Model:

y ~ x1 + x2 + x3 + x4 + x5 + x6

##

Final

mu

Model:

y ~ x1 + x2 + x3 + x4 + x5

##

##

Step Df Deviance Resid. Df Resid. Dev AIC

1 33 303.1602 319.1602

2 - x6 1 0.001715758 34 303.1619 317.1619

270 CHAPTER 11. MODEL SELECTION TECHNIQUES

The above backward search procedure confirms that, if we want to include only linear additive
terms in the model, the variable x6 is not needed. The default penalty for the GAIC procedure
is k = 2, i.e. a genuine original AIC selection procedure. Note that changing to a SBC the
resulting model can be completely different as the following code is showing:

mod21<-stepGAIC(mod1, k=length(usair$y))

Distribution parameter: mu

Start: AIC= 631.16

y ~ x1 + x2 + x3 + x4 + x5 + x6

##

. . .

Step: AIC= 455.04

y ~ x1

##

Df AIC

- x1 1 431.71

<none> 455.04

##

Step: AIC= 431.71

y ~ 1

Here using SBC no explanatory variable is selected. (Note that we have only 41 observations
and therefore any result should be treated with caution).

As an example of using the scope argument explicitly we consider whether two way interac-
tions between the explanatory variables are needed in the model. The simplest model we are
considering here is with only a constant, i.e. lower= 1, and the most complicated is the one
with all two way interactions. The final model will be something between those two.

mod3<-stepGAIC(mod1, scope=list(lower=~1,upper=~(x1+x2+x3+x4+x5+x6)^2))

mod3$anov

Distribution parameter: mu

Start: AIC= 319.16

y ~ x1 + x2 + x3 + x4 + x5 + x6

##

. . .

Step: AIC= 292.72

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x4:x5 + x1:x6 + x4:x6 + x3:x4 +

x2:x4 + x2:x3 + x3:x6 + x2:x6

##

Df AIC

<none> 292.72

+ x1:x4 1 293.55

+ x1:x5 1 293.95

+ x2:x5 1 294.08

- x2:x6 1 294.19

+ x5:x6 1 294.54

+ x3:x5 1 294.55

+ x1:x2 1 294.71

11.4. THE STEPGAIC() FUNCTION 271

+ x1:x3 1 294.72

- x1:x6 1 295.18

- x3:x6 1 296.41

- x2:x3 1 297.34

- x3:x4 1 300.27

- x2:x4 1 300.41

- x4:x6 1 307.60

- x4:x5 1 328.13

Stepwise Model Path

Analysis of Deviance Table

##

Initial

mu

Model:

y ~ x1 + x2 + x3 + x4 + x5 + x6

##

Final

mu

Model:

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x4:x5 + x1:x6 + x4:x6 + x3:x4 +

x2:x4 + x2:x3 + x3:x6 + x2:x6

##

##

Step Df Deviance Resid. Df Resid. Dev AIC

1 33 303.1602 319.1602

2 + x4:x5 1 14.086994 32 289.0732 307.0732

3 + x1:x6 1 8.133304 31 280.9399 300.9399

4 + x4:x6 1 4.786482 30 276.1534 298.1534

5 + x3:x4 1 2.082757 29 274.0706 298.0706

6 + x2:x4 1 4.460528 28 269.6101 295.6101

7 + x2:x3 1 2.886924 27 266.7232 294.7232

8 + x3:x6 1 2.532079 26 264.1911 294.1911

9 + x2:x6 1 3.468607 25 260.7225 292.7225

Model mod3 is a rather complicated interaction model. [A simpler model could be selected by
using a higher value of k rather the default k=2]. Note that the variable x6 is included in the
model mod3 since higher interactions involving x6 are selected in the model. More than two way
interactions are not permitted for continuous variables which is the case in our example. A plot
of the residuals of model mod3 indicates possible heterogeneity in the variation of Y . We shall
deal with this problem later. Fist we show how to select smoothing terms. In order to do that
we first create a formula containing all the linear main effects and second order interactions
plus smooth functions (using pb()) of the explanatory variables.

FORM1 <- as.formula(paste("~",paste("(x1+x2+x3+x4+x5+x6)^2+",

paste(paste(paste("pb(", names(usair[-1]), sep=""),")", sep=""),

collapse="+"), sep=""), sep=""))

FORM1

~(x1 + x2 + x3 + x4 + x5 + x6)^2 + pb(x1) + pb(x2) + pb(x3) +

272 CHAPTER 11. MODEL SELECTION TECHNIQUES

pb(x4) + pb(x5) + pb(x6)

We will use FORM1 as an upper argument for scope

mod10<- stepGAIC(mod0, scope=list(lower=~1, upper=FORM1))

Distribution parameter: mu

Start: AIC= 353.71

y ~ 1

##

. . .

##

##

Step: AIC= 304.29

y ~ pb(x4) + pb(x5) + x2 + x3 + pb(x1)

##

Df AIC

<none> 304.29

+ pb(x2) 4.7610e-05 304.29

+ pb(x3) 5.3776e-05 304.29

+ pb(x6) 1.2605e+00 306.10

+ x6 1.2603e+00 306.10

+ x2:x3 9.9942e-01 306.30

- x3 2.0294e+00 310.59

- pb(x1) -1.4964e-01 312.04

- pb(x5) 2.2641e+00 313.26

- x2 1.9560e+00 315.40

- pb(x4) 1.7994e+00 315.56

The idea here, is that we would like to check whether smoothing terms, linear terms or second
order linear interactions are needed for modelling the µ. The resulting model:

pb(x4)+pb(x5)+x2+x3+pb(x1)

contains smooth functions for x1, x4 and x5 and linear terms for x2 and x3 but not interactions
terms. Note however that by default, using pb(), the linear part of the explanatory variable is
fitted separately, but its not recognise by the stepGAIC() function and therefore interactions
involving smoothing terms never enter into consideration. This is a limitation of the stepGAIC()
function which the user has to be aware. In the output above only the x2:x3 interaction was
tested since those are the two linear main effects fitted explicitly.

11.4.2 Selecting model for σ

We shall now try to include linear terms in the σ model. Note that with only 41 observations
and with a reasonably complicated model µ, it not advisable to try smoothing terms for σ.
Here we check whether including linear terms in the model for σ will improve model mod1 which
includes all linear terms, i.e. reduce AIC using the stepGAIC function.

11.5. STRATEGY A: THE STEPGAICALL.A() FUNCTION 273

mod4 <- stepGAIC(mod1, parameter="sigma", scope=~x1+x2+x3+x4+x5+x6)

Distribution parameter: sigma

Start: AIC= 319.16

~1

##

. . .

Step: AIC= 314.21

~x5 + x1

##

Df AIC

<none> 314.21

+ x3 1 314.57

+ x2 1 315.58

+ x6 1 315.59

+ x4 1 316.04

- x1 1 317.32

- x5 1 319.29

According to criterion AIC the model needs x1+x5 in the formula for σ. A method which selects
terms for all the parameter of the distribution is described next.

11.5 Strategy A: the stepGAICAll.A() function

Strategies A and B are strategies for selecting additive terms using a GAIC for all the parameters
of the distribution of the response variable. Strategy A can be described as follows:

For a fixed distribution:

1. Use a forward GAIC selection procedure to select an appropriate model for µ, with σ, ν
and τ fitted as constants.

2. Given the model for µ obtained in (1) and for ν and τ fitted as constants, use a forward
selection procedure to select an appropriate model for σ.

3. Given the models for µ and σ obtained in (1) and (2) respectively and with τ fitted as
constant, use a forward selection procedure to select an appropriate model for ν.

4. Given the models for µ, σ and ν obtained in (1), (2) and (3) respectively, use a forward
selection procedure to select an appropriate model for τ .

5. Given the models for µ, σ and τ obtained in (1), (2) and (4) respectively, use a backward
selection procedure to select appropriate model for ν,

6. Given the models for µ, ν and τ obtained in (1), (5) and (4) respectively, use a backward
selection procedure to select appropriate model for σ.

7. Given the models for σ, ν and τ obtained in (6), (5) and (4) respectively, use a backward
selection procedure to select an appropriate model for µ and then stop.

274 CHAPTER 11. MODEL SELECTION TECHNIQUES

The final model will contain different subset of terms (not necessarily the same terms) for each
µ, σ, ν and τ . This is illustrated in Table 11.3 showing for example, that among all the available
variables x1, x2 . . . , x6, the variable x1 was chosen only for µ and ν but not for σ or τ .

x1 x2 x3 x4 x5 x6
µ X X X X
σ X X
ν X X
τ X

Table 11.3: Showing a possible result from a selection of variables using strategy A. Among all
available variables x1, x2 . . . , x6, some were chosen for µ, some for σ, some for ν and some for
τ .

The function to perform the strategy A is stepGAICAll.A() and has the following arguments.

object an gamlss object which is used as the initial model in the stepwise search.

scope the scope should be a list with elements lower and upper containing formulae.

sigma.scope the scope of σ if different from scope

nu.scope the scope of ν if different from scope

tau.scope the scope of τ if different from scope

mu.try the default value is TRUE and can be set to FALSE if no model selection for
µ is needed

sigma.try the default value is TRUE, can be set to FALSE if no model selection for σ
is needed

nu.try the default value is TRUE, can be set to FALSE if no model selection for ν is
needed

tau.try the default value is TRUE, can be set to FALSE if no model selection for τ is
needed

Next we use the function stepGAICAll.A() with penalty k=log(41), i.e. SBC, to select linear
terms for both µ and σ.

m1 <- gamlss(y~1, data=usair, famly=GA, trace=FALSE)

m2<- stepGAICAll.A(m1, scope=list(lower=~1, upper=~x1+x2+x3+x4+x5+x6))

Distribution parameter: mu

Start: AIC= 381.54

y ~ 1

. . .

+ x5 1 354.66

Distribution parameter: mu

Start: AIC= 351.37

y ~ x2 + x3

11.6. STRATEGY B: THE STEPGAICALL.B() FUNCTION 275

##

Df AIC

<none> 351.37

- x3 1 357.91

- x2 1 374.47

m2

##

Family: c("NO", "Normal")

Fitting method: RS()

##

Call:

gamlss(formula = y ~ x2 + x3, sigma.formula = ~x4 + x3, data = usair,

famly = GA, trace = FALSE)

##

Mu Coefficients:

(Intercept) x2 x3

23.69223 0.06678 -0.04035

Sigma Coefficients:

(Intercept) x4 x3

0.8881979 0.2200108 -0.0006106

##

Degrees of Freedom for the fit: 6 Residual Deg. of Freedom 35

Global Deviance: 329.089

AIC: 341.089

SBC: 351.37

The the parameters µ the linear terms x2 and x3 were selected while for σ, x3 and x4.

Note that smoothing terms can be included but for this specific data with only 41 observations
can hazardous. For example the following code would result to some errors due to the fact that
the sigma models had failed:

m3 <- stepGAICAll.A(m1, scope=list(lower=~1,

upper=~pb(x1)+pb(x2)+pb(x3)+pb(x4)+pb(x5)+pb(x6)), k=log(41))

Also note that during the selection procedure some models can fail but the selection is usually
carried on until the end.

11.6 Strategy B: the stepGAICAll.B() function

This strategy forces all the distributions parameters to have the same term if selected. That is,
if a terms from X is selected it is included in the predictor of all the parameters. The inclusion
using GAIC can be done using forward, backward or stepwise procedure. Table 11.4 shows a
possible result from strategy B.

The function to perform the strategy B is stepGAICAll.B() which uses repeatedly the functions
add1All() and drop1All(), It has the following arguments.

276 CHAPTER 11. MODEL SELECTION TECHNIQUES

x1 x2 x3 x4 x5 x6
µ X X X
σ X X X
ν X X X
τ X X X

Table 11.4: Showing a possible result from a selection of variables using strategy B. Among all
available variables x1, x2 . . . , x6, the selected terms are selected for all the parameters of the
distribution.

object an gamlss object which is used as the initial model in the stepwise search.

scope the scope should be a list with elements lower and upper contain formulae.

direction the mode of the stepwise search, which can be one of both, backward, or
forward, with a default of both. If the scope argument is missing the default
for direction is backward

trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.

keep a filter function whose input is a fitted model object and the associated ’AIC’
statistic, and whose output is arbitrary. Typically ’keep’ will select a subset
of the components of the object and return them. The default is not to keep
anything.

steps the maximum number of steps to be considered. The default is 1000 (essen-
tially as many as required). It is typically used to stop the process early.

scale scale is not used in gamlss

k the multiple of the number of degrees of freedom used for the penalty.

In addition also has the parallel computations arguments parallel,ncpus and cl as defined in
Section 11.3. Here is an example of how the function can be used:

m4<- stepGAICAll.B(m1, scope=list(lower=~1, upper=~x1+x2+x3+x4+x5+x6),

k=log(41))

Start: AIC= 381.54

y ~ 1

##

Df AIC

. . .

Step: AIC= 350.55

y ~ x1 + x2 + x3 + x4 + x5

##

Df AIC

<none> 350.55

- x3 2 351.26

- x5 2 351.84

- x2 2 353.71

11.7. BOOSTING 277

+ x6 2 353.88

- x4 2 358.62

- x1 2 360.50

m4

##

Family: c("NO", "Normal")

Fitting method: RS()

##

Call:

gamlss(formula = y ~ x1 + x2 + x3 + x4 + x5, sigma.formula = ~x1 +

x2 + x3 + x4 + x5, data = usair, famly = GA, trace = FALSE)

##

Mu Coefficients:

(Intercept) x1 x2 x3 x4

116.08769 -1.09160 0.04495 -0.01692 -5.25258

x5

0.31086

Sigma Coefficients:

(Intercept) x1 x2 x3 x4

6.0343687 -0.0815922 0.0008033 -0.0014193 0.0278921

x5

0.0287338

##

Degrees of Freedom for the fit: 12 Residual Deg. of Freedom 29

Global Deviance: 305.988

AIC: 329.988

SBC: 350.551

The variables x1,x2,x3 x4 and x5 where selected for both µ and σ.

11.7 Boosting

11.8 K-fold Cross Validation

Cross validation modelling can be achieved with GAMLSS using the function gamlssCV(). Mod-
els fitted with gamlssCV() can be compared using the function CV(). The first few arguments
of gamlssCV() are similar to the gamlss() function arguments. i.e. formula, sigma.formula,
. . ., family etc. Also the parallel computations arguments parallel, ncpus and cl explained
in Section 11.3 are available for speeding the procedure. The k-fold cross validation can be spec-
ified either by defining a factor in argument rand with levels the different cross validation data
sets or by specified the argument K.fold. If the latest argument is chosen the different data
sets will be created randomly. In this case you may wish to use the set.seed for repeatability
of your results.

Here we use the abdom data first described in Chapter 4 to test using k-fold cross validation

278 CHAPTER 11. MODEL SELECTION TECHNIQUES

whether we should use normal, NO, logistic, LO, or t, TF, distribution for modelling the response
variable. To demonstrate the use of parallel argument we fit the three models using the "no",
"multicore" and "snow" arguments respectively.

#---

#---

function gamlssCV

#---

set.seed(123)

rand1 <- sample (10 , 610, replace=TRUE)

detacting how many cores exist in the machine

nC <- detectCores()

#---

no parallel

g1 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom,

family=NO, rand=rand1,parallel = "no", ncpus = nC)

fold 1

new prediction

new prediction

. . .

new prediction

fold 10

new prediction

new prediction

using multicore

g2 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom,

family=LO, rand=rand1,parallel = "multicore", ncpus = nC)

using snow

g3 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom,

family=TF, rand=rand1,parallel = "snow", ncpus = nC)

CV(g1,g2,g3)

val[o.val]

g2 4804.336

g3 4804.564

g1 4814.716

From the output the logistic distribution, LO, seems to be selected using the 10-fold cross
validation.

11.9 Validation, and test data

11.9.1 The gamlssVGD() and VGD() functions

Fitting a model in a training data set and validating the model in a different validation/test
data set can be achieved within GAMLSS using the function gamlssVGD(). Models fitted

11.9. VALIDATION, AND TEST DATA 279

with gamlssVGD() can be compared between them using the function VGD(). The function
gamlssVGD() works similar to the function gamlssCV() described above in Section 11.8. The
main arguments for the function are the gamlss arguments. Additional arguments are rand

and newdata. Those two arguments determine how the spilt into the two data sets (training
and validation) is done. If the data are already split into two data.frames then the data

and newdata arguments can be used to specify the training and the validation/test data set
respectively. If on the other hand there is a single data set then the argument rand can be
used to define which part of the data will be used for training and which for validation/test.
We demonstrate the difference between those two approaches below. First we generate a factor
which splits the 610 observations of the data abdom into two groups containing 60% and 40%
approximately. Then we fit three different models using the normal, NO, the logistic, LO, and the
t, TF, distributions respectively and compare the validation global deviance using the function
TGD().

generate the random split of the data

rand <- sample(2, 610, replace=TRUE, prob=c(0.6,0.4))

the proportions in the sample

table(rand)/610

rand

1 2

0.6311475 0.3688525

#--

using the argument rand

v1 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=NO,

rand=rand)

new prediction

new prediction

v2 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=LO,

rand=rand)

new prediction

new prediction

v3 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=TF,

rand=rand)

new prediction

new prediction

VGD(v1,v2,v3)

val[o.val]

v2 1765.934

v3 1769.929

v1 1775.608

Next, we repeat the same analysis but this time the data are split into two sets in advance.

#---

using the two different data set

280 CHAPTER 11. MODEL SELECTION TECHNIQUES

create training and validation data sets

olddata<-abdom[rand==1,] # training data

newdata<-abdom[rand==2,] # validation data

v11 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata,

family=NO, newdata=newdata)

new prediction

new prediction

v12 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata,

family=LO, newdata=newdata)

new prediction

new prediction

v13 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata,

family=TF, newdata=newdata)

new prediction

new prediction

VGD(v11,v12,v13)

val[o.val]

v12 1765.934

v13 1769.929

v11 1775.608

The logistic distribution model is supported by the data.

11.9.2 The getTGD() and TGD() functions

The function getTGD() and TGD() are doing similar job to the functions gamlssVGD() and
VGD() respectively with the difference that they assumed that the models involved have been
already fitted using the training data set and now we only need to compare how well they fit
to the validation/test data set. That is, given the fitted models we would like to compare them
using the global deviance evaluated at the validation/test data set, which is defined by the
argument newdata.

#---

function getTGD

#---

fit gamlss models first

g1 <- gamlss(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata, family=NO,

trace=FALSE)

g2 <- gamlss(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata, family=LO,

trace=FALSE)

g3 <- gamlss(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata, family=TF,

trace=FALSE)

and then use

gg1 <-getTGD(g1, newdata=newdata)

11.9. VALIDATION, AND TEST DATA 281

new prediction

new prediction

gg2 <-getTGD(g2, newdata=newdata)

new prediction

new prediction

gg3 <-getTGD(g3, newdata=newdata)

new prediction

new prediction

TGD(gg1,gg2,gg3)

val[o.val]

gg2 1765.934

gg3 1769.929

gg1 1775.608

11.9.3 The stepTGD() function

The function stepTGD() behaves similar to the stepGAIC() function but it uses the valida-
tion/test global deviance instead of GAIC as the selection criterion. The functions add1TGD(),
drop1TGD() are used by stepTGD() in the same way that addterm(), dropterm() are used by
stepGAIC(). The arguments of the function stepTGD() are similar to the ones in stepGAIC()

with the addition of the argument newdata which is expecting the validation/test data set.

To demonstrate the use of the function we will use the Munich rent data first used in Chapter
??. We split the data into training and validation data sets and use the training data to fit
a null model v0 and a more complicated model with four terms, v1. We then use those two
models to demonstrate the drop1TGD() and add1TGD() functions.

the data

set.seed(123)

rand <- sample(2, dim(rent)[1], replace=TRUE, prob=c(0.6,0.4))

the proportions in the sample

table(rand)/dim(rent)[1]

rand

1 2

0.6094464 0.3905536

oldrent<-rent[rand==1,] # training set

newrent<-rent[rand==2,] # validation set

null model

v0 <- gamlss(R~1, data=oldrent, family=GA, trace=FALSE)

complete model

v1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, sigma.fo=~pb(Fl)+pb(A)+H+loc,

data=oldrent, family=GA, trace=FALSE)

drop1TGDP

nC <- detectCores()

282 CHAPTER 11. MODEL SELECTION TECHNIQUES

(v2<- drop1TGD(v1, newdata=newrent, parallel="snow", ncpus=nC))

new prediction

new prediction

Single term deletions for

mu

##

Model:

R ~ pb(Fl) + pb(A) + H + loc

Df TGD

<none> 10852

pb(Fl) 2.0659 11081

pb(A) 4.1375 10882

H 1.3579 10892

loc 2.4285 10876

add1TGDP

(v3<- add1TGD(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent,

parallel="snow", ncpus=nC))

Single term additions for

mu

##

Model:

R ~ 1

Df TGD

<none> 11242

pb(Fl) 1.9378 11000

pb(A) 3.9365 11225

H 1.0000 11164

loc 2.0000 11213

To demonstrate the stepTGD() function we start from the null model:

stepTGD

v4<- stepTGD(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent,

parallel="snow", ncpus=nC)

Distribution parameter: mu

Start: TGD= 11241.88

R ~ 1

##

. . .

Step: TGD= 10874.09

R ~ pb(Fl) + H + loc + pb(A)

##

new prediction

new prediction

Df TGD

<none> 10874

- pb(A) 3.6739 10894

11.10. THE FIND.HYPER() FUNCTION 283

- loc 1.8784 10906

- H 1.6700 10937

- pb(Fl) 1.6353 11113

Note that the results above shown that all four terms are needed in modelling the µ parameter
and therefore no reduction of variables is required.

11.10 The find.hyper() function

Estimation of the smoothing parameters has been discussed in Section 3.3 of Chapter 3 and
also in the beginning of this Chapter. We have distinguished the methods used to two main
categories the global, when the methods are applied outside the GAMLSS algorithm, and the
local when are applied within. Local methods have been discussed in both Chapters 3 and 9.
Here we focus on the function find.hyper() which is a global method for estimating smoothing
parameters and appears to work well in searching for the optimum degrees of freedom for
smoothing and/or non-linear parameters (e.g. a power parameter ξ used to transform x to xξ).
The function repetitively fits GAMLSS models and uses the R function optim() to minimizes
the generalized Akaike information criterion (GAIC) for a given penalty k specified by the user.
For large data sets the function is very slow compared to local estimation methods and for this
reason is hardly been used recently. Here the results of the function are compared with local
methods of estimation of the smoothing parameters.

The arguments of the function find.hyper() are:

model this is a quoted ((quote())) GAMLSS model in which the required hyperpa-
rameters are denoted by p[number], e.g.
quote(gamlss(y∼cs(x,df=p[1]),sigma.fo=∼ cs(x,df=p[2]),data=abdom))

parameters the starting parameter values in the search for the optimum hyperparameters
and/or non-linear parameters, e.g. parameters=c(3,3)

other this is used to optimize non-linear parameter(s), for example a transformation
of the explanatory variable of the kind xp[3], e.g. others=quote(nx<-x^p[3])
where nx is now in the model formula

k specifies the penalty in the GAIC, (the default is 2) e.g. penalty=3

steps the steps in the parameter(s) taken during the optimization procedure (see
for example the ndeps option in the control function for optim()), by default
set to 0.1 for all hyper parameters and non-linear parameters

lower the lower bounds on the permissible values of the parameters e.g. for two
parameters lower=c(1,1). This does not apply if a method other than the
default method ”L-BFGS-B” is used

upper the upper bounds on the permissible values of the parameters e.g. for two
parameters upper=c(30,10). This does not apply if a method other than the
default method ”L-BFGS-B” is used

method the method used in optim() to numerically minimize the GAIC over the

284 CHAPTER 11. MODEL SELECTION TECHNIQUES

hyperparameters and/or non-linear parameters. By default this is ”L-BFGS-
B” to allow box-restriction on the parameters

... this can be used for extra arguments in the control argument of the R function
optim()

The function find.hyper() returns the same output as the R function optim().

In the following example we compare the local and global estimation of the smoothing param-
eters using the abdom data. Both models for µ and σ are fitted sing a non-parametric P-spline.
We first use the three local methods for estimating the smoothing parameter "ML", "GCV" and
"GAIC".

fitting the model with pb()

a1 <- gamlss(y ~ pb(x), sigma.fo=~pb(x), data = abdom, family = LO,

trace=FALSE)

a2 <- gamlss(y ~ pb(x, method="GCV"), sigma.fo=~pb(x, method="GCV"),

data = abdom, family = LO, trace=FALSE)

a3 <- gamlss(y ~ pb(x, method="GAIC"), sigma.fo=~pb(x, method="GAIC"),

data = abdom, family = LO, trace=FALSE)

the effective degrees of freedom used

edfAll(a1);edfAll(a2);edfAll(a3)

$mu

pb(x)

5.796263

##

$sigma

pb(x)

2.001641

$mu

pb(x, method = "GCV")

4.842148

##

$sigma

pb(x, method = "GCV")

2.600804

$mu

pb(x, method = "GAIC")

2.000007

##

$sigma

pb(x, method = "GAIC")

2.001502

Now we will use the global GAIC method to find the degrees of freedom. First we have to declare
the model using the quote R function. For each hyper-parameter to be estimated we put p[.]
with the appropriate number in the square brackets. The function find.hyper() minimises
GAIC with k=2 by default. The initial degrees of freedom parameters, p, for the search is set to 3
(i.e. parameters=c(3,3)), the minimum value for p for the search is set to 0 (i.e. lower=c(0,0))
and the steps in p[1] used within the optim() search to 0.1 (i.e. steps=c(0.1)). The default

11.10. THE FIND.HYPER() FUNCTION 285

method used by optim() within find.hyper() is the ”L-BFGS-B” procedure which starts with
the initial parameter value(s), changes each parameter in turn by ± step for that parameter,
and then jumps to new value(s) for the set of parameter(s). This is repeated until convergence.
See the help on the R function optim() for details. Note that df as defined in pb() are the
effective degrees of freedom on top of the constant and linear, so df=0 corresponds to a linear
fit.

mod1 <- quote(gamlss(y ~ pb(x, df = p[1]), sigma.fo=~pb(x, df=p[2]),

family = LO, data = abdom, trace = FALSE))

op <- find.hyper(model = mod1, par = c(3,3), lower = c(0,0), steps = c(0.1),

trace = FALSE)

par 3 3 crit= 4798.775 with pen= 2

par 3.1 3 crit= 4798.599 with pen= 2

. . .

par 3.711021 0 crit= 4795.093 with pen= 2

par 3.710816 0 crit= 4795.093 with pen= 2

par 3.810816 0 crit= 4795.101 with pen= 2

par 3.610816 0 crit= 4795.101 with pen= 2

par 3.710816 0.1 crit= 4795.093 with pen= 2

par 3.710816 0 crit= 4795.093 with pen= 2

op

$par

[1] 3.710816 0.000000

##

$value

[1] 4795.093

##

$counts

function gradient

10 10

##

$convergence

[1] 0

##

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

The resulting extra degrees of freedom are 3.710816 for µ and 0 for σ corresponding to total
effective degrees of freedom 5.710816 for µ and 2 for σ. Those are close to the results obtained
using the local "ML" method.

286 CHAPTER 11. MODEL SELECTION TECHNIQUES

Chapter 12

Diagnostics

This chapter provides:

1. provides the definition of normalised (randomised) quantile residuals and

2. other diagnostic tools based on residuals, such as the worm plots, wp(), and Q-
Statistics, Q.stats(), functions

This chapter is important for understanding the tools for checking the adequacy of a
GAMLSS model.

12.1 Introduction

In the simple linear regression model yi = β0+β1xi+ei we defined the residuals as the difference
between the observed and the fitted values ε̂i = yi − ŷi where ŷi = β̂0 + β̂1xi for i = 1, 2, . . . , n.
Sometimes ε̂i’s are called the raw residuals to distinguish them from the standardised residuals
which are defined as (yi − ŷi)/σ̂

√
(1− hii) where hii are the diagonal values of the hat matrix.

The problem with raw residuals is that they are difficult to generalize to different distributions
other than the normal. For example, within the generalised linear model literature the deviance
residuals rdi = sign (yi − µ̂i) /

√
di where di = −2 log(Lci/L

s
i)

1 or the Pearson’s residuals rPi =
(yi − µ̂i) /se(µ̂i) are often used. Unfortunately the deviance residuals are not well defined with
multiple parameters for the distribution of y, while the Pearson residuals can be far from a
normal distribution and also are not appropriate for highly skew or kurtotic data. Therefore
for GAMLSS models we use the normalised (randomised) quantile residuals, Dunn and Smyth
[1996], and we refered to as ’residuals’ through this book.

Section 12.2 introduces the normalised quantile residuals for continuous response variables. For
discrete response variables the normalised quantile residuals have to be randomised so we call
them normalised randomised quantile residuals. Section 12.3 describes the plot() function
of GAMLSS. Section 12.4 describes the worm plot function, wp(). The Q-statistics function
Q.stats() is considered in section 12.5 while the rqres.plot() function in section 12.6.

1Lc represent the likelihood for the current model and Ls from the saturated model that is, when µ̂i = yi,
McCullagh and Nelder [1989].

287

288 CHAPTER 12. DIAGNOSTICS

12.2 Normalised (randomised) quantile residuals

This section first introduces the normalised quantile residuals and then explains how they can
be used within the package.

The main advantage of the normalised (randomised) quantile residuals is that, whatever the
distribution of the response variable their true values ri, i = 1, 2, . . . , n always have a standard
normal distribution given the assumption that the model is correct. Since within the statistical
literature checking the normality assumption is well established, the normalised (randomised)
quantile residuals provide us with an easy way to check the adequacy of a GAMLSS fitted
model.

Given that the distribution f(y;θ) is fitted to observations yi for i = 1, 2, . . . , n, the fitted
normalised (randomised) quantile residuals, Dunn and Smyth [1996], are given by r̂i = Φ−1(ûi),
where Φ−1 is the inverse cumulative distribution function of a standard normal variable. The
ûi’s are quantile residuals defined differently for continuous and discrete response variables.

If y is an observation from a continuous response variable then let u = F (y|θ) and û = F (y|θ̂)
be the model and fitted cumulative distribution functions respectively. The process is described
diagrammatically in Figure 12.1. The top plot shows the probability density function for a spe-
cific observation y. The middle plot shows how, using the cumulative distribution function, the
observation y is mapped onto u. If the model is correctly specified u has a uniform distribution
between zero and one. The u’s are referred to the econometric literature as PIT (probabil-
ity integral transform) residuals. In the bottom figure u is transformed into a z-score, r, using
r = Φ−1(u), the inverse cumulative distribution function of a standard normal variable, so r will
have a standard normal distribution. Note that r = Φ−1 [F (y|θ)]. Similarly û is transformed

to r̂ by r̂ = Φ−1(û) = Φ−1
[
F (y|θ̂)

]
and r̂ has an approximate standard normal distribution.

(Note that the normalised quantile residual r is the z-score corresponding to observation y based
on its distribution). If y is an observation from a discrete integer response variable then u is a
random value from the uniform distribution on the interval [u1, u2] = [F (y − 1|θ), F (y|θ)] and

û is a random value from a uniform distribution on [û1, û2] =
[
F (y − 1|θ̂), F (y|θ̂)

]
. The process

is described in Figure 12.2. For a given discrete probability function (top graph), the observed
y value is transformed into an interval (u1, u2) (the shaded strip in middle plot). Then u is
selected randomly from (u1, u2) and is transformed into the (randomised) z-score, r = Φ−1(u),
(see the bottom graph). Hence, r has exactly a standard normal distribution if the model
is correct. Similarly, using the fitted cumulative distribution function, y is transformed to û,
randomly chosen from (û1, û2), and then transformed to r̂ = Φ−1(û) and r̂ has an approximate
standard normal distribution.

The randomisation of quantile residuals is also appropriate for interval or censored response
variables. For example, for a right censored continuous response, û is defined as a random value

from a uniform distribution on the interval
[
F (y|θ̂), 1

]
.

Note that, when randomisation is used, several randomised sets of residuals (or a median set
from them) should be studied before a decision about the adequacy of modelM is taken. Next
codes show how to create the Figures 12.1 and 12.2 that gives a description of how a (normalised
quantile) residual r is obtained for continuous and discrete a distribution, respectively.

The normalised (randomised) quantile residuals can be obtained in the gamlss package using

12.2. NORMALISED (RANDOMISED) QUANTILE RESIDUALS 289

0 5 10 15

0.
00

0.
10

0.
20

Y

f(
Y

) u=F(y)

y

0 5 10 15

0.
0

0.
4

0.
8

Y

F
(Y

)

y

u

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

Z

 Φ
(Z

)

u

r

Figure 12.1: A description of how a (normalised quantile) residual r is obtained for continuous
a distribution. The functions plotted are the model probability density function f(y), the
cumulative distribution function F (y) and cumulative distribution function of a standard normal
random variable Φ(z), using which y is transformed to u and then from u to r. The residual r
is the z-score for the specific observation and has a standard normal distribution if the model
is correct.

290 CHAPTER 12. DIAGNOSTICS

0 5 10 15

0.
02

0.
06

0.
10

Y

f(
Y

)

y

0 5 10 15

0.
0

0.
4

0.
8

Y

F
(Y

)

 u1
 u2 u

 y

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

Z

 Φ
(Z

)

r

u

Figure 12.2: A description of how a (normalised randomised quantile) residual r is obtained for
a discrete distribution. The observed y is transformed to u, a random value between u1 and
u2, then u is transformed to r. The residual r is a z-score for the specific observation and has
a standard normal distribution if the model is correct.

12.3. THE PLOT() FUNCTION 291

the function resid(). There are several other functions in the package using the normalised
(randomised) quantile residuals.

• the function plot() is for general residual checking

• the worm plot function wp() which can be used to identify whether the fitted distribution
is adequate either overall or within non-overlapping ranges of either one or two explanatory
variables,

• the Q statistics function Q.stats for detecting the residuals are “significantly” different
from a normal distribution in their mean, variance, skewness and kurtosis [and more
potentially which distribution parameters of the model failed to fit adequately] in which
ranges of an explanatory variable

• the function rqres.plot() designed for repeated randomisation of the residuals (when
the response variable is not continuous).

All the above functions are explained below.

12.3 The plot() function

The full name of this function is plot.gamlss() but since it is a method function in R () it can
be called using just plot() provided its first argument is a fitted gamlss object. The function
plot() produces four plots for checking the normalised (randomised) quantile residuals defined
in section 12.2 of a fitted gamlss object. Randomisation is performed for discrete and mixed
response variables and also for interval or censored data. The four plots are

• residuals against the fitted values of the µ parameter

• residuals against an index or a specified x-variable

• a kernel density estimate of the residuals

• a QQ-normal plot of the residuals

When randomisation is performed (e.g. in the discrete distribution families) it is advisable to
be used in conjunction with the function rqres.plot described in Section 12.6.

The arguments of the plot.gamlss() function are

x a gamlss fitted object

xvar an explanatory variable to plot the residuals against. By default the index
1:N is plotted, where N is the total number of observations.

parameters this option can be used to change the default parameters in the plotting. The
current default parameters are par(mfrow=c(2,2), mar=par("mar")+ c(0,1,0,0), col.axis = "blue4", col.main = "blue4", col.lab =

"blue4", col = "darkgreen", bg = "beige"). These parameters are
not appropriate, when someone wishes to include the plot into a document.
We have found that the option parameters= par(mfrow = c(2,2), mar = par("mar") + c(0,1,0,0), col.axis = "blue4", col = "blue4",

col.main = "blue4", col.lab = "blue4", pch = "+", cex = .45,

cex.lab = 1.2, cex.axis = 1, cex.main = 1.2) gives reasonable plots
for printed documents.

292 CHAPTER 12. DIAGNOSTICS

ts set this to TRUE if ACF and PACF plots of the residuals are required. This
option is appropriate if the response variable is a time series. The ACF and
PACF then replace the first two of the four plots listed above.

summaries set this to FALSE if no summary statistics of the residuals are required. By
default the function plot.gamlss() produces some summary statistics for the
(normalised randomised quantile) residuals.

Here is an example of how to used the plot function using the abdominal circumference data:

data(abdom)

abd10<-gamlss(y~pb(x),sigma.fo=~pb(x,df=1),data=abdom,family=BCT)

GAMLSS-RS iteration 1: Global Deviance = 4774.464

. . .

GAMLSS-RS iteration 7: Global Deviance = 4773.399

Figure 12.3 plot(abd10)

Summary of the Quantile Residuals

mean = 0.0009096

variance = 1.002

coef. of skewness = -0.008444

coef. of kurtosis = 2.993

Filliben correlation coefficient = 0.9993

50 100 200 300

−3
−2

−1
0

1
2

3

Against Fitted Values

Fitted Values

Qu
an

tile
 R

es
idu

als

0 100 200 300 400 500 600

−3
−2

−1
0

1
2

3

Against index

index

Qu
an

tile
 R

es
idu

als

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Density Estimate

Quantile. Residuals

De
ns

ity

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

R code on

page 292

Figure 12.3: Residual plots from the BCT model abd10

12.3. THE PLOT() FUNCTION 293

The resulting plot is shown in Figure 12.3 Note that the the (normalised quantile) residuals of
this model behave well, e.g. their mean is nearly zero, their variance nearly one, their coefficient
of skewness near zero and their coefficient of kurtosis is near 3. The residuals are approximately
normally distributed as they should be for an adequate model.

Let us now use some of the options. Here we use the option xvar to change the top right hand
plot so the plot shows the residuals against age (abdom$x) instead of the index. Note though
that this makes very little difference in the plot since age is already ordered. Also we change
the plotting parameters values. The plot is shown in Figure 12.4.

Figure 12.4newpar<-par(mfrow=c(2,2), mar=par("mar")+c(0,1,0,0), col.axis="blue4",

col="blue4", col.main="blue4",col.lab="blue4",pch="+",

cex=.45, cex.lab=1.2, cex.axis=1, cex.main=1.2)

plot(abd10,xvar=abdom$x,par=newpar)

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
++

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

++

+

++

+

+

+

+

+

+

+

+

++

+

+

++

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+
++

+

+

+

++

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

++
+

+

+

+

+

+

+
+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+++

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++
+

+
+

+

+

+

+

+

50 100 150 200 250 300 350

−3
−2

−1
0

1
2

3

Against Fitted Values

Fitted Values

Qu
an

tile
 R

es
idu

als

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
++

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

++

+

++

+

+

+

+

+

+

+

+

++

+

+

++

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+
++

+

+

+

++

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

++
+

+

+

+

+

+

+
+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+++

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++
+

+
+

+

+

+

+

+

15 20 25 30 35 40

−3
−2

−1
0

1
2

3

Against abdom$x

abdom$x

Qu
an

tile
 R

es
idu

als

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Density Estimate

Quantile. Residuals

De
ns

ity

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+
++

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

++

+

++

+

+

+

+

+

+

+

+

++

+

+

++

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+
++

+

+

+

++

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

++
+

+

+

+

+

+

+
+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+++

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++
+

+
+

+

+

+

+

+

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

R code on

page 293

Figure 12.4: Residual plots from the BCT model abd10, where the xvar and par options have
been modified

In order to see an application of the option (ts=TRUE) consider the aids data consisting of 45
observations on the following 3 variables:

y the number of quarterly aids cases in England and Wales: a numeric vector

x time in months from January 1983, 1:45 : a numeric vector

qrt the quarterly seasonal effect a factor with 4 levels, [1=Q1 (Jan-March), 2=Q2 (Apr-June),
3=Q3 (July-Sept), 4=Q4 (Oct-Dec)]

294 CHAPTER 12. DIAGNOSTICS

Here we model the counts y using a negative binomial distribution with a (smooth) regression
model in time x with a quarterly effect i.e. cs(x,df=7)+qrt, for the mean of y.

data(aids)

aids.1<-gamlss(y~cs(x,df=7)+qrt,family=NBI, data=aids)

GAMLSS-RS iteration 1: Global Deviance = 365.8129

. . .

GAMLSS-RS iteration 5: Global Deviance = 362.1123

The plot is shown in figure 12.5. It appears from the the ACF and the PACF functions shown
in the top of figure 12.5 that the residuals do not show any systematic autocorrelation (since
most of the values lie within the confidence intervals) therefore there is no further need to model
the data using time series techniques.

Figure 12.5 plot(aids.1,ts=TRUE)

Summary of the Randomised Quantile Residuals

mean = -0.007775

variance = 0.9523

coef. of skewness = -0.6163

coef. of kurtosis = 3.245

Filliben correlation coefficient = 0.9833

5 10 15

−0
.3

−0
.1

0.1
0.2

Lag

AC
F

Series residx

5 10 15

−0
.3

−0
.1

0.1
0.3

Lag

Pa
rtia

l A
CF

Series residx

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4

Density Estimate

Quantile. Residuals

De
ns

ity

−2 −1 0 1 2

−2
−1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

R code on

page 294

Figure 12.5: Residual plots from the NBI model fitted to the aids data

12.4. THE WP() FUNCTION 295

Note that since here we are using a discrete distribution family to model the data the residuals
are randomised and the function rqres.plot should be used in addition to the function plot.

12.4 The wp() function

Worm plots of the residuals were introduced by van Buuren and Fredriks [2001] in order to
identify regions (intervals) of an explanatory variable within which the model does not fit
adequately the data (called ”model violation”). The R function wp (which is based on the
original S-PLUS function given in van Buuren and Fredriks [2001]) provides single or multiple
worm plots for gamlss fitted objects. This is a diagnostic tool for checking the residuals for
different ranges (by default not overlapping) of one or two explanatory variables. The worm
plot is de-trended QQ- plots and the name comes from the worm like appearance of the plotted
points.

single worm plot

If the xvar argument of the wp() function is not specified then a single worm plot is used. The
following is an example of a single worm plot:

abd10<-gamlss(y~pb(x), sigma.fo=~pb(x), data=abdom, family=BCT)

GAMLSS-RS iteration 1: Global Deviance = 4771.925

. . .

GAMLSS-RS iteration 5: Global Deviance = 4770.993

Figure 12.6wp(abd10)

The plot is shown in Figure 12.6. There are several important features in Figure 12.6:

• the (golden) points (or the worm) of the plot: These points show how far the residuals
are from the their expected values represented in the figure by the horizontal dotted (red)
line.

• the point-wise 95% confidence regions given by the two elliptic curves in the middle of
the figure. If the model is correct we would expect approximately 95% of the points to be
between the two elliptic curves and 5% outside. A higher percentage of the points outside
the two elliptic curves indicates that the fitted distribution (or the fitted terms) of the
model are inadequate to explain the response variable.

• the (red) fitted curve to the data: This curve is a cubic fit to the worm plot points. The
shape of this cubic fit reflects different inadequacies in the model. Those are described in
Table 12.1 and illustrated in Figure 12.7.

The important point here is that quadratic and cubic shapes in a worm plot indicate the presence
of skewness and kurtosis respectively in the residuals. As far as Figure 12.7 is concerned since
all the observations fall in the ”acceptance” region inside the two elliptic curves and no specific
shape is detected in the points, the overall model appears to fit well.

296 CHAPTER 12. DIAGNOSTICS

−4 −2 0 2 4

−0
.4

−0
.2

0.0
0.2

0.4

Unit normal quantile

De
via

tion

R code on

page 295

Figure 12.6: Worm plot from the BCT model abd10 at default values

Table 12.1: The different shapes for the worm plot of the residuals (first column) and the
corresponding deficiency in the residuals (second column) and deficiency in the response variable
distribution (third column).

Shape of worm plot Residuals Response variable
(or its fitted curve)
level: above the origin mean too high location parameter too low
level: below the origin mean too low location parameter too high
line: positive slope variance too high scale parameter too low
line: negative slope variance too low scale parameter too high
U-shape positive skewness skewness too low
inverted U-shape negative skewness skewness too high
S-shape with left bent down lepto-kurtosis kurtosis too low
S-shape with left bent up platy-kurtosis kurtosis too high

12.4. THE WP() FUNCTION 297

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(a) resid mean too small

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(b) resid mean too large

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(c) resid variance too high

−4 −2 0 2 4
−0

.4
0.

2

Unit normal quantile

D
ev

ia
tio

n

(d) resid variance too low

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(e) resid negative skewness

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(f) resid positive skewness

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(g) resid lepto−kyrtotic

−4 −2 0 2 4

−0
.4

0.
2

Unit normal quantile

D
ev

ia
tio

n

(h) resid platy−kyrtotic

Figure 12.7: Different type of model failures indicated by the worm plot: i) plots (a) and (b)
indicates failure for fitting correctly the location parameter with points falling below and above
the horizontal (red) dotted line. ii) plots (c) and (d) indicates failure for fitting correctly the
scale parameter. iii) plots (e) and (f) indicate failure for modelling the skewness in the data
correctly and iv) plots (g) and (h) indicate failure for modelling the kurtosis

298 CHAPTER 12. DIAGNOSTICS

multiple worm plot

If the xvar argument of wp() is specified then we have as many worm plots as argument n.iter
indicates. In this case the x-variable is cut into n.iter non-overlapping intervals with equal
numbers of observations and the detrended normal QQ (i.e. worm) plots of the residuals for
each interval are plotted. This is a way of highlighting failures of the model within different
ranges of the explanatory variable. That is important when one of the explanatory variables
is dominant in the analysis (as for example in centile estimation or in time series data). The
parameters of the fitted cubic polynomials to the residuals in the worm plot can be obtained by
e.g. coRes <- wp(model1,xvar=x,n.iner=9) and can be used as a way of checking the region
in which the model does not fit adequately.

In the abdominal circumference example we are interested in whether the model fits well at
the different regions of age. Here we are using the option xvar to specify age and n.inter to
specify 9 intervals with equal number of observations for the worm plots. We are also saving
the coefficient parameters of the fitted cubic polynomials for further diagnostics.

coef.1 <- wp(abd10,xvar=abdom$x,n.inter=9)

coef.1

$classes

[,1] [,2]

[1,] 12.22 16.36

[2,] 16.36 19.50

[3,] 19.50 22.50

[4,] 22.50 25.21

[5,] 25.21 28.36

[6,] 28.36 32.07

[7,] 32.07 35.21

[8,] 35.21 38.78

[9,] 38.78 42.50

##

$coef

[,1] [,2] [,3] [,4]

[1,] 0.043594305 0.043925177 -0.005328564 -0.010167197

[2,] 0.020768938 0.042150024 -0.013714482 -0.009325333

[3,] -0.065344250 0.156093848 0.028205518 -0.067684581

[4,] -0.039820449 -0.059832136 0.028895496 0.029799686

[5,] -0.015744439 -0.013758616 0.011531208 -0.040762801

[6,] 0.009523141 0.027326782 0.045198638 0.006814800

[7,] 0.001338649 -0.077452581 -0.022366387 0.034188200

[8,] 0.014868877 0.005635431 -0.038020639 0.015777066

[9,] 0.024495114 -0.068089549 -0.020443334 0.022093903

Figure 12.8 wp(abd10,xvar=abdom$x,n.inter=9)

number of missing points from plot= 0 out of 68

number of missing points from plot= 0 out of 71

number of missing points from plot= 0 out of 67

number of missing points from plot= 0 out of 67

12.4. THE WP() FUNCTION 299

number of missing points from plot= 0 out of 66

number of missing points from plot= 0 out of 71

number of missing points from plot= 0 out of 65

number of missing points from plot= 0 out of 69

number of missing points from plot= 0 out of 66

−1
.5

−0
.5

0.5
1.5

−3 −2 −1 0 1 2 3

−1
.5

−0
.5

0.5
1.5

−3 −2 −1 0 1 2 3

−1
.5

−0
.5

0.5
1.5

−3 −2 −1 0 1 2 3

Unit normal quantile

De
via

tio
n

15 20 25 30 35 40

Given : xvar

R code on

page 298

Figure 12.8: Worm plot from the BCT model abd10

The resulting plot is shown in Figure ?? while table of intervals ($classes) above gives the 9
non-overlapping x (i.e. age) ranges in weeks. The worm plots are read from the bottom left
corner, along each row in turn to the top right corner corresponding to the nine age intervals
given in the ($classes) and plotted above the worm plots in steps.

The table of coefficients ($coef) gives in each column the fitted constant, linear, quadratic and

cubic coefficients β̂0, β̂1, β̂2 and β̂3 respectively, for each of the nine cubic polynomials fitted
to the nine detrended QQ-plots (for the nine non-overlapping rages of age given by $classes).

van Buuren and Fredriks [2001] categorize absolute values of β̂0, β̂1, β̂2 and β̂3 in excess of
threshold values 0.10, 0.10, 0.05 and 0.03 respectively, as misfits or model violations, indicating
differences between the theoretical model residuals and the empirical mean, variance, skewness
and kurtosis of the residuals respectively, within the particular age range (of the corresponding

QQ-plot). Following these criteria in the above Table of coefficients, there are no misfits in β̂1,

one misfit 0.15609 in β̂2, age group 3, no misfits in β̂3, and three misfits in β̂4 at 3rd, 5th and
7th range of age. [The number of misfits here may be due to the relative small sample size (610)
for the abdominal data, relative to the sample sizes used by van Buuren and Fredriks [2001]

leading to greater variance in the fitted parameters especially β̂4 than they experienced.]

300 CHAPTER 12. DIAGNOSTICS

The arguments of the wp function

For completeness we provide here all the arguments of the wp() function:

object a gamlss fitted object or any other fitted model where the resid() method
works (preferably it should produce quantile residuals)

xvar the explanatory variable(s) against which the worm plots will be plotted. If
only one variable is involved use xvar=x1 if two variables are involved use
xvar=∼x1*x2. Factor can be used in the formula but not on their own, i.e.
xvar=∼f1 is allowed but not xvar=f1.

resid if object is missing this argument can be used to specify the residual vector
(again it should be quantile residuals or it be assumed to come from a standard
normal distribution)

n.inter the number of intervals in which the explanatory variable xvar will be cut

xcut.points the x-axis cut-off points e.g. c(20,30). If xcut.points=NULL then the
n.inter argument is activated

overlap how much overlapping in the xvar intervals. Default value is overlap=0 for
non overlapping intervals

xlim.all for a single worm plot this value is the x-variable limit, default is xlim.all=4

xlim.worm for multiple worm plots this value is the x-variable limit, default is xlim.worm=3.5

show.given whether to show the x-variable intervals in the top of the graph, default is
show.given=TRUE

line whether to plot the fitted cubic polynomial curve in each worm plot, default
value is line=TRUE

ylim.all for a single plot this value is the y-variable limit, default value is
ylim.all=12*sqrt(1/length(fitted(object)))

ylim.worm for multiple plots this value is the y-variable limit, default value is
ylim.worm=12*sqrt(n.inter/length(fitted(object)))

cex the cex plotting parameter with default cex=1

pch the pch plotting parameter with default pch=21

12.5 the Q.stats() function

This function calculates and prints the Q-statistics which are useful to test normality of the
residuals within ranges of an independent x-variable, for example age in centile estimation, see
Royston and Wright [2000].

In order to explain what is a Q-statistic let us consider the situation where age is our main
explanatory variable. Let G be the number of age groups and let {rgi, i = 1, 2, .., ni} be the
residuals in age group g, with mean r̄g and standard deviation sg, for g = 1, 2, .., G. The
following statistics Zg1,Zg2,Zg3,Zg4 are calculated from the residuals in group g to test whether

12.5. THE Q.STATS() FUNCTION 301

the residuals in group g have population mean 0, variance 1, skewness 0 and kurtosis 3, (the
values of standard normal distribution of the residuals assuming the model is correct), where

Zg1 = n1/2g r̄g

,

Zg2 =
{
s2/3g − [1− 2/(9ng − 9)]

}
/ {2/(9ng − 9)}1/2

and Zg3 and Zg4 are test statistics for skewness and kurtosis given by D’Agostino et al. (1990), in
their equations (13) and (19) respectively. The Agostino k2 statistic, given by k2q = Z2

g3 +Z2
g4,

is a statistic for jointly testing whether he skewness of the residuals is different from 0 and the
kurtosis is different from 3.

The Q statistics of Royston and Wright [2000] are then calculated by

Qj =

G∑
g=1

Z2
gj

for j = 1, 2, 3, 4. Royston and Wright discuss approximate distributions for the Q statistics
under the null hypothesis that the true residuals are normally distributed (although their sim-
ulation study was mainly for normal error models) and suggest Chi-squared distributions with
adjusted degrees of freedom G−dfµ, G− [dfσ+1]/2 and G−dfν for Q1, Q2 and Q3 respectively.
By analogy we suggest degrees of freedom G − dfτ for Q4. The resulting significance levels
should be regarded as providing a guide to model inadequacy, rather than exact formal test
results.

Significant Q1, Q2, Q3 or Q4 statistics indicate possible inadequacies in the models for parame-
ters µ, σ, ν and τ respectively, which may be overcome by increasing the degrees of freedom in
the model for the particular parameter.

The Zgj statistic when squared provides the contribution from age group g to the statistic Qj ,
and hence helps identify which age groups are causing the Qj statistic to be significant and
therefore in which age groups the model is unacceptable.

Provided the number of groups G is sufficiently large relative to the degrees of freedom ad-
justment for the parameter, then the Zgj values should have approximately standard normal
distributions under the null hypothesis that the true residuals are standard normally distributed.
We suggest as a rough guide values of |Zgj | greater than 2 be considered as indicative of sig-
nificant inadequacies in the model. Note that significant positive (or negative) values Zgj > 2
(or Zgj < 2) for g = 1, 2, 3 or 4 indicate respectively that the residuals have a higher (or lower)
mean, variance, skewness or kurtosis than the null standard normal distribution. The model for
parameter µ, σ, ν or τ may need more degrees of freedom to overcome this. For example if the
residual mean in an age group is too high, the model for µ may need more degrees of freedom
in order for the fitted µ from the model to increase within the age group. Note the Agostino
k2 statistic k2q should be compared to the 5% value of a chi-square distribution with 2 degrees
of freedom i.e. 6.0.

The following output is produced using the function Q.stats in the abd10 model fitted in the
previous section.

302 CHAPTER 12. DIAGNOSTICS

example

The following output is produced using the function Q.stats in the abd10 model fitted in the
previous Section.

Figure 12.9 qstats<-Q.stats(abd10,xvar=abdom$x,n.inter=9)

print(qstats, digits=3)

Z1 Z2 Z3 Z4 AgostinoK2 N

12.22 to 16.36 0.3164 0.1858 -0.0621 -0.2573 0.0701 68

16.36 to 19.50 0.0615 0.1837 -0.2403 -0.3440 0.1761 71

19.50 to 22.50 -0.3083 -0.2341 0.4754 -2.4603 6.2789 67

22.50 to 25.21 -0.0939 0.2972 0.7637 1.2636 2.1798 67

25.21 to 28.36 -0.0360 -1.4162 0.2148 -1.6872 2.8928 66

28.36 to 32.07 0.4543 0.5490 0.8652 0.3267 0.8553 71

32.07 to 35.21 -0.1660 0.1988 -0.5205 0.9768 1.2250 65

35.21 to 38.78 -0.1865 0.5799 -0.8696 0.6295 1.1525 69

38.78 to 42.50 0.0361 -0.0294 -0.7508 1.2268 2.0687 66

TOTAL Q stats 0.4791 2.8952 3.2564 13.6428 16.8992 610

df for Q stats 3.1434 6.5475 8.0000 8.0000 16.0000 0

p-val for Q stats 0.9346 0.8654 0.9173 0.0916 0.3922 0

The resulting plot of the Z-statistics is shown in Figure 12.9 where a misfit in the kurtosis
statistic Z4 at the range 22.5 to 25.21 is easily identified, as it is in the Q.stats() output.
However in a table of 36 Z-statistics we would expect 2 to be significant at the 5% level by
chance.

The original Q.stats() function was design for checking centile curve fitting, where a large
number of data points are expected. The current version is more flexible allowing the input
of residuals for models other than GAMLSS (suitable standardised) and also for smaller data
sets. This happens with the use of the argument resid rather than obj. Here is an example of
using Q.stats() with small data set of aids.

Figure 12.10 a1<-gamlss(y~pb(x)+qrt, family=PO, data=aids, trace=FALSE)

Q.stats(resid=resid(a1), xvar=aids$x, n.inter=5)

Z1 Z2 Z3 Z4

0.5 to 9.5 0.26450 0.06712 -0.3188 -0.3402

9.5 to 18.5 -0.78511 0.30456 -0.4153 0.4598

18.5 to 27.5 -0.03934 0.83266 0.4262 -0.3823

27.5 to 36.5 0.22068 4.53123 -1.1096 -0.1319

36.5 to 45.5 -0.29971 0.74274 -1.4141 0.7248

The graphical presentation of the Z-statistics is shown in figure 12.10 where a misfit in the
standard deviation in the interval 27.5 to 36.5 can be identified.

the arguments of the Q.stats function

The Q.stats function has the following arguments

obj a gamlss object

12.5. THE Q.STATS() FUNCTION 303

12.22 to 16.36

16.36 to 19.50

19.50 to 22.50

22.50 to 25.21

25.21 to 28.36

28.36 to 32.07

32.07 to 35.21

35.21 to 38.78

38.78 to 42.50

Z1 Z2 Z3 Z4

Z−Statistics

R code on

page 302

Figure 12.9: A visual presentation of the the Z statistics for the abdom model for easy identifi-
cation of misfits in the data

304 CHAPTER 12. DIAGNOSTICS

 0.5 to 9.5

 9.5 to 18.5

18.5 to 27.5

27.5 to 36.5

36.5 to 45.5

Z1 Z2 Z3 Z4

Z−Statistics

R code on

page 302

Figure 12.10: A visual presentation of the Z statistics for the aids model

xvar the explanatory variable against which the Q statistics will be calculated

resid quantile or standardised residuals can be given here instead of an gamlss

object in obj. Note that the function Q.stats behaves differently depending
whether the obj or the resid argument is set. The obj argument produces the
Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore
it expect a reasonable large number of observations). The argument resid

allows any model residuals, (not necessary GAMLSS), suitable standardised
and is appropriate for any size of data. The resulting table contains only the
individuals Z-statistics.

xcut.points the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the
n.inter argument is activated

n.inter the number of intervals in which the explanatory variable xvar will be cut

zvals if TRUE the output matrix contains the individual Z statistics rather than the
Q statistics

save whether to save the Q (or Z) statistics or not with default equal to TRUE. In
this case the functions produce a matrix giving individual Q (or Z) statistics
and the final aggregate Q’s

plot whether to plot a visual version of the Q statistics (default is TRUE)

12.6. THE RQRES.PLOT() FUNCTION 305

12.6 the rqres.plot() function

The function rqres.plot() is used to create different realisations of the normalised randomised
quantile residuals [defined in Section 12.2] when the distribution of the response variable is
discrete and plot then using worm plots or QQ-plots. Since randomisation is involved in discrete
distributions the function rqres.plot() helps visually to decide whether the chosen distribution
(and fitted terms) are an adequate represention of the data of not.

example

As an example we used the function rqres.plot() to plot residuals from a fitted model using
the AIDS data:

m1 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI, trace=FALSE)

Figure 12.11rqres.plot(m1)

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

−4 −2 0 2 4

−1.
5

0.0
1.0

Unit normal quantile

De
via

tion

R code on

page 305

Figure 12.11: Residual plots from the NBI model fitted to the aids data

The resulting plot is shown in figure ??. Figure ?? shows six realisation of the worm plots
from the randomised quantile residuals from the fitted model m1 and in all six occasions
the worms plots shown reasonable behaviour. For using QQ-plots instead of worm plots use
rqres.plot(m1, type="QQ").

We now try 40 realisation of the residuals and plot a QQ-plot of the mean of these realisations.
The plot is shown in Figure ??. Again the residuals appears to be reasonable. Hence the models
seams adequate.

Figure 12.12rqres.plot(m1, howmany=40,type="QQ",plot="average")

306 CHAPTER 12. DIAGNOSTICS

−2 −1 0 1 2

−2
−1

0
1

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le Q
uan

tile
s

R code on

page 305

Figure 12.12: Residual plots from the NBI model fitted to the aids data

The arguments of the rqres.plot() function

It takes the following arguments.

obj an gamss fitted model object from a discrete family

howmany the number of worm or QQ-plots required up to ten, with default howmany=6

plot whether to plot all plots, i.e. all the residual realisations "all" or just the
mean "average"

type whether to plot worm plots "wp"or QQ plots "QQ" with default worm plots

Part VI

Applications

307

Chapter 13

Centile Estimation

This chapter explains how to create growth curves using gamlss. In particularly it explains:

1. The LMS methods of centile estimation

2. The different functions for centile estimation within gamlss

3. How to use the functions effectively

This chapter is important for practitioners involved in centile estimation since GAMLSS
has become one of the standard tools for creating centile growth curves.

13.1 Introduction

Centile estimation includes methods for estimating the age-related distribution of human growth.
The standard estimation of centile curves usually involves two continuous variables:

1. the response variable, that is, the variable we are interested in and for which we are trying
to find the centile curves, e.g. weight, BMI, head circumference etc.

2. the explanatory variable age.

The 100p centile of a random variable Y is the value yp such that p(Y ≤ yp) = p, i.e. yp =
F−1Y (p) so yp is the inverse cumulative distribution function of Y (the q function in R) applied
to p.

In this Chapter we consider the conditional centile of Y given explanatory variable X = x, i.e.
yp(x) = F−1Y |X=x(p). By varying x a 100p centile curve of yp(x) against x is obtained. Centile

curves can be obtained for different values of p. The World Health Organization uses the values
100p=(3,15,50,85,97) in its charts and 100p=(1,3,5,15,25,50,75,85,95,97,99) in its tables, see
WHO [2006, 2007, 2009].

Centile estimation can be extended to more than one explanatory continuous variables e.g. age
and height, see for example Cole et al. [2009] and Quanjer et al. [2012]. For categorical variables
like gender the usual practice is to produce two separate charts against age.

309

310 CHAPTER 13. CENTILE ESTIMATION

Note that a z-score given the values of y and x is defined by zp = Φ−1
[
FY |X=x(y)

]
, where Φ−1

is the inverse cumulative distribution function of a standard normal variable. For the values of
y and x used in the estimation of the model the z-scores are the residuals of a fitted GAMLSS
models see the definition of quantile residuals in Section 12.2 of Chapter 12.

The creation of sensible centile curves against age relies on non-parametric smoothing methods
since parametric methods, e.g. polynomials or even fractional polynomials (Royston and Altman
[1994]), are not in general flexible enough to encapsulate the features of the growth curve data.
In smoothing methods the amount of smoothing depends on smoothing parameters and varies
from data to data. The determination of the smoothing parameters is a crucial component of
centile estimation. In the past several methods have been suggested which can be classified as:

1. Subjective (but structured) methods: The statistician (or practitioner) in this case uses
his prior knowledge and experience in conjunction with some broad guidelines to choose
the smoothing parameters and create the centile curves. For example first obtain a good
smooth model for the location parameter then for the scale parameter and finally for the
shape parameter(s) is one possible structured method. Erratic centile curves may indicate
the need to increase the smoothing parameters.

2. Automatic methods: In a automatic procedure a criterion like for example the Akaike
information criterion (AIC), or generalizations of it, can be used to select the smoothing
parameters, Akaike [1973].

3. Methods based on diagnostics: In this case diagnostic tools like the worm plots of van
Buuren and Fredriks [2001] or Royston and Wright [2000] can be used to determine the
amount of smoothing. Poor worm plots or Q statistics may indicate the need to decrease
the smoothing parameters, see for example Rigby and Stasinopoulos [2006b].

In reality a combination of all those procedures is a good practice.

The methodology for creating growth centile references for individuals from a population com-
prises two different methods:

i) the non parametric method of quantile regression (Koenker [2005]; Koenker and Bassett
[1978], Koenker and Ng [2005] , He and Ng [1999] and Np and M. [2007])

ii) the parametric LMS (i.e. Lambda, Mu and Sigma) method of Cole [1988], Cole and Green
[1992] and its extensions for example see Wright and Royston [1997], van Buuren and
Fredriks [2001], and Rigby and Stasinopoulos [2004, 2006a].

In the next two section we describe the two approaches.

13.2 Quantile regression

Standard quantile regression methods estimate each quantile (i.e. centile) separately. He and
Ng [1999] and Np and M. [2007] use smooth quantile curves using B-splines with a smoothness
penalty. They developed the COBS and quantreg packages in R, respectively.

The following are features associated with quantile regression modelling:

• The quantile regression model does not assume a distribution for the response variable,
therefore it is flexible and also in general reduces the bias caused by assuming a (possibly

13.3. THE LMS METHOD AND EXTENSIONS 311

wrong) distribution. This of course comes with a possible increase in the variability of
the quantile curves (the usual bias against variance balance).

• The quantile curves near the extremes vary more than the ones in centre of the distri-
bution of y and this is due to fact that those curves are supported by less observations.
van Buuren [2007] commented that “curves produced by the quantile model are irregular
near the extremes, and are generally less aesthetically pleasing” than the ones produced
by parametric methods. This is more obvious by using the (COBS) and quantreg pack-
ages since each quantile curve is fitted separately. Quantile sheets, Schnabel and Eilers
[2013a,b], do not suffer from this problem, since the estimation of the quantiles is done
simultaneously. A function to fit quantile sheets, quantSheets(), is available in gamlss

and it will be demonstrated in Section 13.11.

• A possible problem with quantile regression is that different quantile curves yp(x) for
different values of p may cross (implying negative probability). There are several papers
using quantile regression as a method to fit centile curves jointly, in order to overcome
the problem, see for example Gannoun, A., Girard, S., Cuinot, C., and J [2002]; He
[1997]; Heagerty and Pepe [1999]; LR and EJ [2005]; Wei et al. [2006]). However they
result in restrictions on the quantile curves reducing their flexibility and therefore possibly
increasing their bias.

• The quantile regression model does not allow for interpolation between quantile curves
(for different p’s) nor extrapolations beyond the outer centile curves which is desirable for
tracking children with extreme growth.

• The fitted quantile regression model do not have a overall measure of fit, like GAIC, and
this creates difficulties comparing competitive models.

• It is difficult to define the residuals of a fitted quantile regression model. Within gamlss

and for a fitted quantSheets object this is achieved using an approximation. This ap-
proximation involves the function flexDist() which allows the user to reconstruct a
distribution given the quantiles (and/or the expectiles).

• The fitted quantile regression model lacks an explicit formula allowing the calculation
of quantile yp(x) given p and x, or the z-score given y and x. This was one of the
requirements set by a World Health Organisation expert committee (Borghi et al. [2006])
for the adoption of a method for the construction of the world standard curves. This
problem is related to the previous one and it is solved within the gamlss package using
the function flexDist().

13.3 The LMS method and extensions

The LMS method was developed by Cole [1988] and Cole and Green [1992] for fitting a single
explanatory variable (age) to a response variable in order to create centile curves. Because the
LMS method assumes that the y variable has a specific distribution, centile (quantile) curves
for all p can be obtained and do not cross each other. Calculation of the quantile yp(x), given
p and x, or the z-score, given y and x, are available for the LMS models.

The LMS method can be fitted within the gamlss() by assuming that the response variable
has a Box-Cox Cole and Green distribution (BCCG) . The BCCG distribution is suitable for

312 CHAPTER 13. CENTILE ESTIMATION

positively or negatively skew data with Y > 0 and it is defined as follows:

Let the positive random variable Y > 0 be defined through the transformed random variable Z
given by

Z =
1

σν

[(
Y

µ

)ν
− 1

]
, if ν 6= 0

=
1

σ
log

(
Y

µ

)
, if ν = 0 (13.1)

for 0 < Y < ∞, where µ > 0, σ > 0 and −∞ < ν < ∞, and where the random variable Z
is assumed to follow a (truncated) standard normal distribution. The condition 0 < Y < ∞
(required for Y ν to be real for all ν) leads to the condition −1/(σν) < Z < ∞ if ν > 0 and
−∞ < Z < −∞/(σν) if ν < 0, which necessitates the truncated standard normal distribution
for Z.

Rigby and Stasinopoulos [2004, 2006a] extended the LMS method (which models for skewness
and but not for kurtosis in the data), by introducing the Box-Cox power exponential (BCPE)
and the Box-Cox t (BCT) distributions and called the resulting methods LMSP and LMST
respectively. The BCPE assumes that the transformed random variable Z has a (truncated)
exponential power distribution, while BCT assumes that Z has a (truncated) t distribution.
All these models are part of the GAMLSS framework, Rigby and Stasinopoulos [2005].

In the case of centile estimation for Y given an explanatory variable, e.g. age, the GAMLSS
model is

Y ∼ D(µ, σ, ν, τ)

g1(µ) = h1(x)

g2(σ) = h2(x)

g3(ν) = h3(x)

g4(µ) = h4(x)

x = ageξ (13.2)

where the distribution D typically represents the BCCG, BCPE or BCT distributions, for which
µ, σ, ν, and τ represent:

• the median,

• approximate coefficient of variation,

• skewness and

• kurtosis

parameters of the distribution respectively. Note that BCCG does not have τ . The g() functions
represent appropriate link functions, the h() are non-parametric smoothing functions and ξ is
a power transformation of age.

The power transformation, for age , ξ, is usually needed when the response variable has an early
or late spell of fast growth. In those cases the transformation of age can stretch the time scale
making the smooth curve fitting easier.

Each link function, g(), is usually chosen to ensure that the parameters are defined appropriately.
For example a log() link function ensures that the parameter in question remains positive. Note

13.3. THE LMS METHOD AND EXTENSIONS 313

however, that the original formulation of the LMS method introduced by Cole and Green [1992]
uses identity link for all the parameters of BCCG. Also for historical reason the first formulation
of the BCCG, BCPE and BCT distributions has identity link function sfor µ as a default, even
though µ should be always positive. The distributions BCCGo, BCPEo and BCTo all have a
log link as a default for µ.

The non-parametric smoothing functions h() usually require the specification of a smoothing pa-
rameter λ or the equivalent degrees of freedom to be used, see for example Hastie and Tibshirani
[1990] and Wood [2006]. Next we describe the methods used within gamlss.

13.3.1 Model selection procedures for the LMS method

The selection of the the link functions gk(.), for k = 1, 2, 3, 4 usually does not create a problem.
Log link functions are preferable for σ and τ (to ensure σ > 0 and τ > 0). The identity link
function is appropriate for ν since −∞ < ν < ∞. For µ the safe option is to use the “log”
link by using the BCCGo, BCPEo and BCTo distributions, but for most cases the identity link
works (distributions BCCG, BCPE and BCT). [The preferred link function is the one for which
the fitted model has the smaller value of GAIC(K) for a particular penalty k (e.g. k = 3).]

Given the link functions, the model specification comprises now finding the (effective) degrees
of freedom for the smooth non-parametric terms hk(x) for k = 1, 2, 3, 4 , denoted dfµ, dfσ, dfν
and dfτ respectively, and ξ in the transformation for age, x = ageξ. That is, we have to select
the five ’hyperparameters’ (dfµ, dfσ, dfν ,dfτ , and ξ).

Over the years different procedures have been considered by the authors. Here we explain three
of procedures used for choosing the hyperparameters. Table 11.1 from Chapter ?? shows where
information about the different methods can be obtained.

Method 1: This method is minimising the GAIC(k) over the five hyperparameters (dfµ,
dfσ, dfν ,dfτ ,ξ). Rigby and Stasinopoulos [2006a] used as an automatic procedure, the
function find.hyper() which is based on the numerical optimisation function optim()

in R, to minimise the generalised Akaike information criterion GAIC(k), over the five
hyperparameters, the four total (effective) degrees of freedom dfµ, dfσ, dfν , dfτ and the
power transformation parameters ξ. They used the BCT distribution model (13.2) and
different values of the penalty k including AIC (k = 2) and SBC (k = log(n)). They have
found that the value k = 3 was a good compromise between the two well known criteria
and produced good looking growth curves.

Method 2: This method minimizes the Validation Global Deviance (VGD) over the five hy-
perparameters, Stasinopoulos and Rigby [2007]. In this procedure the data were split
randomly into 60% training and 40% validation data sets. For each specific set of hy-
perparameters, model (13.2) was fitted to the training data and the resulting validation

global deviance V GD = −2l̂v, where l̂v is the log likelihood of the validation data given
the fitted training data model (13.2), was calculated. V GD was then minimised over the
five hyperparameters using the numerical optimisation function optim().

Method 3: This method has two steps. In first step , if transformation on the x-axis is needed,
them for then for the simple model g(µ) = s(xξ) the GAIC(k) is minimised over ξ . Given
the estimated ξ, the second step involves the estimation of the four degrees of freedom
hyperparameters (dfµ, dfσ, dfν ,dfτ) using a local ML procedure, Rigby and Stasinopoulos

314 CHAPTER 13. CENTILE ESTIMATION

[2013]. This is the three fastest method and results to nmodels with similar centiles to
the two previous ones.

Next we are consider an example.

13.4 The Dutch boys BMI data

For the next sections of this Chapter we will use data from the Fourth Dutch Growth Study,
Fredriks, A.M., van Buuren, S., Burgmeijer, R.J.F., Meulmeester, J.F., Beuker, R.J., Brugman,
E., Roede, M.J., Verloove-Vanhorick, S.P. and Wit [2000], Fredriks, A.M., van Buuren, S., Wit,
J.M. and Verloove-Vanhorick [2000] which is a cross-sectional study that measures growth and
development of the Dutch population between the ages 0 and 21 years. The study measured,
among other variables, height, weight, head circumference and age for 7482 males and 7018
females. The data were kindly provided by Professor Stef. van Buuren.

Here we have only the BMI, (y), and age, x, of Dutch boys as explanatory variable and we
are interested also in a transformation of age x = ageξ. Cases with missing values have been
removed. There are 7040 observations. The data are plotted in Figure 13.1.

Figure 13.1 library(gamlss)

data(dbbmi)

plot(bmi~age, data=dbbmi, pch = 15, cex = 0.5, col = gray(0.5))

0 5 10 15 20

15
20

25
30

35

age

bm
i

Figure 13.1: BMI against the age of the Dutch boys data

13.5. THE LMS() FUNCTION 315

13.5 The lms() function

The function lms() is designed to facilitate the automatic selection of an appropriate LMS
method model for the construction of growth curves. In particular i) the determination of
the distribution of the response variable, ii) the appropriate degrees of freedom for all the
parameters of the distribution and iii) the power parameter ξ. This avoid a global GAMLSS
modelling selection. Note though that lms() is applicable with “one” explanatory variable only.
The function lms() has the following arguments:

y The response variable

x The unique explanatory variable, usually age

families a list of gamlss.families with default LMS=c("BCCGo", "BCPEo", "BCTo").
Note that this list is appropriate for positive response variables.

data the data frame

k the penalty to be used in the GAIC, with default value k = 2

cent a vector with elements the % centile values for which the centile curves have
to be evaluated

calibration whether calibration is required with default TRUE, (see Section 13.7.2)

trans.x whether to check for transformation in x with default FALSE

lim.trans the limits for the search of the power parameter for x

legend whether a legend is required in the plot with default FALSE

mu.df mu effective degrees of freedom if required, otherwise it is estimated

sigma.df sigma effective degrees of freedom if required, otherwise it is estimated

nu.df nu effective degrees of freedom if required, otherwise it is estimated

tau.df tau effective degrees of freedom if required, otherwise it is estimated

method.pb the method used in the pb() for local estimation of the smoothing parameters.
The default is local maximum likelihood "ML". "GAIC" is also permitted where

k is taken from the k argument of the function.

... extra arguments which can be passed to gamlss

An example of using the lms() function is given below. To show the usage of the functions we
have taken a sample of 1000 observations from the original 7040 observations of dbbmi data for
speed. The sample data are plotted in Figure 13.2.

Figure 13.2set.seed(2803)

IND<-sample.int(7040, 1000, replace=FALSE)

dbbmi1 <- dbbmi[IND,]

plot(bmi~age, data=dbbmi1, pch = 15, cex = 0.5, col = gray(0.5))

The BMI data of Figure 13.1 and 13.2 show a fast growth in BMI for children during the first
year from birth indicating that a power transformation for age could be appropriate for this
data. Therefore the argument trans.x = TRUE if the function lms() is used.

316 CHAPTER 13. CENTILE ESTIMATION

0 5 10 15 20

15
20

25
30

age

bm
i

Figure 13.2: Sample of BMI against the age of the Dutch boys data

m0 <- lms(bmi,age, data=dbbmi1, trans.x=T, k=2)

*** Checking for transformation for x ***

*** power parameters 0.02764176 ***

*** Initial fit***

GAMLSS-RS iteration 1: Global Deviance = 4261.962

. . .

GAMLSS-RS iteration 9: Global Deviance = 3940.004

GAMLSS-RS iteration 10: Global Deviance = 3940.005

% of cases below 0.5229901 centile is 0.4

% of cases below 1.89542 centile is 2.3

% of cases below 8.695653 centile is 9.2

% of cases below 25.72263 centile is 25.3

% of cases below 50.09397 centile is 50

% of cases below 74.93388 centile is 74.7

% of cases below 90.72126 centile is 90.8

% of cases below 97.86072 centile is 97.7

% of cases below 99.40448 centile is 99.6

m0$family

[1] "BCCGo" "Box-Cox-Cole-Green-orig."

The transformation chosen for age is x = age0.028 and the best distribution according to GAIC
was BCCGo. Note however that if all the 7294 observations were included in the fit using say

13.5. THE LMS() FUNCTION 317

lms(bmi,age, data=dbbmi, trans.x=TRUE)

the power transformation parameter would have been x = age0.436 and the final distribution
BCTo not BCCGo.

Checking the fitted model using residual diagnostics is very important for the creation of growth
curves. The worm plots, wp() and the Q-statistics, described in Chapter 12, are two of those
methods :

Figure 13.3
round(Q.stats(m0, xvar=dbbmi1$age),3)

Z1 Z2 Z3 Z4 AgostinoK2 N

0.055 to 0.265 -0.732 -0.298 -0.060 0.608 0.373 92

0.265 to 0.875 -0.322 0.224 -0.939 -0.687 1.354 152

0.875 to 1.625 -0.067 0.362 -1.199 -0.356 1.565 205

1.625 to 3.035 0.465 -0.564 -0.771 0.342 0.711 248

3.035 to 7.435 0.645 -0.117 -0.363 0.530 0.413 279

7.435 to 9.965 0.112 -0.568 -0.158 0.589 0.372 287

9.965 to 11.415 0.620 0.179 1.157 0.289 1.423 292

11.415 to 13.095 0.461 0.026 0.459 0.282 0.291 281

13.095 to 14.425 0.975 -0.514 -0.312 0.302 0.189 251

14.425 to 15.865 0.827 -0.587 -0.601 -0.046 0.363 208

15.865 to 17.715 0.708 -0.448 0.092 -0.747 0.567 157

17.715 to 19.645 0.063 0.302 -0.031 -1.143 1.308 83

TOTAL Q stats 4.024 1.858 5.093 3.835 8.928 2535

df for Q stats 2.020 9.430 6.148 12.000 18.148 0

p-val for Q stats 0.136 0.996 0.550 0.986 0.964 0

The plot is given in Figure 13.3 indicates that the Q-statistics seems reasonable for all the
parameters of the model.

Now we are checking the worm plots.
Figure 13.4

wp(m0, xvar=dbbmi1$age, n.inter=9)

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 110

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 110

number of missing points from plot= 0 out of 111

The plot given in Figure 13.4 shows that the residuals look good for all 9 intervals of age,
indicating that the model is adequate.

318 CHAPTER 13. CENTILE ESTIMATION

 0.055 to 0.265

 0.265 to 0.875

 0.875 to 1.625

 1.625 to 3.035

 3.035 to 7.435

 7.435 to 9.965

 9.965 to 11.415

11.415 to 13.095

13.095 to 14.425

14.425 to 15.865

15.865 to 17.715

17.715 to 19.645

Z1 Z2 Z3 Z4

Z−Statistics

R code on

page 317

Figure 13.3: A plot of Q-statistics for the fitted lms object m0

13.5. THE LMS() FUNCTION 319

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

Unit normal quantile

D
ev

ia
tio

n

0 5 10 15

Given : xvar

R code on

page 317

Figure 13.4: A worm plot for the fitted lms object mo

320 CHAPTER 13. CENTILE ESTIMATION

13.6 Plotting fitted values against the x variable using
fittedPlot()

The function fittedPlot() provides a convenient way of plotting the fitted µ, σ, ν and τ if
the fitted model involves only one explanatory variable say x. Therefore it can be used after
the lms() function.

Figure 13.5
fittedPlot(m0 ,x=dbbmi1$age)

The plot is given in Figure 13.5.

0 5 10 15 20

14
16

18
20

22

(a)

dbbmi1$age

m
u

0 5 10 15 20

0.
07

0.
09

0.
11

0.
13

(b)

dbbmi1$age

sig
m

a

0 5 10 15 20

−2
−1

0
1

2

(c)

dbbmi1$age

nu

R code on

page 320

Figure 13.5: The fitted values for all four parameters against age, from a Box-Cox Colen Green
(BCCGo) distribution fitted using the BMI data, i.e. fitted values of (a) µ (b) σ and (c) ν

The fittedPlot() function has the following arguments

object a fitted gamlss model object (with only one explanatory variable)

... optionally more fitted gamlss model objects

x the unique explanatory variable

13.7. PLOTTING CENTILES CURVES USING CENTILES() AND CALIBRATION() 321

color whether the fitted lines in the plot are shown in colour, ‘color=TRUE’ (the
default) or not ‘color=FALSE’

line.type whether the line type should be different or not. The default is color=FALSE

xlab the x-label

The fitted values of more that one model can also be plotted together using fittedPlot. For
example here we compare model m0 with model m1 which is fitted using the BCPEo distribution
and pb() with fixed smoothing degrees of freedom df for each parameter predictor.

Tage=(dbbmi1$age)^(m0$power)

m1 <- gamlss(bmi~pb(Tage), sigma.formula=~pb(Tage),

nu.formula=~pb(Tage), tau.fomula=~pb(Tage), family=BCPEo,

data=dbbmi1)

GAMLSS-RS iteration 1: Global Deviance = 3979.317

. . .

GAMLSS-RS iteration 7: Global Deviance = 3953.243

Figure 13.6fittedPlot(m1,m0, x=dbbmi1$age, line.type=c(1,2))

The plot is given in figure 13.6. Note that the fitted values for τ for the BCPEo are flat
indicating a constant model.

13.7 Plotting centiles curves using centiles() and calibration()

Centile plots are currently provided for all the continuous distributions in Table ??.

There are three functions for plotting centiles i) the centiles, ii) centiles.fan and ii) the
centiles.split which are described in sub-sections 13.7.1 and 13.8 respectively

13.7.1 The function centiles()

For a simple use try centiles(), see Figure 13.7(a) for the plot. Note that the function
calibration() automatically prints the sample percentage of observations below each of the
fitted centiles from the fitted model, so comparisons with nominal model %’s can be made. In
figure 13.7 (b) The sample % are close to the nominal model %’s.

Figure 13.7
op <- par(mfrow=c(2,1))

centiles(m0,dbbmi1$age, main="(a)", legend=FALSE)

% of cases below 0.4 centile is 0.3

% of cases below 2 centile is 2.5

% of cases below 10 centile is 10.6

% of cases below 25 centile is 24.5

% of cases below 50 centile is 49.9

% of cases below 75 centile is 74.8

% of cases below 90 centile is 89.8

% of cases below 98 centile is 97.8

322 CHAPTER 13. CENTILE ESTIMATION

0 5 10 15 20

14
16

18
20

22

(a)

dbbmi1$age

m
u

0 5 10 15 20

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

(b)

dbbmi1$age

si
gm

a

0 5 10 15 20

−2
−1

0
1

2

(c)

dbbmi1$age

nu

0 5 10 15 20

1.
5

2.
0

2.
5

(d)

dbbmi1$age

ta
u

R code on

page 321

Figure 13.6: Comparing the fitted values for all parameters against the transformed age, for
models the BBCGo model m0, solid line, and the BCPEo model m1, dash line: (a) µ (b) σ (c)
ν (d) τ

13.7. PLOTTING CENTILES CURVES USING CENTILES() AND CALIBRATION() 323

% of cases below 99.6 centile is 99.9

calibration(m0,dbbmi1$age, main="(b)")

% of cases below 0.5229901 centile is 0.4

% of cases below 1.89542 centile is 2.3

% of cases below 8.695653 centile is 9.2

% of cases below 25.72263 centile is 25.3

% of cases below 50.09397 centile is 50

% of cases below 74.93388 centile is 74.7

% of cases below 90.72126 centile is 90.8

% of cases below 97.86072 centile is 97.7

% of cases below 99.40448 centile is 99.6

par(op)

The following are the arguments of the function centiles

obj a fitted gamlss object

xvar the unique explanatory variable for which we would like the fitted model
centiles to be calculated

cent a vector with elements the % centile values for which the fitted model centile
curves have to be evaluated. e.g. if you wish % centiles at points 5% and 95%
only, use cent= c(5, 95)

legend whether a legend is required within the plot or not, the default is legend=TRUE.
This legend identifies the different centile curves and it is boxed.

ylab the y-variable label

xlab the x-variable label

main the main title here as character. If NULL the default title ”centile curves
using NO” (or the relevant distributions name) is shown

main.gsub if the main.gsub (with default “@”) appears in the main title then it is sub-
stituted with the default title.

xleg position of the legend in the x-axis

yleg position of the legend in the y-axis

xlim the limits of the x-axis

ylim the limits of the y-axis

save whether to save the sample percentages or not with default equal to ’FALSE’.
In this case the sample percentages are printed but are not saved

plot whether to plot the centiles. This option is useful for ’centile.split’

pch the character to be used as the default in plotting points, see the option for
par() .i.e. ?par

cex size of character, see par

324 CHAPTER 13. CENTILE ESTIMATION

0 5 10 15 20

15
20

25
30

x

y

(a)

0 5 10 15 20

15
20

25
30

x

y

(b)

R code on

page 321

Figure 13.7: Centiles curves (a) and calibration curves (b) using Box-Cox Colen Green (BCCGo)
distribution for the BMI data

13.7. PLOTTING CENTILES CURVES USING CENTILES() AND CALIBRATION() 325

col the colour of points, see par

col.centiles the colours for the centile curves

lty.centiles the line types for the centile curves

lwd.centiles the line width for the centile curves

points whether the data points should be plotted

... for extra arguments

As an example, a modified version of the centiles in Figure ?? is given below. See figure 13.8
for the plot.

Figure 13.8
centiles(m0,dbbmi1$age,cent=c(5,25,50,75,95), ylab="bmi", xlab="age",

col.centiles = c(2,6,1,6,2), lty.centiles = c(2,3,1,3,2),

lwd.centiles =c(2,2,2.5,2,2))

% of cases below 5 centile is 5

% of cases below 25 centile is 24.5

% of cases below 50 centile is 49.9

% of cases below 75 centile is 74.8

% of cases below 95 centile is 95

0 5 10 15 20

15
20

25
30

age

bm
i

Centile curves using BCCGo

5
25
50
75
95

R code on

page 325

Figure 13.8: Centile curves using Box-Cox t (BCT) distribution for the BMI data

Note that the output obtained from the centiles() function can be useful to get information
on how well a distribution fits at a particular age. Here we selected the cases from the Dutch

326 CHAPTER 13. CENTILE ESTIMATION

boys data set at the rounded age of 10 (ie between 9.5 and 10.5), and fit a BCCGo distribution
to the sample.

sub1<-subset(dbbmi, (age > 9.5 & age < 10.5))

h1 <- gamlssML(bmi, data=sub1, family=BCCGo)

Figure 13.9 centiles(h1,sub1$age,cent=c(1,2.5, 10, 25, 50, 75, 90, 97.5, .99), legend=FALSE)

% of cases below 1 centile is 0.2777778

% of cases below 2.5 centile is 3.611111

% of cases below 10 centile is 8.888889

% of cases below 25 centile is 26.11111

% of cases below 50 centile is 50.83333

% of cases below 75 centile is 77.5

% of cases below 90 centile is 89.72222

% of cases below 97.5 centile is 97.22222

% of cases below 0.99 centile is 0.2777778

See Figure 13.9 for the plot. The fit did not capture well the 1% and the 99 % tails of the BMI.

9.6 9.8 10.0 10.2 10.4

15
20

25

x

y

Centile curves using BCCGo

R code on

page 326

Figure 13.9: Centile curves using Box-Cox Cole and Green distribution to fit BMI at rounded
aged 10 for the Dutch boys data

If no variable is available the user can create an index variable by index<-1:n , where n is the
number of observations and use this in the centiles command, i.e. centiles(h1,index). An
alternative way to check the distribution at rounded age 10 is to use function histDist(), ie
histDist(y,family="NO", data=sub1).

13.8. THE FUNCTION CENTILES.SPLIT() 327

13.7.2 The function calibration()

This function can be used when the fitted model centiles do not coincide with the sample centiles
and it is assumed that this failure is the same for all values of the explanatory variable, xvar.
The calibration function finds the sample quantiles of the residuals of the fitted model (the
z-scores) and uses them as sample quantile in the argument cent of the centiles() function.
Consider the following example of the calibration function.

calibration(m0,xvar=dbbmi1$age)

% of cases below 0.5229901 centile is 0.4

% of cases below 1.89542 centile is 2.3

% of cases below 8.695653 centile is 9.2

% of cases below 25.72263 centile is 25.3

% of cases below 50.09397 centile is 50

% of cases below 74.93388 centile is 74.7

% of cases below 90.72126 centile is 90.8

% of cases below 97.86072 centile is 97.7

% of cases below 99.40448 centile is 99.6

See Figure 13.7(b) for the plot. In this case that calibration() function produce similar
results with the function centiles(). The calibration() function apart from object, xvar
and cent has as arguments:

legend whether legend is required (default is FALSE).

fan for fan plots (default is FALSE.

13.7.3 The function centiles.fan()

The function centiles.fan() plots a fan-chart of the centile curves.

Figure 13.10centiles.fan(m0,dbbmi1$age,cent=c(5,25,50,75,95), ylab="bmi", xlab="age")

See Figure 13.10 for the plot. The different colour schemes to be used for the fan-chart are
"cm","gray", "rainbow", "heat", "terrain" and "topo".

13.8 The function centiles.split()

The function centiles.split() splits the fitted centile curves according to different cut points
in the x-variable (age). Here we split the centiles plot at x = 2 (e.g. xcut.points=c(2)):

Figure 13.11
centiles.split(m0,xvar=dbbmi1$age,xcut.points=c(2))

0.06 to 2 2 to 19.64

0.4 0.000 0.4098

2 2.985 2.3224

10 11.194 10.3825

25 23.507 24.8634

50 48.507 50.4098

328 CHAPTER 13. CENTILE ESTIMATION

0 5 10 15 20

15
20

25
30

age

bm
i

Centile curves using BCCGo

R code on

page 327

Figure 13.10: A fan-chart (centile) curves using Box-Cox Cole and Green distribution for the
sampled 1000 observation from the dbbmi data

75 74.254 75.0000

90 90.299 89.6175

98 97.761 97.8142

99.6 99.627 100.0000

see Figure 13.11 for the plot.

The Table above gives the sample % of cases below the 0.4,2,10,...,99.6 centile curves for each
of the two age ranges in the split, i.e. age range (0.03 to 2) and age range (2 to 21.7), [where
0.03 and 21.7 are the minimum and maximum ages in the data set].

The arguments for the function centiles.split are

obj a fitted gamlss object

xvar the unique explanatory variable

xcut.points the x-axis cut off point(s) e.g. c(20,30). If xcut.points=NULL then the
n.inter argument is activated

n.inter if xcut.points=NULL this argument gives the number of intervals in which
the x-variable will be split, with default value 4

cent a vector with elements the % centile values for which the centile curves have
to be evaluated

13.8. THE FUNCTION CENTILES.SPLIT() 329

0.0 0.5 1.0 1.5 2.0

12
14

16
18

20

x

y

(0.06, 2)

5 10 15 20

15
20

25
30

x

y

(2, 19.64)

R code on

page 327

Figure 13.11: Two centiles curves using Box-Cox Cole and Green distribution to the sample of
1000 observations from the BMI data

legend whether a legend is required in the plots or not, the default is legent=FALSE

ylab the y-variable label

xlab the x-variable label

overlap how much overlapping in the xvar intervals. Default value is ’overlap=0’ for
non overlapping intervals

save whether to save the sample percentages or not, with default equal to ’TRUE’.
In this case the function produces a matrix giving the sample percentages for
each interval

plot whether to plot the centiles. This option is useful if the sample statistics only
are to be used

... for extra arguments in the par() plotting function

For example a four equal number of observation split of age x can be achieved using:
Figure 13.12

centiles.split(m0,dbbmi1$age)

0.05500 to 1.625 1.625 to 9.965 9.965 to 14.425 14.425 to 19.645

0.4 0.0 0.4 0.4 0.4

2 2.8 2.8 1.6 2.8

10 10.8 9.6 11.6 10.4

25 23.6 24.0 28.0 22.4

330 CHAPTER 13. CENTILE ESTIMATION

50 48.0 50.0 52.4 49.2

75 74.0 74.8 77.6 72.8

90 89.6 90.0 89.2 90.4

98 97.6 99.2 96.4 98.0

99.6 99.6 100.0 100.0 100.0

see Figure 13.12 for the plot.

0.0 0.5 1.0 1.5

1
2

1
4

1
6

1
8

2
0

x

y

(0.055000000000001, 1.625)

2 4 6 8 10
1

2
1

4
1

6
1

8
2

0
x

y

(1.625, 9.965)

10 11 12 13 14

1
4

1
8

2
2

2
6

x

y

(9.965, 14.425)

15 16 17 18 19

1
5

2
0

2
5

3
0

x

y

(14.425, 19.645)

R code on

page 329

Figure 13.12: Centiles curves for four age ranges using Box-Cox Cole and Green distribution
for the BMI data

Sample centile statistics for different values of the x-variable can be obtained by suppressing
the plot using the argument plot=FALSE. For example in order to get sample statistics in 6 age
ranges with equal numbers of observations use

centiles.split(m0, xvar=dbbmi1$age, n.inter=6, plot=FALSE)

0.05500 to 0.87499 0.87500 to 3.035 3.035 to 9.965 9.965 to 13.095

0.4 0.000000 0.000000 0.5988024 0.5988024

2 2.994012 1.807229 3.5928144 1.7964072

10 10.778443 9.036145 10.7784431 12.5748503

25 25.149701 22.289157 23.9520958 32.3353293

50 49.101796 48.795181 49.1017964 58.0838323

13.9. THE FUNCTION CENTILES.COM() 331

75 75.449102 72.289157 75.4491018 79.6407186

90 89.820359 90.963855 88.6227545 89.2215569

98 97.005988 98.192771 100.0000000 96.4071856

99.6 100.000000 99.397590 100.0000000 100.0000000

13.095 to 15.865 15.865 to 19.645

0.4 0.6024096 0.000000

2 3.0120482 1.796407

10 10.2409639 10.179641

25 20.4819277 22.754491

50 44.5783133 49.700599

75 75.9036145 70.059880

90 90.3614458 89.820359

98 96.9879518 98.203593

99.6 100.0000000 100.000000

13.9 The function centiles.com()

This function is useful comparing centile curves produced by different fitted models. Here we
fit a new lms object using the SHASH distribution and compare the result with the original
lms model m0 fitted in Setion 13.5).

m2 <- lms(bmi, age, data=dbbmi1, trans.x=TRUE , families=c("SHASH"))

centiles.com(m0, m2, xvar=dbbmi1$age, legend=FALSE, color=FALSE)

*** Checking for transformation for x ***

*** power parameters 0.02764176 ***

*** Initial fit***

GAMLSS-RS iteration 1: Global Deviance = 4261.962

. . .

% of cases below 90.97766 centile is 90.8

% of cases below 97.88226 centile is 97.7

% of cases below 99.50523 centile is 99.6

Figure 13.13centiles.com(m0, m2, xvar=dbbmi1$age, legend=FALSE, color=FALSE)

******** Model 1 ********

% of cases below 0.4 centile is 0.3

% of cases below 10 centile is 10.6

% of cases below 50 centile is 49.9

% of cases below 90 centile is 89.8

% of cases below 99.6 centile is 99.9

******** Model 2 ********

% of cases below 0.4 centile is 0.2

% of cases below 10 centile is 11

% of cases below 50 centile is 49.6

% of cases below 90 centile is 89.4

% of cases below 99.6 centile is 99.7

332 CHAPTER 13. CENTILE ESTIMATION

0 5 10 15 20

15
20

25
30

x

y

Centile curves

R code on

page 331

Figure 13.13: Comparison of centiles curves using the BCCGo (Box-Cox Cole and Green) and
SHASH (Sinh-Arcsinh) distributions

13.10. THE FUNCTIONS CENTILES.PRED() AND Z.SCORES() 333

Most of the arguments of the function are similar to the ones in centiles(). Here we highlight
the argument no.data useful for excluding data points from the plot.

13.10 The functions centiles.pred() and z.scores()

The centiles.pred() is designed to create predictive centiles curves for new x-values, given a
gamlss fitted model. The function has three different functionalities which are decribed below:

case 1: For given new x-values and given percentage centiles, calculates a matrix containing
the centile values for y.

case 2: For given new x-values and standard normalized centile values, calculates a matrix
containing the centile values for y.

case 3: For given new x-values and new y-values calculates the z-scores [one Z-score for each
(x, y) pairs].

The first two options are useful for creating growth curve tables and plots useful for publication
purposes. The third option is useful for checking where new observations are lying within the
standard growth charts. Because of the importance of this latest task the function z.scores()

is created to provide the same functionality. As with all the rest of the functions in this chapter,
the functions centiles.pred() and z.scores() apply to models with only one explanatory
variable.

case 1

To demonstrate the first case above we start by creating new values for age, newx<-seq(0,2,.05)
and use them to find the corresponding centiles which are stored in a matrix mat. The centiles
are created at the default centile % values of c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6).
These centiles then can be plotted using the centiles.pred argument plot=TRUE. Note that
we can use the model fitted by lms().

Figure 13.14newage<-seq(0,2,.05)

mat <- centiles.pred(m0, xname="age", xvalues=newage)

head(mat)

age C0.4 C2 C10 C25 C50 C75 C90 C98 C99.6

1 0.00 7.467 9.329 10.99 11.97 12.87 13.64 14.24 14.93 15.41

2 0.05 9.690 10.789 12.02 12.88 13.76 14.57 15.25 16.07 16.66

3 0.10 11.211 11.993 12.99 13.77 14.62 15.47 16.23 17.19 17.93

4 0.15 12.263 12.903 13.77 14.49 15.33 16.21 17.03 18.14 19.04

5 0.20 13.002 13.566 14.36 15.04 15.86 16.75 17.64 18.88 19.95

6 0.25 13.514 14.036 14.78 15.43 16.24 17.15 18.07 19.41 20.62

mat <- centiles.pred(m0, xname="age", xvalues=newage, plot=TRUE,

legend=FALSE, ylab="BMI", xlab="age")

334 CHAPTER 13. CENTILE ESTIMATION

0.0 0.5 1.0 1.5 2.0

8
1

0
1

2
1

4
1

6
1

8
2

0
2

2

age

B
M

I

R code on

page 333

Figure 13.14: A plot of centiles curves in the age range 0 to 2 using selected % centiles

case 2

In the second case the objective is to create centiles based not on percentages but on standard
normalized values or Z value. These are using the centiles.pred argument dev with default
Z values dev=c(-4, -3, -2, -1, 0, 1, 2, 3, 4). [Note that the corresponding centile per-
centages for the standard normalized values can be obtained by applying Φ−1() = qNO(), the in-
verse cumulative distribution function of a standard normal distribution, i.e % = Φ−1(z)]. [The
resulting %’s are (0.003, 0.135, 2.275, 15.866, 50, 84.134, , 97.725, 99.865, 99.997).] We use the
same new age values as above but this time we use the argument type="standard-centiles".

Figure 13.15 mat <- centiles.pred(m0, xname="age",xvalues=newage,

type="standard-centiles")

head(mat)

age -4 -3 -2 -1 0 1 2 3 4

1 0.00 2.288 6.075 9.466 11.47 12.87 13.97 14.89 15.68 16.38

2 0.05 6.286 8.967 10.881 12.43 13.76 14.94 16.01 17.00 17.91

3 0.10 9.421 10.753 12.062 13.35 14.62 15.88 17.12 18.35 19.57

4 0.15 10.922 11.904 12.962 14.10 15.33 16.65 18.06 19.58 21.22

5 0.20 11.867 12.692 13.619 14.67 15.86 17.22 18.79 20.62 22.77

6 0.25 12.483 13.230 14.085 15.08 16.24 17.63 19.31 21.41 24.10

mat <- centiles.pred(m0, xname="age", xvalues=newage, type="s",

dev = c(-4, -3, -2, -1, 0, 1, 2, 3, 4),

plot = TRUE, legend=FALSE)

13.10. THE FUNCTIONS CENTILES.PRED() AND Z.SCORES() 335

0.0 0.5 1.0 1.5 2.0

5
1

0
1

5
2

0
2

5

mat[, 1]

m
a

t[
,
2

]

R code on

page 334

Figure 13.15: A plot of prediction centiles curves using selected standard normalized deviates
(i.e. Z values)

case 3

Case 3 is when we are in a situation in which a new individual is available for whom we know
the value of the y-variable (say BMI), and his/her age and we want to classify whether they are
on risk. This is done by obtaining the z-score of the indivisual. Z-scores below −2 and above
2 are usually of concern. Here we show how to obtain the z-scores using the centiles.pred()

and the z.scores() respectively.

centiles.pred(m0, xname="age", xvalues=c(2,5,10,15), yval=c(20,18,25,14),

type="z-scores")

[1] 2.784040 1.752878 2.672242 -3.428404

z.scores(m0, x=c(2,5,10,15), y=c(20,18,25,14))

[1] 2.784040 1.752878 2.672242 -3.428404

The z.scores() function is simpler to use in this case.

The arguments for the function centiles.pred are

obj a fitted gamlss object

type the default, centiles, gets the centiles values given in the option cent.
type="standard-centiles" gets the standard centiles given in the dev.

type="z-scores" gets the z-scores for given y and x new values

336 CHAPTER 13. CENTILE ESTIMATION

xname the name of the unique explanatory variable (it has to be the same as in the
original fitted model)

xvalues the new values for the explanatory variable where the prediction will take
place

power if power transformation is needed

yval the response values for a given x values required for the calculation of z-scores

cent a vector with elements the % centile values for which the centile curves have
to be evaluated

dev a vector with elements the standard normalized deviate values (or Z values) for
which the centile curves have to be evaluated in the option type="standard-centiles"

plot whether to plot the ”centiles” or the ”standard-centiles”, the default is plot=FALSE

legend whether a legend is required in the plot or not, the default is legend=TRUE

... for extra arguments

The z.scores() function has only three arguments, i) object for fitted lms model ii) y for
new y values and iii) x for new x values.

13.11 Quantile Sheets using the function quantSheet()

In this Section we are describe the use of quantile sheets regression for constructing growth
curves. Quantile sheets were developed by Schnabel and Eilers [2013a,b], in order to overcame
some of the problems associated with quantile regression. In particular the main advance of
the quantile sheets is the simultaneous estimation of the quantiles, and the introduction of a
smoothing parameter in the the response variable direction. This reduce the wide variability
of the quantile curves and make them look more realistic. It also avoids (but do not eliminate
completely) the problem of crossing quantiles.

Quantile sheets can be fitted within the gamlss packages using the function quantSheets().
The function is a modified version of an earlier R function given to the authors by Paul Eilers.
In its current form it can take only one explanatory variable. The function is fast compared to
lms) even for large data sets.

Smoothing parameters

As was mention earlier the fit of quantiles/centiles depends on two smoothing parameters:

1. the x.lambda, smoothing parameters in the direction of the x-variable and

2. the p.lambda, smoothing parameter in the direction of the response variable (or more
precise its probability).

The smoothing parameters in quantSheets() are not estimated automatically and they should
be chosen by the user either by inspection or by some other criteria. Unfortunately since quantile
sheets estimation do not easily provide an overall measurement of fit, e.g. GAIC, the selection
of the two smoothing parameters has to be do by other means. Here we use propose a heuristic

13.11. QUANTILE SHEETS USING THE FUNCTION QUANTSHEET() 337

methods of choosing the smoothing parameters based on residuals, where the adequacy of the
model is checked throughout residual diagnostics.

Residuals

The calculation of the normalised quantile residuals or z-scores within a quantile regression is
not straightforward, as when a parametric distribution is assumed. The following approach is
used here to define the z-scores.

The fitted quantSheet model provides for each district explanatory x-variable value fitted
quantiles. Given the fitted quantile values, a non-parametric distribution can be constructed for
each district point, using the gamlss function FlexDist(). The function FlexDist() constructs
a (non-parametric) distribution using known quantile or expectile values of the distribution, and
provides numerically calculated probability density functions (pdf) and commutative density
functions (cdf) functions for the distribution. Given now the estimated cdf at value x, the
probability integral transform (PIT) residuals can be found, pit=cdf(y), and therefore the
normalised quantile residuals qnorm(pit). The function z.scoresQS() performs those steps.
Note that because the cdf function is different for each distinct values of the explanatory variable
x for large data sets the calculation of the quantile residuals can take several minutes. To avoid
this problem the function residuals.quantSheets() provides, as a default, a quicker way of
calculating the residuals. It starts by binning the observations in the x-direction, to say 100
intervals (option inter=100), with equal number of observations at each bin. It then calculates
(using FlexDist()) the cdf at the middle points of the intervals and evaluates the PIT’s and
quantile residuals of all the observations that fall in the bin. This reduces the time for calculating
the quantile intervals considerably. The full quantile residuals can be obtained using the option
all=TRUE.

While the approach described above seems to work well the user should be aware that the
the function flexDist() used to construct the pdf and cdf functions is using penalties which
themselves depend on smoothing parameters. While the defaults smoothing parameters seem
to work well a visual inspection at least at some district values of the x is recommended.

fitting the model

Here we fit a quantile sheets model on the 1000 sampled observations from the dbbmi data. We
first use the function findPower() to find a suitable power transformation for x and use it in the
option power in the quantile sheets fitting. The smoothing parameters values x.lambda = 1

and p.lambda = 10 are choose arbitrary.

Figure 13.16ppp<-findPower(dbbmi1$bmi,dbbmi1$age)

*** Checking for transformation for x ***

*** power parameters 0.3295 ***

qs1<-quantSheets(bmi, age, data = dbbmi1,

cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),

x.lambda = 1, p.lambda = 10, logit = TRUE, power = ppp)

% of cases below 0.4 centile is 0

% of cases below 2 centile is 0.4

338 CHAPTER 13. CENTILE ESTIMATION

% of cases below 10 centile is 8.4

% of cases below 25 centile is 27.4

% of cases below 50 centile is 53.8

% of cases below 75 centile is 75.9

% of cases below 90 centile is 88.7

% of cases below 98 centile is 96.8

% of cases below 99.6 centile is 98.6

The fitted centiles are shown in figure 13.16.

0 5 10 15 20

1
5

2
0

2
5

3
0

age

b
m

i

R code on

page 337

Figure 13.16: Quantile sheet curves fitted to the the sample of the dbmbi data using smoothing
parameters x.lambda = 1 and p.lambda = 10

To check the model we first calculate the residuals and then we use worm plot and Q-statistics
as diagnostics.

Figure 13.17
res1 <- resid(qs1)

wp(resid=res1, xvar=dbbmi1$age, n.inter = 9)

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 110

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 110

13.11. QUANTILE SHEETS USING THE FUNCTION QUANTSHEET() 339

number of missing points from plot= 0 out of 111

#round(Q.stats(resid=res1, xvar=dbbmi1£age), 3)
−

1
.0

0
.0

1
.0

−3 −2 −1 0 1 2 3

−
1

.0
0

.0
1

.0

−3 −2 −1 0 1 2 3

−
1

.0
0

.0
1

.0

−3 −2 −1 0 1 2 3

Unit normal quantile

D
e
v
ia

ti
o

n

0 5 10 15

Given : xvar

R code on

page 338

Figure 13.17: Worm plots from the Quantile sheet curves fitted to the sample of dbmbi using
smoothing parameters x.lambda = 1 and p.lambda = 10

round(Q.stats(resid=res1, xvar=dbbmi1$age), 3)

Z1 Z2 Z3 Z4

0.055 to 0.285 -0.840 -0.500 2.630 1.139

0.285 to 1.155 -0.281 -0.062 1.676 -1.066

1.155 to 2.525 -0.337 -0.968 2.680 0.314

2.515 to 5.915 0.267 -0.631 4.092 0.873

5.975 to 9.965 -0.403 -0.888 4.776 1.512

9.975 to 11.705 0.447 0.924 5.456 1.941

11.715 to 13.605 -0.048 0.555 4.897 1.800

13.615 to 15.135 1.149 0.354 3.342 0.894

340 CHAPTER 13. CENTILE ESTIMATION

15.135 to 17.385 0.351 0.264 2.659 0.101

17.405 to 19.645 0.892 0.509 1.291 -1.279

Both diagnostic plots, Figure 13.17 for the worm plots and the left plot of Figure 13.20 for the
Q-statistics, show evidences that the skewness of the distribution of response is not modelled
properly. For example, the worm plots show quadratic shapes while the skewness column of the
Q-statistics, Z3, has values larger than 2. From the two smoothing parameters, the p.lambda

is the one that it is most likely to effect the shape of the distribution of the response variable so
the next step is to decrees the value p.lambda while simultaneously checking the Z3 column of
the Q-statistics. The following combination of smoothing parameters seems that it is working
well.

Figure 13.18 qs2<-quantSheets(bmi, age, data = dbbmi1,

cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),

x.lambda = 1, p.lambda = .05, logit = TRUE, power = ppp)

% of cases below 0.4 centile is 0.4

% of cases below 2 centile is 2

% of cases below 10 centile is 10.7

% of cases below 25 centile is 25.7

% of cases below 50 centile is 50

% of cases below 75 centile is 74.4

% of cases below 90 centile is 89.7

% of cases below 98 centile is 97.9

% of cases below 99.6 centile is 99.6

It seems that decreasing p.lambda to 0.05 provides a model with good residual diagnostics as
shown in Figure 13.19 and the right plot of Figure 13.20.

Figure 13.19 res2 <- resid(qs2)

wp(resid=res2, xvar=dbbmi1$age, n.inter = 9)

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 110

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 111

number of missing points from plot= 0 out of 112

number of missing points from plot= 0 out of 110

number of missing points from plot= 0 out of 111

round(Q.stats(resid=res2, xvar=dbbmi1$age),3)

Z1 Z2 Z3 Z4

0.055 to 0.285 -0.872 -0.360 0.279 0.201

0.285 to 1.155 -0.292 0.513 -0.814 -1.788

1.155 to 2.525 -0.129 -0.402 -0.766 -0.497

2.515 to 5.915 0.630 -0.455 0.562 -0.255

5.975 to 9.965 -0.074 -0.514 0.616 0.393

9.975 to 11.705 0.608 0.483 2.169 0.444

13.11. QUANTILE SHEETS USING THE FUNCTION QUANTSHEET() 341

0 5 10 15 20

15
20

25
30

age

bm
i

R code on

page 340

Figure 13.18: Quantile sheet curves fitted to the sample of dbmbi data using smoothing param-
eters x.lambda = 1 and p.lambda = .05

11.715 to 13.605 0.136 0.235 1.725 0.423

13.615 to 15.135 1.274 0.019 0.496 0.103

15.135 to 17.385 0.398 0.047 0.609 -0.552

17.405 to 19.645 0.908 0.257 0.090 -1.714

Figure 13.20op<- par(mfrow=c(1,2))

Q.stats(resid=res1, xvar=dbbmi1$age)

Z1 Z2 Z3 Z4

0.055 to 0.285 -0.84038 -0.50042 2.630 1.1390

0.285 to 1.155 -0.28143 -0.06233 1.676 -1.0663

1.155 to 2.525 -0.33731 -0.96758 2.680 0.3138

2.515 to 5.915 0.26732 -0.63061 4.092 0.8728

5.975 to 9.965 -0.40328 -0.88758 4.776 1.5123

9.975 to 11.705 0.44664 0.92449 5.456 1.9412

11.715 to 13.605 -0.04814 0.55475 4.897 1.7997

13.615 to 15.135 1.14900 0.35356 3.342 0.8941

15.135 to 17.385 0.35094 0.26414 2.659 0.1015

17.405 to 19.645 0.89210 0.50939 1.291 -1.2789

Q.stats(resid=res2, xvar=dbbmi1$age)

Z1 Z2 Z3 Z4

0.055 to 0.285 -0.87208 -0.35978 0.27862 0.2011

342 CHAPTER 13. CENTILE ESTIMATION

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

−1
.0

0.
0

0.
5

1.
0

−3 −2 −1 0 1 2 3

Unit normal quantile

D
ev

ia
tio

n

0 5 10 15

Given : xvar

R code on

page 340

Figure 13.19: Worm plots from the fitted quantile sheet to the sample of the dbmbi data using
smoothing parameters x.lambda = 1 and p.lambda = 0.05

13.11. QUANTILE SHEETS USING THE FUNCTION QUANTSHEET() 343

0.285 to 1.155 -0.29166 0.51284 -0.81378 -1.7884

1.155 to 2.525 -0.12853 -0.40202 -0.76565 -0.4971

2.515 to 5.915 0.63039 -0.45546 0.56220 -0.2548

5.975 to 9.965 -0.07361 -0.51423 0.61587 0.3927

9.975 to 11.705 0.60808 0.48312 2.16861 0.4435

11.715 to 13.605 0.13556 0.23523 1.72463 0.4233

13.615 to 15.135 1.27433 0.01890 0.49641 0.1027

15.135 to 17.385 0.39846 0.04702 0.60892 -0.5521

17.405 to 19.645 0.90795 0.25705 0.08956 -1.7138

par(op)

 0.055 to 0.285

 0.285 to 1.155

 1.155 to 2.525

 2.515 to 5.915

 5.975 to 9.965

 9.975 to 11.705

11.715 to 13.605

13.615 to 15.135

15.135 to 17.385

17.405 to 19.645

Z1 Z2 Z3 Z4

Z−Statistics

 0.055 to 0.285

 0.285 to 1.155

 1.155 to 2.525

 2.515 to 5.915

 5.975 to 9.965

 9.975 to 11.705

11.715 to 13.605

13.615 to 15.135

15.135 to 17.385

17.405 to 19.645

Z1 Z2 Z3 Z4

Z−Statistics

R code on

page 341

Figure 13.20: Q-statistics plots from the two fitted quantile sheets models to the sample of the
dbmbi data using smoothing parameters: i) x.lambda = 1 and p.lambda = 10 left plot and
ii) x.lambda = 1 and p.lambda = 0.05 respectively

344 CHAPTER 13. CENTILE ESTIMATION

Chapter 14

Further Applications

This chapter provides further applications of GAMLSS modelling. In particular:

• the species data as an example fitting different discrete count distributions to data

• the hospital stay data as an example of fitting binomial type distribution.

• the film data: as an example of fitting smoothing two dimensional surfaces on a
continuous response variable.

14.1 Count data: the fish species data

Data summary: the fish species data
R data file: species in package gamlss.dist of dimensions 70× 2
variables

fish : the number of different species in 70 lakes in the world
lake : the lake area

purpose: to demonstrate the fitting of count data distributions

The number of different fish species (fish) was recorded for 70 lakes of the world together with
explanatory variable x=log(lake), i.e. x = log lake area. The data are plotted in Figure 14.1.

Figure 14.1library(gamlss)

data(species)

creating the log(lake)

species$x <- log(species$lake)

plot(fish~x,data=species, col="blue")

The data are given and analysed by Stein and Juritz (1988) using a Poisson inverse Gaussian,
PIG(µ, σ) distribution for fish with a linear model in log(lake) for logµ parameter and a
constant for log σ.

Rigby et al. (2008), when analysing this data set, identified the following questions that need to

345

346 CHAPTER 14. FURTHER APPLICATIONS

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

25
0

x

fis
h

R code on

page 345

Figure 14.1: The fish species data

be answered. Note that the same questions could apply to any regression type situation where
the response variable is counts and where x represents a set explanatory variables.

• How does the mean of the response variable depend on x?

• Is the response variable overdispersed Poisson?

• How does the variance of the response variable depend on its mean?

• What is the distribution of the response variable given x?

• Do the scale and shape parameters of the response variable distribution depend on x?

Here we will model the data using different discrete distributions and consider flexible models for
the distributional parameters, where any or all of them can possibly depend on the explanatory
variable log(lake).

We start by fitting seven different count distributions to the data [Poisson (PO), double Pois-
son (DPO), negative binomial type I and II (NBI, NBII), Poisson inverse Gaussian (PIG),
Delaporte (DEL) and Sichel (SICHEL)] using first a linear and then a quadratic polynomial
in x=log(lake). The AIC of each model is then printed for comparison. Note that the
GAIC(. . .,k=2) corresponds to the AIC and since is the default value can be omitted.

the count distributions

fam<-c("PO","DPO", "NBI", "NBII", "PIG", "DEL", "SICHEL")

#creating lists to keep the results

m.l<-m.q<-list()

14.1. COUNT DATA: THE FISH SPECIES DATA 347

fitting the linear in x models

for (i in 1:7) {
m.l[[fam[i]]]<-GAIC(gamlss(fish~x,data=species, family=fam[i], n.cyc=60,

trace=FALSE),k=2)}
fitting the quadratic in x models

for (i in 1:7) {
m.q[[fam[i]]]<-GAIC(gamlss(fish~poly(x,2),data=species, family=fam[i],

n.cyc=60, trace=FALSE), k=2)}
print the AIC's

unlist(m.l)

PO DPO NBI NBII PIG DEL SICHEL

1900.1562 654.1616 625.8443 647.5359 623.4632 626.2330 625.3923

unlist(m.q)

PO DPO NBI NBII PIG DEL SICHEL

1855.2965 655.2520 622.3173 645.0129 621.3459 623.5816 623.0995

The Poisson model has a very large AIC compared to the rest of the distributions so we can
conclude that the data are overdispersed. The quadratic polynomial in x seems to fit better
than the linear term across the different count distributions (except for DPO). The best model
at this stage is the Poisson inverse Gaussian (PIG) model with a quadratic polynomial in x. We
now compare the AIC of a PIG model with a cubic smoothing spline in x instead of a quadratic
polynomial in x. The total “effective” degrees of freedom for x in the default cubic spline model
(including the constant and linear term) is 5 compared to 3 in the quadratic model.

GAIC(gamlss(fish~cs(x), data=species, family=PIG, trace=FALSE))

[1] 623.9328

The cubic smoothing spline does not seem to improve the model, so we keep the quadratic
polynomial in x. We shall now try to model log(σ) as a linear function of x in the six remaining
count distributions.

redefine the list of distributions

fam<-c("DPO","NBI", "NBII", "PIG", "DEL", "SICHEL")

m.ql<-list()

for (i in 1:6) {
m.ql[[fam[i]]]<-GAIC(gamlss(fish~poly(x,2),data=species,

sigma.fo=~x, family=fam[i], n.cyc=60, trace=FALSE))}
unlist(m.ql)

DPO NBI NBII PIG DEL SICHEL

626.4056 614.9565 615.1250 612.3667 614.6059 613.7327

Modelling log(σ) as a linear function of x improves the AIC for all models. The PIG model is
still the “best”. Since the Sichel and the Delaporte distributions have three parameters we will
try to model the third parameter ν as a linear function of x. The Sichel uses the identity as
the default link for ν while the Delaporte uses the logit.

fam<-c("DEL", "SICHEL")

m.qll<-list()

348 CHAPTER 14. FURTHER APPLICATIONS

for (i in 1:2) {
m.qll[[fam[i]]]<-GAIC(gamlss(fish~poly(x,2),data=species,

sigma.fo=~x, nu.fo=~x, family=fam[i], n.cyc=60,

trace=FALSE))}
unlist(m.qll)

DEL SICHEL

614.7376 611.6346

Modelling the ν as a linear function of x improves the Sichel model (which now has lower AIC
than the PIG model) but not the Delaporte model. A further simplification of the Sichel model
can be achieved by dropping the linear terms in x for the log(σ) model which given the linear
model in x for ν does not seem to contribute anything to the fit (a least according to the AIC):

GAIC(gamlss(fish~poly(x,2),data=species, sigma.fo=~1, nu.fo=~x, family=SICHEL,

n.cyc=60, trace=FALSE))

[1] 609.7268

The fitted parameters of the “best” Sichel model are shown below. They are obtained by
refitting the model using this time an ordinary quadratic polynomial in x for log(µ) model
rather that the orthogonal quadratic polynomial produced by poly(x,2):

Figure 14.2 mSI<- gamlss(fish~x+I(x^2), sigma.fo=~1, nu.fo=~x, data=species, family=SICHEL,

n.cyc=60)

GAMLSS-RS iteration 1: Global Deviance = 613.7

GAMLSS-RS iteration 2: Global Deviance = 602.7

GAMLSS-RS iteration 3: Global Deviance = 598.3

GAMLSS-RS iteration 4: Global Deviance = 597.8

GAMLSS-RS iteration 5: Global Deviance = 597.7

GAMLSS-RS iteration 6: Global Deviance = 597.7

GAMLSS-RS iteration 7: Global Deviance = 597.7

summary(mSI)

Family: c("SICHEL", "Sichel")

##

Call:

gamlss(formula = fish ~ x + I(x^2), sigma.formula = ~1, nu.formula = ~x,

family = SICHEL, data = species, n.cyc = 60)

##

Fitting method: RS()

##

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.78820 0.17161 16.25 <2e-16 ***

x -0.00638 0.06687 -0.10 0.924

I(x^2) 0.01396 0.00550 2.54 0.014 *

14.1. COUNT DATA: THE FISH SPECIES DATA 349

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.367 0.463 0.79 0.43

##

Nu link function: identity

Nu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.501 3.111 -3.70 0.00045 ***

x 1.141 0.325 3.51 0.00082 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

No. of observations in the fit: 70

Degrees of Freedom for the fit: 6

Residual Deg. of Freedom: 64

at cycle: 7

##

Global Deviance: 597.7

AIC: 609.7

SBC: 623.2

plot(fish~log(lake), data=species)

lines(species$x[order(species$lake)],fitted(mSI)[order(species$lake)],

col="red")

The fitted model µ together with the data are shown in Figure 14.2. Figures 14.3(a) and
14.3(b) give the fitted distribution of the number of fish species for observation 40, with lake
area of 165 and (µ̂, σ̂, ν̂) = (22.64, 1.44,−5.68), and observation 67, with lake area 8264 and
(µ̂, σ̂, ν̂) = (47.78, 1.44,−1.2), respectively.

Figure 14.3pdf.plot(mSI,c(40,67), min=0, max=110, step=1)

Table 14.1, taken from Rigby et al. [2008] gives the global deviance (DEV), AIC and SBC for
specific models fitted to the fish species data, and is used to answer the questions at the start of
this section. The terms 1, x and x<2> indicate constant, linear and quadratic terms respectively,
while the term cs(x,3) indicates a cubic smoothing spline with three degrees of freedom on
top of the linear term x. Table 14.1 includes additional distributions to those previously fitted.

The following analysis is from Rigby et al. [2008]. Comparing models 2, 3 and 4 indicates that a
quadratic model for log µ is found to be adequate (while the linear and the cubic spline models
models was found to be inappropriate here). Comparing model 1 and 3 indicates that Y has
a highly overdispersed Poisson distribution. Comparing model 3 with models 5 and 6 shows

350 CHAPTER 14. FURTHER APPLICATIONS

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

25
0

log(lake)

fis
h

R code on

page 348

Figure 14.2: Fitted µ (the mean number of fish species) against log lake area

0 20 40 60 80 100

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Sichel, SICHEL

SICHEL(mu = 22.64, sigma = 1.444, nu = −5.675)

y

pf,
 f(y

)

0 20 40 60 80 100

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Sichel, SICHEL

SICHEL(mu = 47.76, sigma = 1.444, nu = −1.209)

y

pf,
 f(y

)

R code on

page 349

Figure 14.3: Fitted Sichel distributions for observations (a) 40 and (b) 67

14.1. COUNT DATA: THE FISH SPECIES DATA 351

that either a linear model in x for log(σ) or a different variance-mean relationship from that
of the negative binomial (NBI) [i.e V [Y] = µ + σµ2] is required. In particular the estimated
ν parameter in the negative binomial family (NBF) of model 6 is ν̂ = 2.9 suggesting a possible
variance-mean relationship V [Y] = µ + σµ3. Modelling σ in the NBF did not improve the fit
greatly, as shown by model 7. A search of alternative mixed Poisson distributions included the
Poisson-inverse Gaussian (PIG), the Sichel (SI) and and the Delaporte (DEL). The models with
the best AIC for each distribution were recorded in Table 14.1 models 8 to 11. A normal random
effect mixture distribution was fitted (using 20 Gaussian quadrature points) to the Poisson and
NBI conditional distributions giving models 12 and 13, i.e. Poisson-Normal and NBI-Normal
respectively. ’Non-parametric’ random effects (effectively finite mixtures) (NPFM),were also
fitted to Poisson and NBI conditional distributions giving models 14 and 15, i.e. PO-NPFM(6)
and NB-NPFM(2) with 6 and 2 components respectively. Efron’s double exponential (Poisson)
distribution was fitted giving model 16 (DPO). The best discretized continuous distribution
fitted was a discrete inverse Gaussian distribution giving model 17 (IGdisc), again suggesting a
possible cubic variance-mean relationship.

Overall the best model according to Akaike information criterion (AIC) is model 9, the Sichel
model, following closely by model 11, a Delaporte model. According to the Schwarz Bayesian
criterion (SBC) the best model is model 17, the discetized inverse Gaussian distribution, again
followed closely by model 11.

The model in Table 14.1 with the minimum AIC value 609.7 was selected, i.e. model 9, a
Sichel, SICHEL(µ, σ, ν), model fitted earlier in this section, with log µ̂ = 2.790 − 0.00638x +
0.0140x2, log σ̂ = 0.367 and ν̂ = −11 + 1.048x. For comparison model 11 gives the Delaporte,
DEL(µ, σ.ν), model (with lowest AIC). Note in model 11 that σ = 1 is fixed in the Delaporte
distribution, corresponding to a Poisson-shifted exponential distribution, giving fitted model
log µ̂ = 2.787− 0.004207x+ 0.013959x2, σ = 1 (fixed) and logit ν̂ = 1.066− 0.2854x.

The following code can be used to reproduce the results of Table 14.1.

library(gamlss.mx)

m1 <- gamlss(fish~poly(x,2), data=species, family=PO, trace=FALSE)

m2 <- gamlss(fish~x, data=species, family=NBI, trace=FALSE)

m3 <- gamlss(fish~poly(x,2), data=species, family=NBI, trace=FALSE)

m4 <- gamlss(fish~cs(x,3), data=species, family=NBI, trace=FALSE)

m5 <- gamlss(fish~poly(x,2), sigma.fo=~x, data=species, family=NBI,

trace=FALSE)

source('/Users/stasinom/Dropbox/gamlss/R-code/NBFamily/NBF.r')# take it out

m6 <- gamlss(fish~poly(x,2), sigma.fo=~1, data=species, family=NBF, n.cyc=200,

trace=FALSE)

m7 <- gamlss(fish~poly(x,2), sigma.fo=~x, data=species, family=NBF, n.cyc=100,

trace=FALSE)

m8 <- gamlss(fish~poly(x,2), data=species, family=PIG, trace=FALSE)

m9 <- gamlss(fish~poly(x,2), nu.fo=~x, data=species, family=SICHEL,

trace=FALSE)

m10 <- gamlss(fish~poly(x,2), nu.fo=~x, data=species, family=DEL, n.cyc=50,

trace=FALSE)

m11 <- gamlss(fish~poly(x,2), nu.fo=~x, data=species, family=DEL,

sigma.fix=TRUE, sigma.start=1, n.cyc=50, trace=FALSE)

m12 <- gamlssNP(fish~poly(x,2), data=species, mixture = "gq", K=20,

352 CHAPTER 14. FURTHER APPLICATIONS

family=PO, trace=FALSE)

m13 <- gamlssNP(fish~poly(x,2), sigma.fo=~x, data=species, mixture = "gq",

K=20, family=NBI, trace=FALSE)

m14 <- gamlssNP(fish~poly(x,2), data=species, mixture = "np", K=6, family=PO,

trace=FALSE)

m15 <- gamlssNP(fish~poly(x,2), data=species, mixture = "np", K=2, family=NBI,

trace=FALSE)

m16 <- gamlss(fish~poly(x,2), nu.fo=~x, data=species, family=DPO,

trace=FALSE)

library(gamlss.cens)

m17 <- gamlss(Surv(fish,fish+1,type= "interval2")~x+I(x^2), sigma.fo=~1,

data=species, family=cens(IG, type="interval"))

GAMLSS-RS iteration 1: Global Deviance = 603.2793

GAMLSS-RS iteration 2: Global Deviance = 603.2793

GAIC(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15, m17)

df AIC

m9 6.00000 609.7268

m11 5.00000 610.6493

m17 4.00000 611.2793

m10 6.00000 612.6593

m5 5.00000 614.9565

m13 6.00000 615.7281

m6 5.00000 616.0828

m7 6.00000 616.9229

m8 4.00000 621.3459

m3 4.00000 622.3173

m12 4.00000 623.2455

m15 6.00000 623.8794

m4 5.99924 623.9083

m2 3.00000 625.8443

m14 13.00000 627.9431

m1 3.00000 1855.2965

GAIC(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15, m17,

k=log(70))

df AIC

m17 4.00000 620.2733

m11 5.00000 621.8918

m9 6.00000 623.2178

m10 6.00000 626.1503

m5 5.00000 626.1990

m6 5.00000 627.3253

m13 6.00000 629.2191

m8 4.00000 630.3399

m7 6.00000 630.4138

m3 4.00000 631.3113

14.1. COUNT DATA: THE FISH SPECIES DATA 353

m12 4.00000 632.2395

m2 3.00000 632.5898

m15 6.00000 637.3704

m4 5.99924 637.3975

m14 13.00000 657.1735

m1 3.00000 1862.0420

Figure 14.4op <- par(mfrow = c(2, 1))

wp(m9)

wp(m11)

par(op)

−4 −2 0 2 4

−1
.5

−0
.5

0.5
1.5

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−1
.5

−0
.5

0.5
1.5

Unit normal quantile

De
via

tio
n

R code on

page 353

Figure 14.4: Worm plots for the two ‘best’ model m9 and m17

Worm plots for the ‘best’ fitted models m9 and m17 are shown in Figure 14.4 indicating that
both models have adequate fits.

354 CHAPTER 14. FURTHER APPLICATIONS

Table 14.1: Comparison of models for the fish species data

Model fY (y) µ σ ν DEV df AIC SBC
1 PO x < 2 > - - 1849.3 3 1855.3 1862.0
2 NBI x 1 - 619.8 3 625.8 632.6
3 NBI x < 2 > 1 - 614.3 4 622.3 631.3
4 NBI cs(x, 3) 1 - 611.9 6 623.9 637.4
5 NBI x < 2 > x - 605.0 5 615.0 626.2
6 NBI-family x < 2 > 1 1 606.1 5 616.1 627.3
7 NBI-family x < 2 > x 1 604.9 6 616.9 630.4
8 PIG x < 2 > 1 - 613.3 4 621.3 630.3
9 SICHEL x < 2 > 1 x 597.7 6 609.7 623.2
10 DEL x < 2 > 1 x 600.7 6 612.7 626.2
11 DEL x < 2 > - x 600.6 5 610.6 621.9
12 PO-Normal x < 2 > 1 - 615.2 4 623.2 632.2
13 NBI-Normal x < 2 > x 1 603.7 6 615.7 629.2
14 PO-NPFM(6) x < 2 > - − 601.9 13 627.9 657.2
15 NB-NPFM(2) x < 2 > 1 − 611.9 6 623.9 637.4
16 DPO x < 2 > x - 647.3 5 655.3 664.2
17 IGdisc x < 2 > 1 - 603.3 4 611.3 620.3

14.2 Binomial data example: the hospital stay data

Data summary:
R data file: aep in package gamlss of dimensions 1383× 8
source: Gange et al. (1996)
variables

los : total number of days
noinap : number of inappropriate days patient stay in hospital
loglos : the log of los/10
sex : the gender of patient
ward : type of ward in the hospital (medical, surgical or other)
year : 1988 or 1990
age : age of the patient subtracted from 55
y : the response variable, a matrix with columns noinap, los-noinap

purpose: to demonstrate the fitting of a beta binomial distribution to the data.
conclusion a beta binomial distribution is needed

The data, 1383 observations, are from a study at the Hospital del Mar, Barcelona during
the years 1988 and 1990, see Gange et al. (1996). The response variable is the number of
inappropriate days (noinap) out of the total number of days (los) patients spent in hospital.
Each patient was assessed for inappropriate stay on each day by two physicians who used the
appropriateness evaluation protocol (AEP), see Gange et al. (1996) and their references for
more details. The following variables were used as explanatory variables, age, sex, ward, year
and loglos.

14.2. BINOMIAL DATA EXAMPLE: THE HOSPITAL STAY DATA 355

A plot of the inappropriateness rates ninap/los against age, sex, ward and year are shown in
Figure 14.5 obtained by:

Figure 14.5data(aep)

prop<-with(aep, noinap/los)

op <- par(mfrow = c(2, 2))

plot(prop~age, data=aep, cex=los/30)

plot(prop~sex,data=aep)

plot(prop~ward,data=aep)

plot(prop~year,data=aep)

par(op)

−20 0 20 40

0.0
0.2

0.4
0.6

0.8
1.0

age

pro
p

1 2
0.0

0.2
0.4

0.6
0.8

1.0

sex

pro
p

1 2 3

0.0
0.2

0.4
0.6

0.8
1.0

ward

pro
p

88 90

0.0
0.2

0.4
0.6

0.8
1.0

year

pro
p

R code on

page 355

Figure 14.5: The rate of appropriateness against age, sex, ward and year

Gange, S. J., Munoz, A., Saez, M. and Alonso [1996] used a logistic regression model for the
number of inappropriate days, with binomial and beta binomial errors and found that the later
provided a better fit to the data. They modelled both the mean and the dispersion of the
beta binomial distribution (BB) as functions of explanatory variables using the epidemiological
package EGRET, Cytel Software Corporation (2001), which allowed them to fit a parametric
model using a logit link for the mean and an identity link for the dispersion σ. Their final
model was a beta binomial model BB(µ, σ), with terms ward, year and loglos in the model
for logit(µ) and term year for model for σ.

First we fit their final model, equivalent to model I in Table 14.2. Although we use a log link
for the dispersion σ in Table 14.2, this does not affect model I since year is a factor. Table
14.2 shows the GD, AIC and SBC for model I, 4519.4, 4533.4 and 4570.08 respectively. Here
we are interested in whether we can improve the model using the flexibility of GAMLSS. For

356 CHAPTER 14. FURTHER APPLICATIONS

the dispersion parameter model we found that the addition of ward improves the fit (see model
II in Table 14.2 with AIC = 4501.02, SBC = 4548.11) but no other term was found to be
significant. Non-linearities in the mean model for the terms loglos and age were investigated
using cubic smoothing splines (cs), with 2 effective degrees of freedom for smoothing on top
of the linear term, in models III and IV. There is strong support for including a smoothing
term for loglos as indicated by the reduction in the AIC and SBC for model III compared to
model II. The inclusion of a smoothing term for age is not so clear cut since, while there is
some marginal support from the AIC, it is rejected strongly from SBC, when comparing model
III to model IV. The R script for fitting the models in Table 14.2 is shown below:

mI <- gamlss(y~ward+year+loglos, sigma.fo=~year, family=BB, data=aep,

trace=FALSE)

mII <- gamlss(y~ward+year+loglos, sigma.fo=~year+ward, family=BB, data=aep,

trace=FALSE)

mIII <- gamlss(y~ward+year+cs(loglos,1), sigma.fo=~year+ward, family=BB,

data=aep, trace=FALSE)

mIV <- gamlss(y~ward+year+cs(loglos,1)+cs(age,1), sigma.fo=~year+ward,

family=BB, data=aep, trace=FALSE)

GAIC(mI,mII,mIII,mIV, k=0) # the global deviance

df AIC

mIV 12.00010 4454.362

mIII 10.00045 4459.427

mII 9.00000 4483.020

mI 7.00000 4519.441

GAIC(mI,mII,mIII,mIV) # AIC

df AIC

mIV 12.00010 4478.362

mIII 10.00045 4479.427

mII 9.00000 4501.020

mI 7.00000 4533.441

GAIC(mI,mII,mIII,mIV, k=log(length(aep$age)))

df AIC

mIII 10.00045 4531.750

mIV 12.00010 4541.147

mII 9.00000 4548.108

mI 7.00000 4570.065

Note also that the model IV can also be improved marginally by changing the logistic link for
the mean to a probit link giving GD = 4452.4, AIC = 4476.4 and SBC = 4539.1 as shown
below:

(mIV1 <- gamlss(y~ward+year+cs(loglos,1)+cs(age,1), sigma.fo=~year+ward,

family=BB(mu.link="probit"), data=aep, trace=FALSE))

##

Family: c("BB", "Beta Binomial")

Fitting method: RS()

##

14.2. BINOMIAL DATA EXAMPLE: THE HOSPITAL STAY DATA 357

Table 14.2: Models for the AEP data

Models Links Terms GD
(AIC)
[SBC]

I logit(µ) 1+ward+loglos+year 4519.4
log(σ) 1+year (4533.4)

[4570.1]
II logit(µ) 1+ward+loglos+year 4483.0

log(σ) 1+year+ward (4501.0)
[4548.1]

III logit(µ) 1+ward+cs(loglos,2)+year 4459.4
log(σ) 1+year+ward (4479.4)

[4531.7]
IV logit(µ) 1+ward+cs(loglos,2)+year+cs(age,2) 4454.4

log(σ) 1+year+ward (4478.4)
[4541.1]

Call: gamlss(formula = y ~ ward + year + cs(loglos, 1) + cs(age, 1),

sigma.formula = ~year + ward, family = BB(mu.link = "probit"),

data = aep, trace = FALSE)

##

Mu Coefficients:

(Intercept) ward2 ward3 year90 cs(loglos, 1)

-0.667316 -0.244238 -0.473429 0.151170 0.240327

cs(age, 1)

0.002647

Sigma Coefficients:

(Intercept) year90 ward2 ward3

0.2953 -0.3729 -0.7172 -1.1713

##

Degrees of Freedom for the fit: 12.00011 Residual Deg. of Freedom 1371

Global Deviance: 4452.36

AIC: 4476.36

SBC: 4539.14

The fitted functions for all the terms for µ in model IV are shown in Figure 14.6. The fitted
terms for σ are shown in Figure 14.7. They have been obtained using the function term.plot()

as follows:

Figure 14.6term.plot(mIV, pages=1)

Figure 14.7term.plot(mIV, "sigma", pages=1)

Figure 14.8 displays six instances of the normalized randomised quantile residuals (see Section
??) from model IV. The residuals seem to be satisfactory. The figure is generated using the
function rqres.plot():

Figure 14.8

358 CHAPTER 14. FURTHER APPLICATIONS

−2
.0

−1
.0

0.0
1.0

ward

Pa
rti

al
for

 w
ar

d

1 2 3

−2
.0

−1
.0

0.0
1.0

year

Pa
rti

al
for

 ye
ar

88 90

−2 −1 0 1 2

−2
.0

−1
.0

0.0
1.0

loglos

Pa
rti

al
for

 cs
(lo

glo
s,

1)

−20 0 20 40

−2
.0

−1
.0

0.0
1.0

age

Pa
rti

al
for

 cs
(a

ge
, 1

)
R code on

page 357

Figure 14.6: The fitted terms for µ in model IV

−1
.5

−1
.0

−0
.5

0.0
0.5

year

Pa
rtia

l fo
r ye

ar

88 90

−1
.5

−1
.0

−0
.5

0.0
0.5

ward

Pa
rtia

l fo
r w

ard

1 2 3

R code on

page 357

Figure 14.7: The fitted terms for σ in model IV

14.3. CONTINUOUS DISTRIBUTION EXAMPLE: THE 1990’S FILM DATA 359

rqres.plot(mIV)

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile
De

via
tio

n

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−0
.3

−0
.1

0.1
0.3

Unit normal quantile

De
via

tio
n R code on

page 357

Figure 14.8: Six instances of the normalized randomised quantile residuals for model

14.3 Continuous distribution example: The 1990’s film
data

The film revenue data from the 1990’s is analysed here. The data are analysed in V. Voudouris,
R. Gilchrist, R. Rigby, J. Sedgwick and Stasinopoulos [2012] where more information about
the data and the purpose of the original analysis can be found. We use the data here for
demonstrating some of the feature of GAMLSS. The data contain several variables but here we
restrict to the following:

• lborev1 the log of box office revenues after the first week calculated in 1987 prices (the
response variable)

• lboopen the log of box office opening revenues calculated in 1987 prices

• lnosc the log of the number of screens in which the film was played and

• dist a factor indicating whether the distributors of the film was an ”Independent” or a
”Major” distributor

360 CHAPTER 14. FURTHER APPLICATIONS

The data can be input using the following commands:

library(gamlss)

data(film90)

names(film90)

[1] "time" "year" "month" "title" "borev0"

[6] "lborev0" "nosc" "lnosc" "boopen" "lboopen"

[11] "borev1" "lborev1" "dist" "whetherCost"

14.3.1 Preliminary analysis

Here we demonstrate how the data can be plotted in 2 and 3 dimensional plots. First we plot
the response variable against the log of the number of screens and then against the log of box
office opening revenues. The major and independed distributors are represented with different
colours.

Figure 14.9
op <- par(mfrow=c(1,2))

with(film90, plot(lnosc,lborev1,pch=21,bg=c("red","green3",

"blue","yellow")[unclass(dist)], xlab="log no of screens",

ylab="log extra revenue"))

title("(a)")

with(film90, plot(lboopen,lborev1,pch=21,bg=c("red","green3",

"blue","yellow")[unclass(dist)], xlab="log opening revenue",

ylab="log extra revenue"))

title("(b)")

par(op)

A good way of inspecting the data in 3-dimensions is using the package rgl. The following
commands show how this can be done. Increase the size and rotate the figure.

library(rgl)

with(film90, plot3d(lboopen, lnosc, lborev1, col=c("red",

"green3")[unclass(dist)]))

If you wish to show a linear least square fit to the data use the package rpanel:

library(rpanel)

with(film90, rp.regression(cbind(lboopen, lnosc), lborev1))

You can use the option to fit a least square line in the lboopen direction , in the lnosc direction
or for both vriables and also to display the residuals.

14.3.2 Modelling the data using the normal distrbution

To start the analysis we assume a normal distribution for the response variable and check
whether the mean model needs:

• a linear model interaction model for lboopen and lnosc,

• an additive smoothing model for the two explanatory variables or

14.3. CONTINUOUS DISTRIBUTION EXAMPLE: THE 1990’S FILM DATA 361

0 2 4 6 8

5
10

15
20

log no of screens

log
 ex

tra
 re

ve
nu

e
(a)

4 6 8 10 14 18

5
10

15
20

log opening revenue

log
 ex

tra
 re

ve
nu

e

(b)

R code on

page 360

Figure 14.9: Showing (a) lborev1 against lnosc (b) lborev1 against lboopen, with indepen-
dent distributors represented by red color while the major distributors by green

• a fitted smooth surface

We are also checking whether we should include or exclude the factor dist in the mean model.
Note that in order to fit a smooth surface to the data we use the function ga() of the package
gamlss.add which is an interface for calling the function gam from Simon Wood’s package mgcv.

library(gamlss.add)

linear interaction model

g0 <- gamlss(lborev1~lboopen*lnosc, data=film90, trace=FALSE)

g00 <- gamlss(lborev1~lboopen*lnosc+dist, data=film90, trace=FALSE)

additive model using the pb() function

g1 <- gamlss(lborev1~pb(lboopen) +pb(lnosc), data=film90, trace=FALSE)

g2 <- gamlss(lborev1~pb(lboopen) +pb(lnosc)+dist, data=film90, trace=FALSE)

fitting a surface using gam()

g3 <- gamlss(lborev1~ga(~s(lboopen,lnosc)), data=film90, trace=FALSE)

g4 <- gamlss(lborev1~ga(~s(lboopen,lnosc))+dist, data=film90, trace=FALSE)

GAIC(g0, g00, g1, g2, g3, g4)

df AIC

g4 27.85946 11704.65

g3 27.32609 11762.77

g2 18.90729 11787.63

g1 18.59763 11866.14

362 CHAPTER 14. FURTHER APPLICATIONS

g00 6.00000 12050.10

g0 5.00000 12194.51

GAIC(g0, g00, g1, g2, g3, g4, k=log(4031))

df AIC

g4 27.85946 11880.21

g2 18.90729 11906.78

g3 27.32609 11934.97

g1 18.59763 11983.34

g00 6.00000 12087.92

g0 5.00000 12226.02

The best model seems to be model g4 which fits a surface for lboopen and lnosc and an additive
term for factor dist. Unfortunately a look at its residuals reveals that the normal distribution
model fits very badly to the data. The following worm plot, van Buuren and Fredriks [2001],
shows this clearly since most of the points lie outside the pointwise 95% confidence interval
bands (shown as dashes).

Figure 14.10 wp(g4, ylim.all=1.1)

−4 −2 0 2 4

−1
.0

−0
.5

0.0
0.5

1.0

Unit normal quantile

De
via

tion

R code on

page 362

Figure 14.10: The worm plot from the normal distribution model g4 where a fitted surfaced
was used for µ

Note that in order to visualised the fitted surface you can use the plot() or vis.gam() functions
of the package mgcv. This is because the gam object fitted within the backfitting algorithm is
saved under the name g4$mu.coefSmo and can be retrieved using the function getSmo().

Figure 14.11 plot(getSmo(g4))

Figure 14.12

14.3. CONTINUOUS DISTRIBUTION EXAMPLE: THE 1990’S FILM DATA 363

 −8

 −6

 −4

 −2

 0 2

 4

 6

 6

 6

 8

s(lboopen,lnosc,24.86)

4 6 8 10 12 14 16 18

0
2

4
6

8

lboopen

lno
sc

 −8

 −8

 −6

 −6

 −4

 −2

 0

 2

 4 6

 6

 8

−1se

 −8

 −6

 −4

 −2

 0 2 4 6

 6

 6

 8

+1se

R code on

page 362

Figure 14.11: The fitted surface contour plot from model g4

vis.gam(getSmo(g4),theta = 0, phi = 30)

To check whether we need to model for σ as a function of the explanatory variables we use:

g42<- gamlss(lborev1~ga(~s(lboopen,lnosc))+dist,

sigma.fo=~ga(~s(lboopen,lnosc))+dist,

data=film90)

GAMLSS-RS iteration 1: Global Deviance = 9859.997

GAMLSS-RS iteration 2: Global Deviance = 9831.259

GAMLSS-RS iteration 3: Global Deviance = 9831.384

GAMLSS-RS iteration 4: Global Deviance = 9831.438

GAMLSS-RS iteration 5: Global Deviance = 9831.468

GAMLSS-RS iteration 6: Global Deviance = 9831.476

GAMLSS-RS iteration 7: Global Deviance = 9831.48

GAMLSS-RS iteration 8: Global Deviance = 9831.481

AIC(g42, g4)

df AIC

g42 50.89519 9933.271

g4 27.85946 11704.648

AIC(g42, g4, k=log(4031))

df AIC

364 CHAPTER 14. FURTHER APPLICATIONS

lboopen

lno
sc

linear predictor

R code on

page 363

Figure 14.12: The fitted surfaced from model g4

g42 50.89519 10254.00

g4 27.85946 11880.21

Here we used a smoothing surface for lboopen and lnosc and also the factor dist. We found
that model g42 is superior to model g4 whether AIC or SBC is used. To check the adequacy
of the model we use a worm plot of the residuals

Figure 14.13 wp(g42, ylim.all=1.1)

The worm plot indicates that model g42, while an improvement compared to model g4 still
does not adequately explain the response variable. Next we model the response variable using
the BCPE distribution.

14.3.3 Modelling the data using the BCPE distrbution

Next we model the response variable using the BCPE distribution which is a four parameter
distribution defined on the positive real line. Model mB fits additive terms using the pb()

function while model mB1 uses the ga() function and fits smooth surfaces.

mB <- gamlss(lborev1 ~ pb(lboopen)+pb(lnosc) + dist,

sigma.fo = ~ pb(lboopen)+pb(lnosc) + dist,

nu.fo = ~ pb(lboopen)+pb(lnosc) + dist,

tau.fo = ~ pb(lboopen)+pb(lnosc) + dist,

family = BCPE, data = film90, n.cyc=10, trace=FALSE)

14.3. CONTINUOUS DISTRIBUTION EXAMPLE: THE 1990’S FILM DATA 365

−4 −2 0 2 4

−1
.0

−0
.5

0.0
0.5

1.0

Unit normal quantile

De
via

tion

R code on

page 364

Figure 14.13: The worm plot from the normal distribution model g42 where a fitted surfaced
was used for both µ and σ

mB1 <- gamlss(lborev1 ~ ga(~s(lboopen,lnosc)) + dist,

sigma.fo = ~ ga(~s(lboopen,lnosc)) + dist,

nu.fo = ~ ga(~s(lboopen,lnosc)) + dist,

tau.fo = ~ ga(~s(lboopen,lnosc)) + dist,

family = BCPE, data = film90, n.cyc=10, trace=FALSE)

AIC(g42, g4, mB, mB1)

df AIC

mB1 71.79895 9712.140

mB 49.23464 9899.912

g42 50.89519 9933.271

g4 27.85946 11704.648

AIC(g42, g4, mB, mB1, k=log(4031))

df AIC

mB1 71.79895 10164.60

mB 49.23464 10210.18

g42 50.89519 10254.00

g4 27.85946 11880.21

The model mB1 seems superior according to AIC and SBC but it uses a lot more degres of
freedom. Next we plot the worm plots for both models mB and mB1.

Figure 14.14op<-par(mfrow=c(2,1))

wp(mB, ylim.all=0.5)

366 CHAPTER 14. FURTHER APPLICATIONS

wp(mB1, ylim.all=0.5)

par(op)

−4 −2 0 2 4

−0
.4

0.0
0.4

Unit normal quantile

De
via

tio
n

−4 −2 0 2 4

−0
.4

0.0
0.4

Unit normal quantile

De
via

tio
n

R code on

page 365

Figure 14.14: The worm plots from the BCPE distribution models mB on the top and mB1 on
the botton

The worm plot of model (mB) (on the top) looks a bit better than model (mB1) but it is
hard to decide. We can get a better idea of how the model fits in the joint ranges of the two
explanatory varibles lboopen and lnosc by using a worm plot with two explanatory variables.
This can be done using the following command:

Figure 14.15
wp(mB1, xvar=~lboopen+lnosc, ylim.worm=1)

number of missing points from plot= 0 out of 840

number of missing points from plot= 0 out of 377

number of missing points from plot= 0 out of 12

number of missing points from plot= 0 out of 315

number of missing points from plot= 0 out of 687

number of missing points from plot= 0 out of 147

number of missing points from plot= 1 out of 4

number of missing points from plot= 0 out of 151

number of missing points from plot= 0 out of 685

number of missing points from plot= 0 out of 174

number of missing points from plot= 0 out of 174

number of missing points from plot= 0 out of 834

In the resulting worm plot given in Figure 14.15 the 4 columns correspond to the 4 ranges of

14.3. CONTINUOUS DISTRIBUTION EXAMPLE: THE 1990’S FILM DATA 367

−1
.0

0.0
0.5

1.0

−3 −1 1 3 −3 −1 1 3

−1
.0

0.0
0.5

1.0−1
.0

0.0
0.5

1.0

−3 −1 1 3 −3 −1 1 3

−1
.0

0.0
0.5

1.0

Unit normal quantile

De
via

tio
n

6 8 10 12 14 16 18

Given : lboopen

0
2

4
6

8

Gi
ve

n :
 ln

os
c

R code on

page 366

Figure 14.15: The worm plot for model mB for explanatory variables lboopen and lnosc

lboopen displayed above the plot, and the 4 rows correspond to the 4 ranges of lnosc displayed
to the right of the plot. Within the plot there are 16 worm plots of the residuals corresponding
to the 4× 4 joint ranges of lboopen and lnosc. Some joint ranges have no observations within
them. The worm plots generally indicate an adequate fit within the joint ranges.

The fitted smooth surfaces for µ, σ, ν and τ for model mB1 are plotted in Figure 14.16 by using
the following commands:

Figure 14.16layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE))

vis.gam(getSmo(mB1,what="mu"), theta=30, phi=10)

title("mu")

vis.gam(getSmo(mB1,what="sigma"), theta=30, phi=15)

title("sigma")

vis.gam(getSmo(mB1,what="nu"), theta=30, phi=15)

title("nu")

vis.gam(getSmo(mB1,what="tau"), theta=30, phi=15)

title("tau")

layout(1)

368 CHAPTER 14. FURTHER APPLICATIONS

lboopen lno
sc

linear predictor

mu

lboopen lno
sc

linear predictor

sigma

lboopen lno
sc

linear predictor

nu

lboopen lno
sc

linear predictor

tau

R code on

page 367

Figure 14.16: The fitted smooth surfaces for µ, σ, ν and τ of model mB1

Bibliography

M. Aitkin. Modelling variance heterogeneity in normal regression using glim. Appl. Statist.,
36:332–339, 1987.

H. Akaike. Maximun likelihood identification of gaussian autoregressive moving average models.
Biometrika, 60:255–265, 1973.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

H. Akaike. Information measures and model selection. Bulletin of the International Statistical
Institute, 50:277–290, 1983.

Gareth Ambler. fracpoly(): Fractional Polynomial Model, 1999. URL http://lib.stat.

cmu.edu/S/fracpoly. S-PLUS.

Christopher M Bishop et al. Neural networks for pattern recognition. 1995.

E. Borghi, M. de Onis, C. Garza, J.E. Van den Broeck, E. A. Frongillo, L. Grummer-Strawn,
S. Van Buuren, H. Pan, L. Molinari, R. Martorell, A. W. Onyango, and J. C. Martines.
Construction of the world health organization child growth standards: selection of methods
for attained growth curves. Statistics in Medicine, 25:247–265, 2006.

John M. Chambers and Trevor J. Hastie. Statistical Models in S. Chapman & Hall, London,
1992.

G. Claeskens and N. L. Hjort. The focused information criterion. J. Am. Statist. Ass., 98:
900–916, 2003.

W. S. Cleveland and S. J. Devlin. Robust locally-weighted regression: an approach to regression
analysis by local fitting. J. Am. Statist. Ass., 83:597–610, 1988.

T. J. Cole. Fitting smoothed centile curves to reference data (with discussion). Journal of the
Royal Statistical Society, Series A, 151:385–418, 1988.

T. J. Cole and P. J. Green. Smoothing reference centile curves: the lms method and penalized
likelihood. Statistics in Medicine., 11:1305–1319, 1992.

TJ Cole, S. Stanojevic, J. Stocks, AL Coates, JL Hankinson, and AM Wade. Age-and size-
related reference ranges: A case study of spirometry through childhood and adulthood.
Statistics in Medicine, 28(5):880–898, 2009.

369

http://lib.stat.cmu.edu/S/fracpoly
http://lib.stat.cmu.edu/S/fracpoly

370 BIBLIOGRAPHY

A. Crisp and J. Burridge. A note on nonregular likelihood functions in heteroscedastic regression
models. Biometrika, 81:585–587, 1994.

CYTEL Software Corporation. EGRET for Windows. CYTEL Software Corporation, Cam-
bridge, Massachusetts, 2001.

D’Agostino, R. B., Balanger, A. and D’Agostino Jr., R. B. A suggestion for using powerful and
informative tests of normality. American Statistician, 44:316–321, 1990.

C. de Boor. A Practical Guide to Splines. Springer, New York, 1978.

Dempster, A., Laird, N. and D. Rubin. Maximum likelihood from incomplete data via em
algorithm (with discussion). J. R. Statist. Soc., 39:1–38, 1977.

D. Draper. Assessment and propagation of model uncertainty (with discussion). J. R. Statist.
Soc. B., 57:45–97, 1995.

P. K. Dunn and G. K. Smyth. Randomised quantile residuals. J. Comput. Graph. Statist., 5:
236–244, 1996.

P. H. C. Eilers and B. D. Marx. Flexible smoothing with b-splines and penalties (with comments
and rejoinder). Statist. Sci, 11:89–121, 1996.

Paul HC Eilers and Brian D Marx. Splines, knots, and penalties. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(6):637–653, 2010.

P.H.C. Eilers. A perfect smoother. Analytical Chemistry, 75(14):3631–3636, 2003.

R. F. Engle. ARCH. Oxford University Press, Oxford, 1995.

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica: Journal of the Econometric Society, pages 987–1007,
1982.

L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling Based on Generalized Linear
Models, 2nd ed. Springer, New York, 2001.

L. Fahrmeir and S. Wagenpfeil. Penalized likelihood estimation and iterative kalman smoothing
for non-gaussian dynamic regression models. Comp. Stat. Data Anal., 24:295–320, 1997.

Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx. Regression: Models, methods
and applications. Springer, 2013.

Fredriks, A.M., van Buuren, S., Burgmeijer, R.J.F., Meulmeester, J.F., Beuker, R.J., Brugman,
E., Roede, M.J., Verloove-Vanhorick, S.P. and J. M. Wit. Continuing positive secular change
in the netherlands, 1955-1997. Pediatric Research, 47:316–323, 2000.

Fredriks, A.M., van Buuren, S., Wit, J.M. and S. P. Verloove-Vanhorick. Body index measure-
ments in 1996-7 compared with 1980. Archives of Childhood Diseases, 82:107–112, 2000.

Gange, S. J., Munoz, A., Saez, M. and J. Alonso. Use of the beta-binomial distribution to
model the effect of policy changes on appropriateness of hospital stays. Appl. Statist., 45:
371–382, 1996.

BIBLIOGRAPHY 371

Gannoun, A., Girard, S., Cuinot, C., and Saracco J. Reference curves based on non-parametric
quantile regression. Statistics in Medicine, 21:3119ñ3135, 2002.

P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear Models.
Chapman and Hall, London, 1994.

A. C. Harvey. Estimating regression models with multiplicative heteroscedasticity.
Econometrica, 41:461–465, 1976.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman and Hall, London,
1990.

T. J. Hastie and R. J. Tibshirani. Varying coefficient models (with discussion). J. R. Statist.
Soc. B., 55:757–796, 1993.

Trevor Hastie. gam: Generalized Additive Models, 2006. URL http://www.R-project.org. R
package version 0.98.

X. He. Quantile curves without crossing. The American Statistician, 51:186ñ192, 1997.

X. He and P. Ng. Cobs: Qualitative constained smoothhing via linear programming.
Computational Statistics, 14:315–337, 1999.

P.J. Heagerty and M.S. Pepe. Semiparametric estimation of regression quantiles with applica-
tions. Applied Statistics, 48:533–551, 1999.

N. L. Hjort and G. Claeskens. Frequentist model average estimation. J. Am. Statist. Ass., 98:
879–899, 2003.

Peter J Huber. The behavior of maximum likelihood estimates under nonstandard conditions.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 221–233, 1967.

R. Koenker. Quantile regression. Cambridge University Press, Cambridge, 2005.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46:33–50, 1978.

R. Koenker and P. Ng. Inequality constained quantile regreesion. Sankhya, The Indian Journal
of Statistics, 67:418–440, 2005.

Kapitula LR and Bedrick EJ. Diagnostics for the exponential normal growth curve model.
Statistics in Medicine, 24:95–108, 2005.

D. Madigan and A. E. Raftery. Model selection and accounting for model uncertainly in graph-
ical models using occam’s window. J. Am. Statist. Ass., 89:1535–1546, 1994.

P. McCullagh and J. A. Nelder. Generalized Linear Models, 2nd edn. Chapman and Hall,
London, 1989.

J. A. Nelder and D. Pregibon. An extended quasi-likelihood function. Biometrika, 74:221–232,
1987.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. J. R. Statist. Soc. A., 135:
370–384, 1972.

http://www.R-project.org

372 BIBLIOGRAPHY

P. Np and Maechler M. A fast and efficient implementation on qualitatively constrained quantile
smoothing splines. Statistical Modelling, 7:315–328, 2007.

Philip H. Quanjer, Sanja Stanojevic, Tim J. Cole, Xaver Baur, Graham L. Hall, Bruce H.
Culver, Paul L. Enright, John L. Hankinson, Mary S. Ip, Jinping Zheng, Janet Stocks, and
ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-
95-yr age range: the global lung function 2012 equations. The European respiratory journal,
40(6):1324–1343, December 2012. ISSN 1399-3003. URL http://view.ncbi.nlm.nih.gov/

pubmed/22743675.

A. E. Raftery. Approximate bayes factors and accounting for model uncertainty in generalised
linear models. Biometrika, 83:251–266, 1996.

A. E. Raftery. Bayes factors and bic, comment on ’a critique of the bayesian information
criterion for model selection’. Sociological Methods & Research, 27:411–427, 1999.

R. A. Rigby and D. M. Stasinopoulos. A semi-parametric additive model for variance hetero-
geneity. Statist. Comput., 6:57–65, 1996a.

R. A. Rigby and D. M. Stasinopoulos. Mean and dispersion additive models. In W. Hardle and
M. G. Schimek, editors, Statistical Theory and Computational Aspects of Smoothing, pages
215–230. Physica, Heidelberg, 1996b.

R. A. Rigby and D. M. Stasinopoulos. Smooth centile curves for skew and kurtotic data modelled
using the Box-Cox power exponential distribution. Statistics in Medicine, 23:3053–3076, 2004.

R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape,
(with discussion). Appl. Statist., 54:507–554, 2005.

R. A. Rigby and D. M. Stasinopoulos. Using the Box-Cox t distribution in gamlss to model
skewness and kurtosis. Statistical Modelling, 6:209–229., 2006a.

R.A. Rigby and D.M. Stasinopoulos. Using the Box-Cox t distribution in GAMLSS to model
skewness and kurtosis. Statistical Modelling, 6(3):209, 2006b. ISSN 1471-082X.

RA Rigby, DM Stasinopoulos, and C. Akantziliotou. A framework for modelling overdis-
persed count data, including the Poisson-shifted generalized inverse Gaussian distribution.
Computational Statistics & Data Analysis, 53(2):381–393, 2008. ISSN 0167-9473.

Robert A Rigby and Dimitrios M Stasinopoulos. Automatic smoothing parameter selection in
gamlss with an application to centile estimation. Statistical methods in medical research,
2013.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cam-
bridge, 1996.

Brian D Ripley. Statistical aspects of neural networks. Networks and chaosÑstatistical and
probabilistic aspects, 50:40–123, 1993.

P. Royston and D. G. Altman. Regression using fractional polynomials of continuous covariates:
parsimonious parametric modelling (with discussion). Appl. Statist., 43:429–467, 1994.

P. Royston and E. M. Wright. Goodness-of-fit statistics for age-specific reference intervals.
Statistics in Medicine, 19:2943–2962, 2000.

http://view.ncbi.nlm.nih.gov/pubmed/22743675
http://view.ncbi.nlm.nih.gov/pubmed/22743675

BIBLIOGRAPHY 373

David Ruppert, Matt P Wand, and Raymond J Carroll. Semiparametric regression. Number 12.
Cambridge university press, 2003.

SAS Institute Inc. Enterprise Miner Software, Version 4. SAS Institute Inc, Cary, North
Carolina, 2000.

Sabine K Schnabel and Paul HC Eilers. A location-scale model for non-crossing expectile curves.
Stat, 2(1):171–183, 2013a.

Sabine K Schnabel and Paul HC Eilers. Simultaneous estimation of quantile curves using
quantile sheets. AStA Advances in Statistical Analysis, 97(1):77–87, 2013b.

G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6:461–464, 1978.

P. L. Smith. Splines as a useful and convenient statistical tool. Amer. Statist., 33:57–62, 1979.

G. K. Smyth. Generalized linear models with varying dispersion. J. R. Statist. Soc. B., 51:
47–60, 1989.

D. M. Stasinopoulos and R. A. Rigby. Detecting break points in generalised linear models.
Comp. Stat. Data Anal., 13:461–471, 1992.

D.M. Stasinopoulos and R.A. Rigby. Generalized additive models for location scale and shape
(GAMLSS) in R. Journal of Statistical Software, 23(7):1–46, 2007.

V. Voudouris, R. Gilchrist, R. Rigby, J. Sedgwick and D. Stasinopoulos. Modelling skewness
and kurtosis with the bcpe density in gamlss. Journal of Applied Statistics, 39:1279–1293,
2012.

S. van Buuren. Worm plot to diagnose fit in quantile regression. Statistical Modelling, 7:
363–376, 2007.

S. van Buuren and M. Fredriks. Worm plot: a simple diagnostic device for modelling growth
reference curves. Statistics in Medicine, 20:1259–1277, 2001.

William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Fourth Edition.
Springer, 2002. URL http://www.stats.ox.ac.uk/pub/MASS3/. ISBN 0-387-98825-4.

A. P. Verbyla. Modelling variance heterogeneity: residual maximum likelihood and diagnostics.
J. R. Statist. Soc. B., 55:493–508, 1993.

Vlasios Voudouris, Robert Gilchrist, Robert Rigby, John Sedgwick, and Dimitrios Stasinopou-
los. Modelling skewness and kurtosis with the bcpe density in gamlss. Journal of Applied
Statistics, 39(6):1279–1293, 2012.

A. M. Wade and A. E. Ades. Age-related reference ranges : Significance tests for models and
confidence intervals for centiles. Statistics in Medicine, 13:2359–2367, 1994.

Yuedong Wang. Smoothing splines: methods and applications. CRC Press, 2011.

Ying Wei, Anneli Pere, Roger Koenker, and Xuming He. Quantile regression methods for
reference growth charts. Statistics in medicine, 25(8):1369–1382, 2006.

Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test
for heteroskedasticity. Econometrica: Journal of the Econometric Society, pages 817–838,
1980.

http://www.stats.ox.ac.uk/pub/MASS3/

374 BIBLIOGRAPHY

Edmund T Whittaker. On a new method of graduation. Proceedings of the Edinburgh
Mathematical Society, 41:63–75, 1922.

Multicentre Growth Reference Study Group WHO. WHO Child Growth Standards:
Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass
index-for-age: Methods and development. Geneva: World Health Organization, 2006.

Multicentre Growth Reference Study Group WHO. WHO Child Growth Standards:
Head circumference-for-age, arm circumference-for-age, triceps circumference-for-age and
subscapular skinford-for-age: Methods and development. Geneva: World Health Organi-
zation, 2007.

Multicentre Growth Reference Study Group WHO. WHO Child Growth Standards: Growth
velocity based on weight, length and head circumference: Methods and development. Geneva:
World Health Organization, 2009.

G. N. Wilkinson and C. E. Rogers. Symbolic description of factorial models for analysis of
variance. Appl. Statist., 22:392–399, 1973.

S.N. Wood. Generalized Additive Models. An introduction with R. Chapman and Hall, 2006.

E. M. Wright and P. Royston. A comparison of statistical methods for age-related reference
intervals. J. R. Statist. Soc. A., 160(2):47–69, 1997.

Index

deviance(), 97

Additive terms
linear, 182

additive terms, 44, 179
free knots, 197
polynomials, 186

fractional, 188
iecewise, 188

smoother, 179
smoothers, 209
tensor products, 236
thin plate spline, 236
varying coefficient, 229

Additve terms
Linear

interactions, 183
AIC, 64, 256
algorithm, 44, 70, 84

CG(), 85
RS(), 85
CG, 44, 71, 79

inner, 79
outer, 79

control, 85, 86
gamlss.control, 86
glim.control, 86, 87

EM, 154
Fisher’s scoring, 74
Gauss-Seidel, 76
modified backfitting, 76
Newton-Raphson, 74
quasi Newton-Raphson, 74
RS, 44, 71, 72

inner, 74
mu step, 76
outer, 72
step, 76

B-splines, 192

bias, 255
bias vs variance, 255

centiles
calibration(), 327
centiles(), 321
centiles.com(), 331
centiles.fan(), 327
centiles.pred(), 333
centiles.split(), 327
functions, 321

checklink, 144
coef, 102
cross validation, 256
cubic smoothing splines

cs(), 58
cubic splines, 58
cubic-splines, 224

data
abdom, 86, 98, 141
AEP, 354
aids, 93, 104, 107, 110, 266, 285
alveolar, 354
brains, 170
CD4, 198
enzyme, 138, 158
film90, 49
geyser, 161
old faithful geyser, 157, 160
rent, 27
species, 345
tse, 128
usair, 263

data set
test, 257
training, 257
validation, 257

degrees of freedom, 224
deviance, 34, 64

375

376 INDEX

global, 97
df

cs(), 224
vc(), 229

diagnostics
worm plot, 39

distribution, 132
probability function, 19
BCCG, 44
Exponential family, 33
finite mixtures, 138
gamlss.family, 130
new, 143
normal, 50
Tweedie, 33
types, 129

distributions
BCCT, 63
BCPE, 63
censored, 136
censoring, 134
continuous, 131
d,p,q,r, 132, 147
discrete, 131
mixed, 131
transformation, 134
truncation, 134, 135

effective degrees of freedom , 36, 58
Exponential Family, 33
Exponential family, 33
exponential family, 33

factor, 182
finite mixtures, 138, 153

no common parameters, 154
common parameters, 168

fitted, 60, 102
fitted values, 31
formula

mu, 84
nu, 84
sigma, 84
tau, 84

functiom
plotSimpleGamlss(), 65

function
add1(), 259, 261
add1All(), 261, 275

add1TGD(), 261
addterm, 259
addterm(), 261

arguments, 262
AIC(), 64
bs(), 192
centiles, 65
confint(), 114
cs(), 58, 224
CV(), 261, 277
cy(), 222
demo.BSplines(), 219
demo.histSmo(), 219
demo.interpolateSmo(), 219
demo.LocMean(), 215
demo.LocPoly(), 215
demo.PSplines(), 220
demo.RandomWalk(), 219
demo.WLocMean(), 215
demo.WLocPoly(), 215
drop1(), 38, 116, 261, 263
drop1All(), 261, 275
drop1TGD(), 261
dropterm(), 259, 261

arguments, 262
edf(), 97
edfAll(), 97
find.hyper(), 283
findhyper(), 261
fitDistL(), 128
fitted(), 31, 60, 97
formula(), 97
fp(), 188
fv(), 97
ga(), 234
GAIC(), 64
gamlss(), 83
gamlssCV(), 261, 277
gamlssML(), 128
gamlssMX(), 156
gamlssNP(), 169
gamlssVGD(), 278
gamlsVGD(), 261
gamssMX(), 138
gamssNP(), 138
gen.likelihood(), 97, 110
get.K(), 97
getSmo(), 60, 97

INDEX 377

getTGV(), 261
GV(), 261
gwtTGD(), 280
histDist(), 128
lo(), 61
logLik(), 97
lp(), 98
lpred(), 98, 103
model.frame(), 98
model.matrix(), 98
nn(), 59, 238
pb(), 37, 55, 220
pbm(), 222
pbo(), 220
plot(), 61, 291
predict(), 60, 98, 103
predictAll(), 98, 103
print(), 98
prof.dev(), 117
prof.term(), 120
ps(), 220
pvc(), 229
Q.stats(), 291, 300

arguments, 302
resid(), 31, 98
ri(), 227
rqres.plot(), 305

arguments, 306
Rsq(), 32, 98
rvcov(), 98, 112
scs(), 224
stepGAIC(), 261, 268, 269, 272

arguments, 268
stepGAICAll.A(), 261, 273
stepGAICAll.B(), 261, 275
stepTGD(), 261
summary(), 32, 53, 98, 114
term.plot(), 39
terms(), 98
TGD(), 261, 280
tr(), 242
vcov(), 98, 112
VGD(), 278
wp(), 39, 291, 295

arguments, 300
wp), 62

function:resid(), 61
fv, 102

GAIC, 35, 64, 122, 256
local, 56
profile, 122

GAMLSS
definition, 43, 69, 70
non parametric, 70
parametric, 70

gamlss
arguments, 84
family, 132

new, 143
function, 47
object, 98
packages, 47

gamlss family
BB, 132
BCCG, 132
BCPE, 132
BCT, 132
BE, 132
BEINF, 132
BEOI, 132
BEZI, 132
BI, 132
DEL, 132
EGB2, 132
exGAUS, 132
EXP, 132
GA, 132
GB1, 132
GB2, 132
GG, 132
GIG, 132
GT, 132
GU, 132
IG, 132
IGAMMA, 132
JSU, 132
JSUo, 132
LG, 132
LNO, 132
LO, 132
LOGNO, 132
NBI, 132
NBII, 132
NET, 132
NO, 132
NOF, 132

378 INDEX

PARETO2, 132
PARETO2o, 132
PE, 132
PIG, 132
PO, 132
RG, 132
SEP1, 132
SEP2, 132
SEP3, 132
SEP4, 132
SHASH, 132
SHASHo, 132
SHASHo2, 132
SI, 132
SICHEL, 132
ST1, 132
ST2, 132
ST3, 132
ST4, 132
ST5, 132
TF, 132
WEI, 132
WEI2, 132
WEI3, 132
ZABB, 132
ZABI, 132
ZAGA, 132
ZAIG, 132
ZALG, 132
ZANBI, 132
ZAP, 132
ZIBB, 132
ZIBI, 132
ZIP, 132
ZIP2, 132
ZIPIG, 132

gamlss.control, 86
gamlss.family, 43, 84, 130

BCCG, 44
BCT, 149
GU, 149
IG, 149
NBI, 149
NO2, 148
PO, 149
SICHEL, 149
TF, 149
WEI2, 138

GCV
local, 56

GLIM, 74
glim.control, 87
global deviance, 34, 64

Hadamard product, 21
Hadamard product, 74
Heaviside, 189
Hessian, 53

Information criterion
AIC, 64
SBC, 64

Lasso, 227
least squares, 30
likelihood

censored, 137
finite mixtures, 154
fitted, 34
penalised, 44
ratio test, 256

link function, 33, 130, 144, 145, 149, 258
canonical, 33
log, 33
own, 145

loess, 61
Log Likelihood

penalised, 70
Log likelihood, 70
log-likelihood, 137

Maximum likelihood
local, 56

Model
GAM, 36
GAMLSS, 42
GLM, 33
LMS, 44
MADAM, 40
parametric, 50

model
ANOCOVA, 184
break points, 197
decision trees, 242
GAM, 234
GAMLSS

additive terms, 258

INDEX 379

component D, 258
component G, 258
component Lambda, 259
component T, 258

linear regression, 29
nested, 256
neural network, 238
non-nested, 256
varying coefficient, 229

Model selection, 255

neural networks, 59

P-splines, 55
pb(), 55

package
corrplot, 55
gamlss, 47
gamlss.add, 48, 59
gamlss.cens, 48
gamlss.data, 27, 48
gamlss.demo, 140, 215
gamlss.dist, 48
gamlss.mx, 48, 138
gamlss.nl, 48
gamlss.spatial, 48
gamlsss.demo, 48
MASS, 94
mgcv, 48, 234
nnet, 48, 238
rpart, 48, 242
tr, 48

packages
colorspace, 65
gamlss.util, 65

parameter
beta, 70
fix, 84
gamma, 70
lambda, 70
scale, 40

parameters
lambda

estimation, 79
GAIC, 80
GCV, 80
local GAIC, 81
local GCV, 81
local ML/REML, 81

ML/REML, 80
mu, 43
nu, 43
sigma, 43
tau, 43

penalized likelihood, 44
Piecewise Polynomials, 188
plot

arguments, 291
polynomial

fractional
example, 201

free knots
example, 205

orthogonal
example, 199

piecewise
example, 204

polynomials, 50, 186
fractional, 188
local, 213
orthogonal, 186

predict, 60, 103
profile deviance, 117
profile likelihood, 117

Q statistics, 300

refit, 92
Regression Splines, 188
REML, 30
residuals, 287

Normalised randomised quantile
residuals, 288

normalised randomised residuals, 31
Pearson’s, 287
quantile, 61
row, 287
standardised, 287

Ridge regression, 227

scatterplot smoother, 210
Smoothers

local regression, 213
smoothers, 210

cubic splines, 58
Cubic-splines, 224
lasso, 227
loess, 61

380 INDEX

neural networks, 59
P-splines, 55, 220

cycle, 222
penalised, 209, 217

demo, 219
multivariate, 229

ridge, 227
univariate, 217

spar
cs(), 224
vc(), 229

standard errors, 53
robust, 54

starting values, 84

terms, 179

update, 93

weights, 84, 89
worm plot, 62, 295

multiple, 298
single, 295

wp, 62
arguments, 300

Z statistics, 301
z-score, 288
z-scores, 288

	I Introduction to models and packages
	Why GAMLSS?
	Introduction
	The 1980's Munich rent data
	The linear regression model
	The generalised linear model (GLM)
	The generalised additive model (GAM)
	Modelling the scale parameter
	The generalised additive model for location shape and scale.

	Introduction to the gamlss packages
	Introduction
	The GAMLSS packages
	A simple example using the gamlss packages
	Fitting a parametric model
	Fitting a non-parametric smoothing model
	Extracting the fitted values for
	Modelling both and
	Diagnostic plots
	Fitting different distributions
	Selection between models
	Chosen Model

	II The R implementation: algorithms and functions
	The Algorithms
	Introduction
	Estimating and for fixed
	The RS algorithm
	The CG algorithm

	Estimating
	Remarks on the GAMLSS algorithms

	The gamlss() function
	Introduction to the gamlss() function
	The arguments of the gamlss() function
	The method argument of the gamlss() function
	The algorithmic control functions
	Weighting out observations, the weights and data=subset() arguments

	The refit and update functions
	refit()
	update()

	Methods for fitted gamlss objects
	Introduction
	The gamlss object
	The predict(), predictAll() and lpred() functions
	The gen.likelihood() function
	The vcov() and rvcov() functions
	The summary() and confint() functions
	The prof.dev() and prof.term() functions
	prof.dev()
	prof.term()

	III Distributions
	The gamlss.family of distributions
	Introduction
	Types of distribution within the GAMLSS family
	Explicit GAMLSS family distributions
	Extending GAMLSS family distributions

	Displaying GAMLSS family distributions
	Using the distribution demos
	Using the pdf.plot() function
	Plotting the d, p, q and r functions of a distribution

	Amending and constructing a new distribution
	The link functions

	Finite mixture distributions
	Introduction to finite mixtures
	Finite mixtures with no parameters in common
	The likelihood function
	Maximizing the likelihood function using the EM algorithm
	Modelling the mixing probabilities
	Zero components

	The gamlssMX() function
	Examples using the gamlssMX() function
	The Old Faithful geyser data

	Finite mixtures with parameters in common
	Maximizing the likelihood using the EM algorithm

	The gamlssNP() function
	Examples using the gamlssNP() function
	The animal brain data

	IV Additive terms
	Linear parametric additive terms
	Introduction to linear and additive terms
	Linear terms
	Additive linear terms
	Linear interactions

	Polynomials
	Fractional Polynomials
	Piecewise Polynomials and Regression Splines
	B-Splines basis
	Free knots break point models
	Example: the CD4 data
	Orthogonal polynomials
	Fractional polynomials
	Piecewise polynomials
	Free knots

	Additive Smoothing Terms
	Introduction
	What is a scatterplot smoother
	Local regression smoothers
	Penalised smoothers: univariate.
	Demos on penalised smoothers
	The pb(), pbo() and the ps() functions for fitting a P-splines smoother
	The pbm() function for fitting a monotonic smooth functions
	The cy() function for fitting a cycle smooth functions
	The cs() and scs() functions for fitting cubic splines
	The ri() function for fitting ridge and lasso regression terms

	Penalised smoothers: multivariate
	The pvc() function for fitting varying coefficient models
	Interfacing with gam(), the ga() function

	Other smoothers
	Interfacing with nnet(), the nn() function
	Interfacing with rpart(), the tr() function
	Interfacing with loess(), the lo() function

	How to add new smooth functions in gamlss()

	Random effects
	Introduction
	Random effects models for at the observational level
	Fitting an explicit continuous mixture distributions
	Fitting non-explicit continuous mixture distributions using Gaussian quadrature
	Non parametric random effects models
	Non parametric random coefficients in the predictor for all distribution parameters

	Random effects models for at the factor level

	V Model selection and diagnostics
	Model selection techniques
	Introduction: Statistical model selection
	GAMLSS model selection
	Component D: Selection of the distribution
	Component G: Selection of the link functions
	Component T: Selection of the additive terms in the model
	Component : Selection of the smoothing parameters
	Selection of all components using a validation data set
	Summary of the GAMLSS functions for model selection

	The addterm() and dropterm() functions
	drop1()
	add1()

	The stepGAIC() function
	Selecting model for
	Selecting model for

	Strategy A: the stepGAICAll.A() function
	Strategy B: the stepGAICAll.B() function
	Boosting
	K-fold Cross Validation
	Validation, and test data
	The gamlssVGD() and VGD() functions
	The getTGD() and TGD() functions
	The stepTGD() function

	The find.hyper() function

	Diagnostics
	Introduction
	Normalised (randomised) quantile residuals
	The plot() function
	The wp() function
	the Q.stats() function
	the rqres.plot() function

	VI Applications
	Centile Estimation
	Introduction
	Quantile regression
	The LMS method and extensions
	Model selection procedures for the LMS method

	The Dutch boys BMI data
	The lms() function
	Plotting fitted values against the x variable using fittedPlot()
	Plotting centiles curves using centiles() and calibration()
	The function centiles()
	The function calibration()
	The function centiles.fan()

	The function centiles.split()
	The function centiles.com()
	The functions centiles.pred() and z.scores()
	Quantile Sheets using the function quantSheet()

	Further Applications
	Count data: the fish species data
	Binomial data example: the hospital stay data
	Continuous distribution example: The 1990's film data
	Preliminary analysis
	Modelling the data using the normal distrbution
	Modelling the data using the BCPE distrbution

	Index

